实用的射频模拟电路基础知识
- 格式:pdf
- 大小:927.81 KB
- 文档页数:50
第四节射频电路结构和工作原理一、射频电路组成和特点:普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。
其主要负责接收信号解调;发射信息调制。
早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。
更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成在中频内部。
RXI-PRXQ-PRXQ-N(射频电路方框图)1、接收电路的结构和工作原理:接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。
1、该电路掌握重点:(1)、接收电路结构。
(2)、各元件的功能与作用。
(3)、接收信号流程。
电路分析:(1)、电路结构。
接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。
早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。
(接收电路方框图)(2)、各元件的功能与作用。
1)、手机天线:结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。
塑料封套螺线管(外置天线)(内置天线)作用:a)、接收时把基站发送来电磁波转为微弱交流电流信号。
b)、发射时把功放放大后的交流电流转化为电磁波信号。
2)、天线开关:结构:(如下图)手机天线开关(合路器、双工滤波器)由四个电子开关构成。
900M收收GSM900M收控收控900M发控GSM900M发入GSM(图一)(图二)作用:其主要作用有两个:a )、 完成接收和发射切换;b )、 完成900M/1800M 信号接收切换。
逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN ;DCS- RX-EN ;GSM-TX-EN ;DCS- TX-EN ),令各自通路导通,使接收和发射信号各走其道,互不干扰。
射频仿真基础知识射频仿真是指利用计算机软件模拟和分析射频电路或系统的工作原理和性能的过程。
它是射频电子领域中不可或缺的一部分,广泛应用于无线通信、雷达、卫星通信、射频识别等领域。
本文将介绍射频仿真的基础知识,包括射频电路、射频信号、射频组件和仿真软件等方面。
一、射频电路射频电路是指工作频率在几十千赫兹到几百兆赫兹范围内的电路。
射频电路的特点是信号频率高、电路尺寸小、传输损耗大。
常见的射频电路包括放大器、混频器、滤波器等。
在射频仿真中,需要对这些电路进行建模,并通过仿真软件进行性能分析,以评估电路的工作情况。
二、射频信号射频信号是指频率在几十千赫兹到几百兆赫兹范围内的电信号。
射频信号具有高频、高速、高能量的特点。
在射频仿真中,需要对射频信号的频率、幅值、相位等参数进行设置,并将其作为输入信号进行仿真分析。
三、射频组件射频组件是指用于射频电路中的各种元器件。
常见的射频组件包括电容器、电感器、变压器等。
在射频仿真中,需要对这些组件进行建模,并根据其特性参数进行仿真分析,以评估组件在射频电路中的性能。
四、仿真软件射频仿真软件是进行射频电路或系统仿真分析的工具。
常见的射频仿真软件包括ADS、CST、HFSS等。
这些软件能够提供强大的仿真功能,可以对射频电路进行电磁场分析、功率分析、噪声分析等,并提供详细的仿真结果和性能评估。
在进行射频仿真时,需要注意以下几点:1. 确定仿真目标:在进行射频仿真前,需要明确仿真的目标,例如评估电路的增益、带宽、稳定性等性能指标。
2. 建立合理的模型:射频电路的仿真需要建立合理的电路模型和组件模型,并设置合适的参数。
3. 选择适当的仿真软件:根据仿真需求和复杂程度,选择合适的射频仿真软件进行仿真分析。
4. 进行仿真分析:通过设置输入信号和参数,进行仿真分析,并获取仿真结果。
5. 评估仿真结果:根据仿真结果,对电路的性能进行评估和优化。
射频仿真是射频电子工程师不可或缺的工具之一,它能够提供有效的仿真分析手段,帮助工程师在设计和优化射频电路时提高效率和准确性。
射频电路的重要知识点总结一、射频电路的基本概念1. 射频信号射频信号通常指频率在300千赫兹至300千兆赫兹之间的信号,是一种高频信号。
射频信号通常用来进行无线通信、雷达、卫星通信等。
射频信号相对于低频信号来说,具有传输距离远、穿墙能力强、信息容量大等优点。
2. 射频电路射频电路是一种用于处理射频信号的电路,主要包括射频放大器、射频混频器、射频滤波器、射频功率放大器、射频开关、射频调制解调器、射频天线等组成。
3. 射频电路的特点射频电路与常规低频电路相比,具有频率高、传输损耗大、抗干扰能力强、器件参数要求高等特点。
二、射频电路的设计流程1. 确定需求射频电路的设计首先需要明确需求,包括工作频率、输入输出阻抗、幅度和相位平衡要求、抗干扰能力、工作环境等。
2. 选择器件根据需求选择合适的射频器件,如射频放大器、射频混频器、射频滤波器等。
选择器件时需要考虑器件的工作频率范围、增益、线性度、稳定性、耦合度等参数。
3. 电路设计根据需求和选择的器件,进行射频电路的整体设计,包括电路拓扑结构设计、参数计算、仿真验证等。
4. 电路布局和布线射频电路的布局和布线对电路的性能有很大的影响,需要考虑信号的传输路径、防止反射和耦合、尽量减少信号损耗等。
5. 电路调试和优化射频电路设计完成后需要进行调试和优化,对功耗、线性度、稳定性、抗干扰能力等进行测试和改进。
6. 电路验证射频电路设计完成后需要进行电路性能验证,包括工作频率范围测试、输入输出阻抗匹配测试、幅度和相位平衡测试、抗干扰能力测试等。
三、射频电路中的常见器件1. 射频放大器射频放大器是射频电路中的重要器件,用于放大射频信号。
根据工作频率和功率要求可以选择不同的射频放大器,包括晶体管放大器、集成射频放大器、功率放大器等。
2. 射频混频器射频混频器用于将射频信号和局部振荡信号进行混频,产生中频信号。
射频混频器的性能对整个混频系统的性能影响很大。
3. 射频滤波器射频滤波器主要用于滤除非目标频率的信号,保证接收机的选择性和抗干扰能力。
第一部分射频基本概念第一章常用概念一、特性阻抗特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之比。
对于TEM波传输线,特征阻抗又等于单位长度分布电抗与导纳之比。
无耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。
在做射频PCB板设计时,一定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。
当不相等时则会产生反射,造成失真和功率损失。
反射系数(此处指电压反射系数)可以由下式计算得出:z1二、驻波系数驻波系数式衡量负载匹配程度的一个指标,它在数值上等于:由反射系数的定义我们知道,反射系数的取值范围是0~1,而驻波系数的取值范围是1~正无穷大。
射频很多接口的驻波系数指标规定小于1.5。
三、信号的峰值功率解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示。
峰值功率即是指以某种概率出现的尖峰的瞬态功率。
通常概率取为0.1%。
四、功率的dB表示射频信号的功率常用dBm、dBW表示,它与mW、W的换算关系如下:dBm=10logmWdBW=10logW例如信号功率为x W,利用dBm表示时其大小为五、噪声噪声是指在信号处理过程中遇到的无法确切预测的干扰信号(各类点频干扰不是算噪声)。
常见的噪声有来自外部的天电噪声,汽车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产生的散粒噪声,信号与噪声的互调产物。
六、相位噪声相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动。
理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下页所示。
一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声。
相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。
例如晶体的相位噪声可以这样描述:七、噪声系数噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义:单元输入信噪比除输出信噪比,如下图:对于线性单元,不会产生信号与噪声的互调产物及信号的失真,这时噪声系数可以用下式表示:Pno 表示输出噪声功率,Pni 表示输入噪声功率,G 为单元增益。
射频电路基础性概念谐波失真:射频放大器等有源器件产生的基频的整数倍频率处的无用信号。
例如,基频是50MHz ,则100MHz 、150MHz 、200MHz 分别称为二次谐波、三次谐波、四次谐波。
谐波的度量:用单位dBc 表示,即n 次谐波功率低于基频功率的dB 值。
如二次谐波-60dBc ,表示二次谐波功率比基频(或者载波)低60dB 。
互调失真:假如非线性器件的输入信号为,2cos 2cos 21t f B t f A ππ+在输出信号中除了包含1f 和2f 外,还包含了这两种信号的各种组合频率:,21nf mf f +=这些频率的信号称为互调产物。
如果这些频率的信号为无用信号,则称之为互调失真。
例如:对混频器而言,输入本振信号GHz f 3.21=,中频信号GHz f 2.02=,则对m=1,n=-1的情况,输出GHz f 1.2=,这是混频器输出地有用频率。
对于m=1,n=-2的情况,GHz f 9.1=,称之为3阶互调分量(IM3)。
因为IM3经常落在有用信号带内,形成干扰,因此3阶互调分量常常是设计师防范的对象。
杂散:广义角度:有用频率以外的无用信号都称之为杂散。
狭义角度:除了谐波以外的无用信号。
杂散产生的机理:1辐射干扰、传导干扰等方式侵入的无用信号;2由于器件的非线性,导致的无用信号之间、或者无用信号与有用信号之间的互调产物。
杂散的度量:用dBc 表示。
杂散的抑制:1、通过屏蔽、滤波、接地等手段提高系统的电磁兼容性;2、正确设置好器件的静态工作点;3、尽量减小器件之间的阻抗失配;4、带外杂散抑制比较容易,用滤波器或者陷波器滤除即可;5、带内杂散抑制相对比较困难,需要综合考虑诸多因素。
1dB 压缩点:一般在器件的datasheet 中用符号P 1dB 表示,即可用输出信号功率P 1dBout 表示,也可用输入信号功率P 1dBin 表示。
在使用器件时,输入信号功率应该远离其1dB 压缩点。
射频电路基础知识嘿,朋友们!今天咱来聊聊射频电路基础知识这档子事儿。
咱先说说射频是啥呀,就好比是电路世界里的小精灵,看不见摸不着,但又无处不在。
它就像是一个神奇的信号快递员,负责把各种信息快速地传送到目的地。
你想想看,手机能打电话、上网,靠的不就是射频电路嘛。
它就像我们身体里的血管一样,让各种信号在里面欢快地流淌。
那射频电路里都有啥呢?有天线呀,这可是个关键角色,就像个大喇叭,把信号发送出去,或者把外面的信号接收进来。
还有滤波器呢,它就像个聪明的守门员,把那些不需要的信号挡在门外,只让我们想要的信号通过。
放大器呢,就像是给信号吃了大力丸,让它们变得更强大,能传得更远。
还有各种电容、电感啥的,它们就像一群小伙伴,齐心协力地让射频电路正常工作。
咱再打个比方,射频电路就像是一场音乐会。
天线是舞台,信号是演员,滤波器是选角导演,放大器是音响师,而那些电容电感就是各种乐器啦。
只有大家配合好了,这场音乐会才能精彩绝伦呀!那要学好射频电路基础知识难不难呢?嘿嘿,说难也不难。
就像学骑自行车一样,一开始可能会摇摇晃晃,但只要多练习,慢慢就会掌握技巧啦。
你得先了解每个元件的作用,就像了解自行车的每个零件一样。
然后呢,多做些实验,就像多骑骑车,找找感觉。
比如说,你可以自己动手搭个简单的射频电路,看看信号是怎么传输的,感受一下它的神奇之处。
这多有意思呀!还有啊,可别小瞧了这些基础知识,它们就像是盖房子的砖头,没有它们,你可盖不出高楼大厦来。
以后要是想搞更复杂的射频项目,那都得靠这些基础打底呢。
总之呢,射频电路基础知识就像是一把打开神奇世界大门的钥匙,只要你有兴趣,肯钻研,就一定能发现里面的精彩。
别犹豫啦,赶紧去探索吧!相信你会爱上这个充满魅力的射频世界的!原创不易,请尊重原创,谢谢!。
射频电路的基础知识介绍描述射频布局和天线调谐需要了解射频特定的概念,并且需要比传统电路布局更多的关注。
本节介绍 RF 设计、传输线路和特性阻抗的基础知识。
需要理解以下概念和术语来设计有效的 RF 布局。
▪传输线▪特性阻抗▪回波损耗▪介入损耗▪阻抗匹配影响射频设计与模拟设计相关的关键因素是射频电路的阻抗。
在低频时,负载阻抗在距离负载走线不同距离处测量时保持不变。
对于大多数应用,也不依赖于迹线宽度或其均匀性。
因此,迹线仅表示为低频节点。
但在高频时,RF 电路的阻抗(Z)会在距负载不同距离处测量时发生变化。
这种变化还取决于所使用的基底和射频迹线的尺寸。
因此,迹线也成为 RF 原理图中的设计元素。
传输线是通过定义的路径传输电磁能量的媒介。
同轴电缆,波导以及 RF 引脚和天线之间的 RF 走线都是传输线。
大多数射频迹线是诸如微带线和共面波导之类的传输线。
传输的关键特性是它的特征阻抗(Z0),它是通过无损传输线传播的波的电压和电流的振幅比。
对于频率为2.45 GHz 的应用,例如BLE,50Ω特性阻抗广泛用于射频迹线。
传输线路的等效模型即使 Z0 是一个实数,它也不是 RF 走线的电阻。
理想的传输由于其特性阻抗不消耗能量或具有任何损耗。
传输线的等效模型如上图所示。
它是表示传输线分布式串联电感与分布式并联电容之比的属性。
其中 L 和 C 分别是沿传输线任意长度的分布电感和分布电容。
特性阻抗(Z0)取决于 PCB 材料,基底厚度,迹线宽度,迹线厚度以及 RF 迹线和接地填充物之间的间隙。
这些参数在传统的布局和设计中经常被忽略,但它们在射频设计中扮演着重要的角色。
阻抗测量设置的表示上图描述了测量 RF 电路阻抗的典型测量设置。
射频走线上给定点的阻抗与走线的特征阻抗,与负载的距离和负载阻抗有关;计算方式如下面的等式:其中 Z 是在距离负载的距离为 l 处测得的阻抗,ZL是在负载(l = 0)处测得的阻抗,Z0是传输线的特性阻抗,β是相位常数。
射频电路基础
射频电路是应用激励传输系统中高频信号进行控制和传输的基础。
它们用来周期性地激发信号,传输到另一端,从而构成一个复杂的控制系统。
这种电路由一系列的模拟电路不断叠加或拆分,并使用一些外部组件如电容和变压器来改变信号的形状和强度。
射频电路可以用来连接复杂控制系统,包括汽车关键系统、多媒体系统、导航系统、机器人系统等。
射频电路的主要用途是传输信号,使控制系统能够正确运行,而它的性能会影响系统的效率。
偏离设计规格的射频电路会影响信号的传输速率和信号的损失,而这些损失又会影响系统的可靠性。
射频电路的分类,主要可以分为信号处理电路,功率电路和控制电路,信号处理电路主要用于将高频电信号变换为外设使用的信号,功率电路用于提供增加或减少信号强度的能力,控制电路可以用于控制信号的方向和频率。
射频电路的设计和测试需要涉及到复杂的技术,包括电路仿真技术、电路材料处理和测试技术,以及调节和调试技术等等,只有理解射频电路和这些技术,才能保证射频电路设计质量和系统完整性。