模拟电子技术基础知识点总结
- 格式:doc
- 大小:613.50 KB
- 文档页数:23
大一模电的主要知识点概括模电,即模拟电子技术,是电子工程学科中的重要分支。
在大一阶段学习模电,主要涉及到模电的基本原理、电路分析和设计等相关内容。
本文将对大一模电的主要知识点进行概括,帮助读者对该学科有一个整体的了解。
一、模拟电子技术概述模拟电子技术是指对非数字信号进行处理、传输和控制的一种技术。
它与数字电子技术相对,主要应用于模拟信号的处理、模拟电路的设计与分析等领域。
二、电路基础知识1. 电压、电流和电阻:电压是指电荷在电路中传输时的电势差,电流是指单位时间内通过导体的电荷流动量,电阻是指材料对电流流动的阻碍程度。
2. 电路元件:电阻、电容和电感是电路中常见的三种基本元件。
电阻用于限制电流,电容用于存储电荷,电感用于存储磁能。
3. 基本电路:串联电路和并联电路是最基本的电路连接方式。
串联电路中电流相同,电压之和等于总电压;并联电路中电压相同,电流之和等于总电流。
三、放大器1. 放大器的基本原理:放大器将输入信号进行放大,使其输出信号具有更高的幅度。
常用的放大器有运算放大器、差分放大器等。
2. 放大器的分类:按放大器的工作频率可以分为低频放大器和高频放大器;按放大器的工作方式可以分为共射放大器、共基放大器等。
四、操作放大器1. 操作放大器的基本特性:操作放大器是一种基础的电路元件,在模电中应用广泛。
它具有高输入阻抗、低输出阻抗、大增益等特性。
2. 基本运算电路:比较器、积分器、微分器是操作放大器的基本运算电路。
比较器常用于判断信号的高低电平,积分器和微分器用于信号的积分或微分处理。
五、滤波器1. 滤波器的作用:滤波器用于对信号进行滤波处理,分离出所需的频率成分。
2. 滤波器的类型:根据滤波器的频率响应特征,可以将其分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
六、振荡器振荡器是一种能够产生周期性输出信号的电路。
在模电中,常用的振荡器有正弦波振荡器、方波振荡器等。
七、电源管理1. 稳压电路:稳压电路用于保持输出电压的稳定性,常用的稳压电路有三端稳压电压、集成稳压电路等。
模拟电路基础知识点总结模拟电路是电子技术中的重要基础知识点,它在现代电子设备中起着至关重要的作用。
通过模拟电路的设计和分析,我们可以实现信号的放大、滤波、混频等功能,从而实现电子设备的正常工作。
一、模拟电路的基本概念1. 电路:由电子元器件和导线等连接而成的电子系统。
2. 模拟电路:处理模拟信号的电路,模拟信号是连续变化的信号。
3. 数字电路:处理数字信号的电路,数字信号是离散变化的信号。
4. 信号:表示信息的物理量,常见的信号有声音、图像、电压等。
5. 信号源:产生信号的电子元器件,比如函数发生器、麦克风等。
二、模拟电路的基本组成1. 电源:提供电路所需的电能。
2. 元件:电子电路中的基本构成单元,包括电阻、电容、电感等。
3. 连接线:将元器件连接起来,传递电能和信号。
4. 放大器:放大电路中的信号,提高信号的幅度。
5. 滤波器:去除电路中的杂散信号,保留所需信号。
6. 比较器:比较两个信号的大小,判断其关系。
7. 混频器:将两个不同频率的信号混合在一起。
三、模拟电路的基本原理1. 电流:电子在导体中的流动,是电荷的移动。
2. 电压:电荷在电场中的势能差,表示电子的能量。
3. 电阻:阻碍电流通过的元件,使电能转化为其他形式的能量。
4. 电容:存储电荷的元件,具有存储和释放能量的特性。
5. 电感:存储磁场能量的元件,具有阻碍电流变化的特性。
四、常见的模拟电路应用1. 放大器:将微弱信号放大到合适的幅度,如音频放大器。
2. 滤波器:去除电路中的噪声和杂散信号,如音频滤波器。
3. 混频器:将两个不同频率的信号混合在一起,如无线电调频。
4. 示波器:观测电路中的信号波形,如示波器。
5. 电源:提供电路所需的直流或交流电源,如电池、电源适配器。
总结:模拟电路是电子技术中的基础知识点,通过对电路的设计和分析,我们可以实现各种功能,如信号放大、滤波、混频等。
了解模拟电路的基本概念、组成和原理,以及常见的应用,对于理解和应用电子技术都是至关重要的。
模拟电⼦技术重要知识点整理模拟电⼦技术重要知识点整理第⼀章绪论1.掌握放⼤电路的主要性能指标都包括哪些。
2.根据增益,放⼤电路有哪些分类。
并且会根据输出输⼊关系判断是哪类放⼤电路,会求增益。
第⼆章运算放⼤器1.集成运放适⽤于放⼤何种信号?2.会判断理想集成运放两个输⼊端的虚短、虚断关系。
如:在运算电路中,集成运放的反相输⼊端是否均为虚地。
3.运放组成的运算电路⼀般均引⼊负反馈。
4.当集成运放⼯作在⾮线性区时,输出电压不是⾼电平,就是低电平。
5.在运算电路中,集成运放的反相输⼊端不是均为虚地。
6.理解同相放⼤电路、反相放⼤电路、求和放⼤电路等,会根据⼀个输出输⼊关系表达式判断何种电路能够实现这⼀功能。
7.会根据虚短、虚断分析含有理想运放的放⼤电路。
第三章⼆极管及其基本电路1.按导电性能的优劣可将物质分为导体、半导体、绝缘体三类,导电性能良好的⼀类物质称为导体,⼏乎不导电的物质称为绝缘体,导电性能介于中间的称为半导体。
2.在纯净的单晶硅或单晶锗中,掺⼊微量的五价或三价元素所得的掺杂半导体是什么,其多数载流⼦和少数载流⼦是是什么,⼜称为什么半导体。
3.半导体⼆极管由⼀个PN结做成,管⼼两侧各接上电极引线,并以管壳封装加固⽽成。
4.半导体⼆极管可分为哪两种类型,其适⽤范围是什么。
5.⼆极管最主要的特性是什么。
6.PN结加电压时,空间电荷区的变化情况。
7.杂质半导体中少数载流⼦浓度只与温度有关。
8.掺杂半导体中多数载流⼦主要来源于掺杂。
9.结构完整完全纯净的半导体晶体称为本征半导体。
10.当掺⼊三价元素的密度⼤于五价元素的密度时,可将N型转型为P型;当掺⼊五价元素的密度⼤于三价元素的密度时,可将P型转型为N型。
11.温度升⾼后,⼆极管的反向电流将增⼤。
12.在常温下,硅⼆极管的开启电压约为0.3V,锗⼆极管的开启电压约为0.1V。
13.硅⼆极管的正向压降和锗管的正向压降分别是多少。
14.PN结的电容效应是哪两种电容的综合反映。
模电知识点识点总结一、电路分析电路分析是模拟电子技术中的基础知识点,它涉及到电路的基本元件、电路定律、戴维南定理、诺顿定理、等效电路、交流电路分析等内容。
在电路分析中,学生需要掌握电路元件的特性和参数,熟练掌握欧姆定律、基尔霍夫电压定律、基尔霍夫电流定律等基本定律,能够准确分析电路中的电压、电流和功率等参数。
二、放大电路放大电路是模拟电子技术中的重要内容之一,它是指通过放大器将输入信号放大的过程。
学生需要掌握放大器的基本分类、放大器的基本参数、放大器的频率特性等知识,理解放大器的工作原理,能够设计各种类型的放大电路。
三、模拟信号处理模拟信号处理是模拟电子技术中的核心内容之一,它涉及到模拟信号的获取、处理、传输和存储等过程。
学生需要掌握模拟信号的采样定理、量化处理、模拟信号滤波等知识,能够设计模拟信号处理系统,提高模拟信号处理的质量和效率。
四、模拟滤波器设计滤波器是模拟电子技术中的重要内容之一,它是指用于对信号进行滤波处理的电路。
学生需要掌握滤波器的分类、滤波器的性能指标、滤波器的设计方法等知识,能够设计各种类型的模拟滤波器,提高信号的质量和准确性。
五、集成电路设计集成电路设计是模拟电子技术中的核心内容之一,它涉及到集成电路的设计原理、工艺流程、器件制造等一系列内容。
学生需要掌握集成电路的基本结构、工作原理、设计方法等知识,能够设计各种类型的集成电路,提高集成电路的性能和可靠性。
总之,模拟电子技术是电子工程中非常重要的一门课程,它涉及到电路分析、放大电路、模拟信号处理、模拟滤波器设计、集成电路设计等方面的知识。
学生在学习模拟电子技术的过程中,需要注重理论与实践相结合,通过实验和项目设计来提高自己的技能水平,从而更好地应用模拟电子技术知识解决实际问题。
模拟电路基础知识点总结一、电路基本概念1. 电路电路是由电子元件(如电源、电阻、电容、电感等)连接在一起形成的电子装置。
通过这些元件可以实现电能的输送、控制和转换,从而完成各种电子设备和系统的功能。
2. 电流、电压和电阻电流是电子在导体中流动的载体,是电荷的移动速度,通常用符号I表示,单位是安培(A)。
电压是电源推动电荷流动的力量,通常用符号U表示,单位是伏特(V)。
电阻是导体对电流的阻碍,通常用符号R表示,单位是欧姆(Ω)。
3. 串联电路、并联电路和混联电路串联电路是将电子元件连接在同一电路中,依次排列,电流只有一条通路可走。
并联电路是将电子元件连接在同一电路中,相互平行排列,电流可有多条通路走。
混联电路是将电子元件混合连接在同一电路中,既有串联又有并联的特点。
二、基本电路元件1. 电源电源为电路提供驱动力,可以是直流电源或交流电源,根据需要分别选择。
2. 电阻电阻是电路中常用的元件,可以用来控制电流大小,限制电流大小,分压和分流等。
3. 电容电容是储存电荷的元件,可以用来实现一些信号处理和滤波的功能,在交流电路中有重要作用。
4. 电感电感是导体绕制的线圈,可以将电能转换为磁能,反之亦然,对交流信号传输有重要作用。
5. 二极管二极管是一种电子元件,可以将电流限制在一个方向上流动,常用于整流、开关和光电转换等应用。
6. 晶体管晶体管是一种半导体元件,可以放大电流信号,控制电流开关等,是集成电路中最基本的元件之一。
三、基本电路分析1. 基尔霍夫定律基尔霍夫定律是用来分析串联电路和并联电路中电压和电流的分布情况的定律,包括基尔霍夫电流定律和基尔霍夫电压定律。
2. 电压分压和电流分流电压分压和电流分流是串联电路和并联电路中常见的分析方法,可以通过这些方法来实现电路中电压和电流的控制。
3. 戴维南定理和戴维南等效电路戴维南定理是用来分析电路中电阻和电压之间的关系,戴维南等效电路是用来替代一些复杂电路,简化分析过程的方法。
模电必考知识点总结一、基本电路理论1. 电路基本定律欧姆定律、基尔霍夫定律、电路中的功率计算等基本电路定律是模拟电子技术学习的基础,了解和掌握这些定律对于学习模拟电子技术是非常重要的。
2. 电路分析了解如何对电路进行简化、等效电路的转换、戴维南定理和诺依曼定理等电路分析的基本方法。
3. 电路稳定性掌握电路的稳定性分析方法,包括如何对直流放大电路和交流放大电路进行稳定性分析。
4. 传输线理论了解传输线的基本特性,包括传输线的阻抗、反射系数、传输线的匹配等知识。
二、放大电路1. 二极管放大电路了解二极管的基本特性和放大电路的设计原理,包括共射放大电路、共集放大电路和共基放大电路等基本的二极管放大电路。
2. 晶体管放大电路了解晶体管放大电路的基本原理和设计方法,包括共射放大电路、共集放大电路和共基放大电路等基本的晶体管放大电路。
3. 放大电路的频率响应了解放大电路的频率响应特性,包括截止频率、增益带宽积等相关知识。
4. 反馈电路掌握反馈电路的基本原理和分类,了解正反馈和负反馈电路的特点和应用。
三、运算放大电路1. 运算放大器的基本特性了解运算放大器的基本特性,包括输入输出阻抗、放大倍数、共模抑制比等相关知识。
2. 运算放大器的电路应用了解运算放大器在反馈电路、比较电路、滤波电路、振荡电路等方面的应用,掌握运算放大器的基本应用方法。
四、滤波器电路1. RC滤波器和RL滤波器了解RC滤波器和RL滤波器的基本原理、特性和应用,包括一阶和二阶滤波器的设计和性能分析。
2. 增益电路和阻抗转换电路掌握增益电路和阻抗转换电路的设计原理和方法,了解它们在滤波电路中的应用。
3. 模拟滤波器设计了解低通滤波器、高通滤波器、带通滤波器和带阻(陷波)滤波器的设计方法和特性,掌握模拟滤波器的设计技巧。
五、功率放大电路1. BJT功率放大电路了解晶体管功率放大电路的基本原理和设计方法,包括类A、类B、类AB和类C功率放大电路的特点和应用。
模电知识点总结一、基本概念1. 电路元件:模拟电子技术的基本元件包括电阻、电容、电感、二极管、晶体管等。
其中,电阻用于限制电流,电容用于储存电荷,电感用于储存能量,二极管用于整流、开关等,晶体管用于放大、开关等。
2. 信号:在模拟电子技术中,信号是指随时间或空间变化的电压或电流。
常见的信号形式有直流信号、交流信号、脉冲信号等。
3. 放大器:放大器是模拟电子技术中的重要元件,用于放大输入信号的幅度。
常见的放大器有运放放大器、晶体管放大器等。
4. 滤波器:滤波器是用于选择特定频率范围内的信号,常用于滤除噪声、提取特定频率成分等。
5. 调制解调:调制是将基带信号调制到载波上,解调是将载波信号解调还原为基带信号。
调制解调技术是模拟电子技术中的重要应用之一。
二、基本电路1. 电阻电路:电阻是最基本的电路元件之一,常用于限制电流、调节电压和波形、分压等。
常见的电阻电路包括电压分压电路、电流分压电路、电阻网络等。
2. 电容电路:电容是能存储电荷的元件,常用于滤波、积分、微分等。
常见的电容电路包括RC电路、LC电路、多级滤波器等。
3. 电感电路:电感是储存能量的元件,常用于振荡器、磁耦合放大器等。
常见的电感电路包括RLC电路、振荡电路、滤波器等。
4. 滤波器电路:滤波器是用于选择特定频率范围内的信号的电路,常用于滤除杂散信号、提取特定频率成分等。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器、陷波滤波器等。
5. 放大器电路:放大器是用于放大电压、电流信号的电路,常用于信号调理、传感器信号放大、运算放大器电路等。
常见的放大器电路包括运算放大器电路、放大器电路、多级放大器电路等。
6. 混频器电路:混频器是用于将两路信号进行混频得到中频信号的电路,常用于调频收音机、超外差接收机等。
常见的混频器电路包括倍频器电路、调频接收机电路、超外差接收机电路等。
7. 调制解调电路:调制解调电路是用于调制解调信号的电路,常用于调制解调的通信系统、调幅收音机、调频收音机等。
模电复试基本知识点总结模拟电子技术(简称模拟电子技术或模电)是电子科学中的一个重要领域,其研究对象是模拟信号的获取、处理和传输。
模拟电子技术在通信、计算机、医疗、工业控制和电子消费品等领域都有着广泛的应用。
模拟电子技术复试是电子信息类专业研究生入学时的一项测试,其目的是验证考生的专业基础知识水平和综合分析问题的能力。
模电类研究生复试主要考察的内容包括模电基础知识、电子线路设计能力、信号处理与滤波、放大电路设计、反馈电路设计、运算放大器、振荡电路、电源与稳压、模电实验与应用等。
下面就模拟电子技术复试的基本知识点做一个总结。
一、模电基础知识1. 电子电路电子电路是利用电子元件(如二极管、晶体管、集成电路等)搭建的可以完成某种电子功能的电路系统,是电子技术的核心。
在模电复试中,通常考察考生对电子电路的基本原理和分析能力,例如使用基尔霍夫定律分析电路,计算电路稳态和暂态响应等。
2. 电子元件在电子电路中,常用的电子元件包括二极管、晶体管、场效应管、继电器等。
考生需要了解不同电子元件的工作原理、特性和应用场景。
3. 电子器件特性电路中的电子器件,如二极管、晶体管等,都有其特定的工作特性,例如电压-电流特性曲线、频率响应、非线性失真等。
了解电子器件特性对于电路设计和分析非常重要。
4. 信号与系统信号与系统是模拟电子技术的基础,考生需要了解信号的分类、信号的时域和频域分析、系统的传递函数和频率响应等内容。
二、电子线路设计1. 放大电路设计在模拟电子技术中,放大电路是最基本的电子线路之一。
放大电路的设计考察考生对放大电路的基本原理、放大倍数、频率特性等有深入的理解和应用能力。
2. 滤波电路设计滤波电路是用于信号的分离和处理,对于模电的复试来说,考生要掌握各种滤波电路的设计原理、种类和特性,并能灵活应用于实际问题。
3. 反馈电路设计反馈电路是电子系统中的重要组成部分,其设计不仅直接影响了电路的稳定性和性能,还可以使得整个系统的性能有较大的提高。
模电知识点总结专升本一、基本概念与原理模拟电子技术定义:模拟电子技术是指用电子器件制作的用来处理、传输、采集模拟信号的技术。
模拟信号与数字信号:模拟信号是连续变化的信号,可以用连续的函数来表示;数字信号是非连续的信号,只能取有限个值,用数值来表示。
信号的幅频特性:信号的幅频特性是指信号在传输过程中的幅度与频率的关系。
二、基本器件与电路二极管:具有非线性特性的电子器件,主要用于整流、放大、开关等电路中。
晶体管:可以放大电信号的器件,种类有NPN型和PNP 型两种,广泛应用于放大、开关、振荡电路中。
电容器:储存电荷的器件,主要用于滤波、耦合、定时等电路中。
变压器:变换交流电压的器件,主要用于功率增益、隔离等电路中。
三、半导体基础知识本征半导体:完全纯净的,没有杂质的半导体,具有较弱的导电能力且易受温度影响。
n型半导体与p型半导体:在本征半导体中插入不同元素形成的半导体类型,具有不同的载流子特性。
PN结:将p型半导体与n型半导体制作在同一片硅片上形成的结构,是半导体二极管的基础。
四、放大电路与反馈放大器基本原理:放大器用于放大信号的幅度,是模拟电子技术中的重要器件。
反馈电路概念及应用:反馈是将放大电路中的输出量(电流或电压)的一部分或全部通过一定方式作用到输入回路以影响放大电路输入量的过程。
反馈的类型包括电压串联负反馈、电流串联负反馈、电压并联负反馈和电流并联负反馈,用于减小非线性失真和噪声。
五、滤波器有源滤波器与无源滤波器的区别:有源滤波器由集成运放和R、C 组成,具有不用电感、体积小、重量轻等优点;而无源滤波器则主要由无源元件R、L和C组成。
六、其他重要概念与定理戴维南定理:一个含独立源、线性电阻和受控源的二端电路,对其两个端子来说都可等效为一个理想电压源串联内阻的模型。
这些知识点是模电专升本考试中的重要内容,理解和掌握这些知识点对于成功应对考试和深入学习模拟电子技术都至关重要。
同时,也要注意结合实际应用和实践经验,加深对知识点的理解和应用能力。
模电章节知识点总结模拟电子技术的核心知识点包括模拟信号的表示与处理、模拟电路的基本元件与分析方法、放大电路、滤波电路、混频电路、调制与解调电路等。
本文将对这些知识点进行总结,以帮助读者更好地理解和掌握模拟电子技术。
一、模拟信号的表示与处理1. 模拟信号的表示模拟信号是连续变化的信号,一般可以表示为关于时间的函数。
常见的模拟信号包括正弦信号、三角波信号、方波信号等,它们可以用数学函数进行表示。
2. 模拟信号的处理模拟信号的处理包括模拟信号的采集、放大、滤波、混频、调制等过程。
其中,模拟信号的采集是将连续的模拟信号转换为离散的数字信号,而放大、滤波、混频、调制等过程则是对模拟信号进行增强、筛选、整合以及变换的过程。
二、模拟电路的基本元件与分析方法1. 电阻、电容、电感电阻、电容、电感是模拟电路中最基本的元件,它们分别用于限制电流、储存电荷和储存能量。
在模拟电路分析中,常常需要对这些元件进行分析,计算其电压、电流和功率等参数。
2. 理想电路元件的模型在实际的模拟电路中,可以将电阻、电容、电感等元件看作是理想的元件,从而简化模拟电路的分析。
这些理想的元件模型可以大大简化模拟电路的分析。
3. 基本的电路分析方法基本的电路分析方法包括基尔霍夫定律、叠加定理、戴维南定理等。
这些方法可以帮助工程师准确、快速地分析模拟电路中的电压、电流和功率等参数。
三、放大电路1. 放大器的基本原理放大器是模拟电路中最常见的电路之一,它可以将输入的弱信号放大到一定的程度。
放大器的基本原理是利用管子的放大作用,从而使得输入信号经过电压、电流的放大后,输出信号获得放大。
2. 常见的放大电路常见的放大电路包括共集极放大电路、共基极放大电路、共射极放大电路等,它们分别适用于不同的放大应用场景。
这些放大电路可以通过适当的电路设计和参数调整,来实现对不同信号类型的放大。
四、滤波电路1. 滤波器的分类滤波器是模拟电路中的重要组成部分,它可以对信号进行频率筛选。
清华模电知识点总结一、模电基础知识1. 模电的基本概念模拟电子技术(模电)是研究模拟信号的获取、处理和传输的一门学科,其主要研究对象是模拟电路。
模电课程主要从放大器、滤波器、运算放大器等方面展开理论教学和实验研究,使学生能够了解模拟电路的基本原理和设计方法。
2. 模电的基本原理模电的基本原理包括模电电路中的放大器、运算放大器、滤波器等部分的原理和设计方法。
学生需要掌握这些基本原理,才能够进行模电电路的分析与设计。
3. 模电电路的分析与设计模电电路的分析与设计是模电课程的重点内容,学生需要学习如何分析和设计各种模电电路,包括放大器、滤波器、运算放大器等。
通过理论学习和实验实践,使学生能够掌握如何分析和设计模电电路。
二、模电课程的教学内容1. 放大器放大器是模电课程的核心内容之一,学生需要学习放大器的基本原理、分类、设计方法以及实际应用。
清华大学的模电课程会重点讲解放大器的基本原理和设计方法,使学生能够掌握放大器的分析与设计技术。
2. 运算放大器运算放大器是模电电路中的重要组成部分,也是模电课程的重要内容。
学生需要学习运算放大器的基本原理、特点、应用以及在模电电路中的设计方法。
清华大学的模电课程会给予学生相应的理论与实践教学,使学生能够全面了解并掌握运算放大器的相关知识和技术。
3. 滤波器滤波器是模电电路中的另一个重要组成部分,也是模电课程的一大学习内容。
学生需要学习滤波器的基本原理、分类、设计方法以及在模电电路中的应用。
清华大学的模电课程会重点讲解滤波器的相关知识和技术,使学生能够掌握滤波器的分析与设计技术。
4. 模电实验模电实验是模电课程的重要组成部分,学生需要通过实验操作来加深对模电电路原理的理解和掌握相应的实验技术。
清华大学的模电课程注重实验的设计和操作,使学生能够在实践中掌握模电技术并培养动手实践能力。
三、模电课程的教学特点1. 理论与实践相结合清华大学的模电课程注重理论与实践相结合,旨在培养学生的动手实践能力和创新精神。
模拟电路知识点总结入门一、模拟电路概述电路是电子技术的基础,它是利用电子元件、电子器件及其组合形成的一种由电磁场传输信息或者能量的装置。
而模拟电路是指用于处理模拟信号(即连续信号)的电路。
它是数字电路的基础,也是许多电子系统中不可或缺的一部分。
在模拟电路中,我们主要关心的是电压和电流等连续变化的信号。
通过对这些信号的处理,我们可以实现信号的放大、滤波、混频、调解和整形等功能。
因此,对于电子工程师而言,熟练掌握模拟电路的工作原理及设计方法至关重要。
二、模拟电路的基础知识1. 电路元件在模拟电路中,常用的电路元件包括电源、电阻、电容和电感等。
电源主要提供电路所需的电能;电阻用于控制电路的电流和电压;电容则用于存储电荷,可在电路中起到滤波和去纹波的作用;电感则主要用于存储磁能,常用于滤波、耦合和振荡电路中。
2. 基本电路在模拟电路中,一些基本的电路结构如电压放大器、运算放大器、滤波器、振荡器等等都是非常重要的。
掌握这些基本电路的工作原理和设计方法,对于理解模拟电路有着至关重要的作用。
3. 信号处理模拟信号的处理是模拟电路领域的重要内容。
其中,放大、滤波、混频、调解和整形等技术是模拟电路的基本应用之一。
在不同的应用场合下,我们需要根据信号的特性来选择不同的处理手段,以实现预期的效果。
三、模拟电路的设计方法1. 电路设计流程在进行模拟电路设计时,需要遵循一定的设计流程。
包括需求分析、电路框图设计、元件选型、仿真验证、电路布局及PCB设计等多个环节。
只有系统地、严密地执行这些步骤,才能设计出性能优良、可靠稳定的模拟电路。
2. 元器件选型元器件选型是模拟电路设计中的一个关键环节。
在选型时,要考虑元器件的性能指标、工作环境、成本等因素。
同时,还需要针对具体的应用要求,选择合适的元器件并进行参数计算和仿真验证,确保电路能够满足设计要求。
电路仿真是模拟电路设计中的必要步骤。
通过仿真软件,可以对电路的性能进行评估,发现可能的问题并进行改进。
电子技术模拟电路知识点总结一、模拟电路基础概念模拟电路处理的是连续变化的信号,与数字电路处理的离散信号不同。
在模拟电路中,电压和电流可以在一定范围内取任意值。
这是理解模拟电路的关键起点。
二、半导体器件1、二极管二极管是最简单的半导体器件之一,具有单向导电性。
当正向偏置时,电流容易通过;反向偏置时,电流极小。
二极管常用于整流电路,将交流转换为直流。
2、三极管三极管分为 NPN 型和 PNP 型。
它具有放大电流的作用,通过控制基极电流,可以实现对集电极电流的控制。
三极管在放大电路中应用广泛。
3、场效应管场效应管分为结型和绝缘栅型。
它是电压控制型器件,输入电阻高,噪声小,常用于集成电路中。
三、基本放大电路1、共射放大电路共射放大电路具有较大的电压放大倍数和电流放大倍数,但输入电阻较小,输出电阻较大。
2、共集放大电路共集放大电路又称射极跟随器,电压放大倍数接近 1,但输入电阻高,输出电阻小,具有良好的跟随特性。
3、共基放大电路共基放大电路具有较高的频率响应和较好的高频特性。
四、集成运算放大器集成运算放大器是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。
1、理想运算放大器特性具有“虚短”和“虚断”的特点。
“虚短”指两输入端电位近似相等,“虚断”指两输入端电流近似为零。
2、运算放大器的应用包括比例运算电路、加法运算电路、减法运算电路、积分运算电路和微分运算电路等。
五、反馈电路反馈可以改善放大器的性能。
1、正反馈和负反馈正反馈会使系统不稳定,但在某些特定情况下,如正弦波振荡器中会用到。
负反馈能稳定放大倍数、改善频率特性等。
2、四种反馈组态电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈,它们对电路性能的影响各不相同。
六、功率放大电路功率放大电路的主要任务是向负载提供足够大的功率。
1、甲类、乙类和甲乙类功率放大电路甲类功放效率低,但失真小;乙类功放效率高,但存在交越失真;甲乙类功放则是介于两者之间。
模电知识点总结pdf手写模电知识点总结PDF手写一、引言模拟电子技术(模电)作为电子工程中的一个重要分支领域,是电子技术中的基础知识之一。
它主要研究电子电路中的模拟信号的处理与传输,包括模拟电路的设计、分析与测试等内容。
对于学习和掌握模电知识,一个全面的知识点总结是必不可少的。
本文将结合PDF手写的方式,对模电知识点进行总结,具体内容如下。
二、基本概念与基础知识1.模拟电路与数字电路的区别:模拟电路处理的是连续的模拟信号,数字电路处理的是离散的数字信号。
2.模拟电路的基本组成:电源、信号处理元件(如电容、电感、二极管等)、放大器、滤波器等。
3.基本电路元件的特性:电阻、电容、电感的特性参数及相关计算方法。
4.电路分析方法:基尔霍夫定律、戴维南定理、超节点定理、等效电路等。
三、放大器设计与分析1.放大器的基本概念:放大器用于增大信号的幅度,常见的放大器有共射极放大器、共集极放大器、共基极放大器等。
2.放大器的频率特性:通频带、增益带宽积、低频响应、高频响应等。
3.放大器参数的计算方法:增益、输入阻抗、输出阻抗等。
4.放大器的稳定性分析:极点与零点分布、稳定性判据、稳定性设计等。
四、滤波器设计与分析1.滤波器的基本概念:滤波器用于对信号进行滤波,常见的滤波器有低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
2.滤波器的频率响应特性:频率响应曲线、通频带、阻带、滤波器的增益等。
3.滤波器的设计方法:积分法、微分法、频率转换法、电流増强法等。
4.滤波器的实际应用:音频滤波器、图像滤波器、通信系统中的滤波器等。
五、运算放大器1.运算放大器的基本概念与模型:运算放大器的输入端、输出端、电源端及运算放大器的非理想性。
2.运算放大器的基本运算电路:比较电路、求和电路、积分电路、微分电路等。
3.运算放大器的常用应用电路:反馈放大器、积分放大器、微分放大器等。
4.运算放大器的理想运算:虚短法、虚断法、理想运算法、实际运算法等方法。
考研模拟电子技术知识点浓缩电子技术是现代社会中非常重要的一门学科,它涉及到无线通信、计算机、电子设备等众多领域。
对于准备考研的学生来说,电子技术知识点的掌握至关重要。
本文将对考研模拟电子技术知识点进行浓缩,帮助考生更好地复习和备考。
一、模拟电子技术基础知识1. 电路基本定律- 基尔霍夫定律- 电压分压定律- 电流分流定律2. 二极管与晶体管- 二极管的结构与特性- 晶体管的结构与特性3. 放大电路- 放大器的分类和基本特性- 单管放大电路- 多级放大电路4. 滤波电路- RC滤波电路- LC滤波电路5. 振荡电路- LC振荡电路- 压控振荡器- 相移振荡器二、数字电子技术基础知识1. 数字电路基础- 数制及其转换- 布尔代数- 逻辑门电路2. 组合逻辑电路- 编码器和译码器- 多路选择器与多路数据选择器 - 加法器和减法器3. 时序逻辑电路- 触发器与锁存器- 移位寄存器4. 存储器- RAM和ROM- 随机存储器和只读存储器- 快速存储器三、模拟与数字混合电子技术知识1. 模数/数模转换器- DAC的基本原理- DAC的应用场景2. 数模/模数转换器- ADC的基本原理- ADC的应用场景3. 运算放大器- 运放的基本原理- 运放的应用范围和特性4. 电源管理电路- DC-DC转换器- 电源管理IC的应用四、通信电子技术知识1. 信号与系统- 信号描述与分类- 系统的特性与分类- 傅里叶变换与拉普拉斯变换2. 调制与解调技术- 模拟调制与解调技术- 数字调制与解调技术3. 数字通信技术- 信道编码与解码- 错误控制编码4. 通信网络与传输介质- 数据传输介质- 光纤通信技术- 无线通信技术五、其他相关知识1. 工程电磁场基础- 电磁场的基本概念- 麦克斯韦方程组2. 微电子技术基础- MOS场效应管- 半导体器件制造工艺3. 消费电子技术- 数字电视技术- 智能手机技术- 智能家居技术综上所述,电子技术知识点众多,并且涵盖的内容广泛。
模电知识点总结模拟电子技术(模电)是电子工程中的重要学科之一,它涉及到电子系统的设计、分析和应用等方面。
在学习模电的过程中,有一些重要的知识点需要掌握,并加以总结和理解。
本文将对几个常见的模电知识点进行梳理和总结,以便于读者更好地学习和应用模电相关知识。
一、放大器放大器是模电中非常重要的一部分,它用于增强电信号的幅度。
常见的放大器有晶体管放大器和运算放大器等。
晶体管放大器是利用晶体管的特性来放大信号,可以将微弱的电信号放大为更大的电信号。
而运算放大器是一种专门用于具有高电压增益和大动态范围的信号放大器。
掌握放大器的工作原理和应用场景,对于模电的学习和实际应用是非常重要的。
二、滤波器滤波器是一种将不同频率的信号进行分离或滤除的电路。
在模电中,滤波器的应用非常广泛,常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
低通滤波器可以通过将高频信号滤除,保留低频信号,常用于去除噪声和保护电路。
而高通滤波器则可以滤除低频信号,保留高频信号。
通过掌握滤波器的基本原理和特性,可以更好地分析和设计电子系统中的滤波器电路。
三、振荡器振荡器是一种能够产生连续或间歇的周期性波形的电路。
在模电中,振荡器被广泛应用于时钟信号的产生、载波信号的生成等方面。
常见的振荡器有正弦波振荡器、方波振荡器和脉冲振荡器等。
正弦波振荡器可以产生正弦波信号,其基本元件为电感和电容等。
方波振荡器则可以产生方波信号,广泛应用于数字电路中。
了解振荡器的工作原理和设计方法,有助于读者理解和应用振荡器电路。
四、功率放大器功率放大器是一种能够放大电信号功率的电路。
在实际应用中,功率放大器被广泛应用于音频放大、射频放大等方面。
常见的功率放大器有A类放大器、B类放大器和C类放大器等。
A类放大器是一种效率较低但线性度较好的放大器。
而B类放大器具有较高的效率,但会产生失真。
C类放大器则具有更高的效率,但也会引入更多的失真。
掌握功率放大器的特性和设计方法,对于音频和射频电路的设计非常重要。
模拟电子技术基础知识点总结.咱今儿就来说说这模拟电子技术基础的知识点。
我跟你说啊,这模拟电子技术啊,就像是一个神秘的小世界,里头藏着好多让人琢磨不透又特别有意思的玩意儿。
就好比咱走进了一个摆满了各种稀奇古怪仪器的屋子,那叫一个眼花缭乱。
先说这二极管吧,那模样小小的,就跟个小豆子似的。
它在电路里头啊,就像是个调皮的小门卫,只允许电流单向通过。
要是电流想反着来,哼,门儿都没有!我还记得我头一回接触二极管的时候,那一脸懵的样儿,看着这小玩意儿,心里直犯嘀咕:“就这小玩意,还能有这么大能耐?”后来啊,经过一番捣鼓,才慢慢明白它的厉害之处。
再说说三极管,这玩意儿可比二极管复杂多了。
它就像个小指挥官,能把微弱的信号给放大了。
想象一下啊,一个小小的信号进去,就跟个小蚂蚁似的,经过三极管这么一折腾,出来就变成了个大巨人。
有次我在实验室里摆弄三极管做放大电路,那示波器上的波形啊,一开始跟个歪歪扭扭的毛毛虫似的,把我急得直冒汗。
我一边嘟囔着:“这咋回事儿啊,咋就不听话呢?”一边不停地调整参数。
后来啊,总算把波形调得规规矩矩的了,那高兴劲儿啊,就跟中了彩票似的。
还有那放大器,这可是模拟电子技术里的重要角色。
放大器就好比是个大喇叭,把小声音变成大声音。
咱生活中到处都能见到它的影子,像音响、电视啥的,都离不开它。
我有一回在家修音响,那音响突然没声儿了,我就寻思着是不是放大器出问题了。
打开机箱一看,哎呀妈呀,里面那线路跟个蜘蛛网似的。
我一边拿着万用表测来测去,一边自言自语:“这线咋这么乱啊,谁设计的呀?”折腾了老半天,总算找到了问题,原来是一个电容坏了。
换了个电容,那音响又“哇啦啦”响起来了,我老婆在旁边笑着说:“你还真行啊,一会儿就修好了。
”我心里那叫一个美啊。
再讲讲反馈吧。
反馈这东西啊,就像是个调皮的小精灵,有时候能让电路变得更稳定、性能更好,有时候呢,又会捣乱,让电路出问题。
我在学习反馈的时候,那脑袋就跟浆糊似的,怎么也搞不明白。
模电基本知识点总结一、基本电子元件在模拟电子技术中,常用的基本电子元件包括电阻、电容、电感和二极管、晶体管等。
下面我们来介绍一下这些基本电子元件的特性和应用。
1. 电阻电阻是用来限制电流的一种电子元件,它的电阻值用欧姆(Ω)来表示。
电阻的大小取决于材料的电阻率和尺寸。
在实际电路中,电阻通常用来分压、限流、接地等。
电阻的连接方式有串联和并联两种。
2. 电容电容是用来存储电荷的一种电子元件,它的容量用法拉得(F)来表示。
电容的存储能力取决于材料的介电常数和结构。
在实际电路中,电容通常用来滤波、隔直、储能等。
电容的连接方式有串联和并联两种。
3. 电感电感是用来储存能量的一种电子元件,它的电感值用亨利(H)来表示。
电感的大小取决于线圈的匝数和磁芯的材料。
在实际电路中,电感通常用来滤波、隔交、振荡等。
电感的连接方式有串联和并联两种。
4. 二极管二极管是一种非线性元件,它的特性是只允许电流单向通过。
二极管的主要作用是整流、限流、反向保护等。
常见的二极管有硅二极管、锗二极管、肖特基二极管等。
5. 晶体管晶体管是一种半导体器件,它主要有三个端子:发射极、基极和集电极。
晶体管有两种类型:NPN型和PNP型。
晶体管可以作为信号放大、开关、振荡等。
常见的晶体管有通用型晶体管、场效应晶体管、双极型晶体管等。
二、放大器放大器是模拟电子电路中起放大作用的重要器件,其作用是放大输入信号的幅度,以便驱动负载。
根据放大器的工作方式和放大电路的结构,放大器大致可以分为三类:电压放大器、电流放大器和功率放大器。
1. 电压放大器电压放大器是将输入信号的电压放大到较大的幅度,以便驱动负载。
常见的电压放大器有共射放大器、共集放大器、共源放大器等。
这些电压放大器基本上由晶体管、耦合电容、电阻等元件组成。
2. 电流放大器电流放大器是将输入信号的电流放大到较大的幅度,以便驱动负载。
常见的电流放大器有共基放大器、共漏放大器、共栅放大器等。
这些电流放大器基本上由晶体管、耦合电容、电阻等元件组成。
模电知识点总结专升本一、模拟电子技术的基本概念1. 模拟电子技术的定义模拟电子技术是指用电子器件制作的用来处理、传输、采集模拟信号的技术。
2. 模拟信号与数字信号模拟信号是连续变化的信号,可以用连续的函数来表示;数字信号是非连续的信号,只能取有限个值,用数值来表示。
3. 模拟电子技术的应用领域模拟电子技术广泛应用于通信、广播、电视、医疗、工业自动化等领域,是现代电子科技的重要组成部分。
二、模电电路的基本器件1. 二极管二极管是一种具有非线性特性的电子器件,主要用于整流、放大、开关等电路中。
2. 晶体管晶体管是一种可以放大电信号的器件,种类有NPN型和PNP型两种,广泛应用于放大、开关、振荡电路中。
3. 电容器电容器是一种储存电荷的器件,主要用于滤波、耦合、定时等电路中。
4. 电感电感是一种储存磁场能量的器件,主要用于滤波、谐振、耦合等电路中。
5. 变压器变压器是一种用来变换交流电压的器件,主要用于功率增益、隔离等电路中。
三、常用模拟电子电路1. 放大电路放大电路是模拟电子技术中最基本的电路之一,包括共射放大、共集放大、共基放大等不同类型的放大电路。
滤波电路主要用于对信号的频率进行选择性的衰减或增强,包括低通滤波、高通滤波、带通滤波、带阻滤波等不同类型的滤波电路。
3. 振荡电路振荡电路是能够产生周期性信号的电路,包括正弦波振荡器、方波振荡器、三角波振荡器等不同类型的振荡电路。
4. 整流电路整流电路是用来将交流信号转换为直流信号的电路,包括单相整流电路、三相整流电路等类型的整流电路。
5. 调制电路调制电路是用来将基带信号调制到载波上的电路,包括调幅、调频、调相等不同类型的调制电路。
四、基本运算放大器1. 运算放大器的基本概念运算放大器是一种高增益、差分输入、单端输出的集成电路器件,主要用来实现模拟信号的放大、滤波、积分、微分等基本运算。
2. 运算放大器的基本参数运算放大器的基本参数包括增益、输入阻抗、输出阻抗、共模抑制比、带宽等。
模拟电子技术复习资料总结 第一章 半导体二极管 一.半导体的基础知识 1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。 2.特性---光敏、热敏和掺杂特性。 3.本征半导体----纯净的具有单晶体结构的半导体。 4.两种载流子 ----带有正、负电荷的可移动的空穴和电子统称为载流子。 5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。体现的是半导体的掺杂特性。 *P型半导体: 在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。 *N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。 6.杂质半导体的特性 *载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。 *体电阻---通常把杂质半导体自身的电阻称为体电阻。 *转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。 7. PN结 * PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。 * PN结的单向导电性---正偏导通,反偏截止。 8. PN结的伏安特性
二. 半导体二极管 *单向导电性------正向导通,反向截止。 *二极管伏安特性----同PN结。 *正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。 *死区电压------硅管0.5V,锗管0.1V。 3.分析方法------将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴( 正偏 ),二极管导通(短路); 若 V阳 1)图解分析法
该式与伏安特性曲线的交点叫静态工作点Q。 2) 等效电路法 ➢ 直流等效电路法 *总的解题手段----将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴( 正偏 ),二极管导通(短路); 若 V阳 *三种模型
➢ 微变等效电路法 三. 稳压二极管及其稳压电路 *稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
第二章§2-1 三极管及其基本放大电路 一. 三极管的结构、类型及特点 1.类型---分为NPN和PNP两种。 2.特点---基区很薄,且掺杂浓度最低;发射区掺杂浓度很高,与基区接触 面积较小;集电区掺杂浓度较高,与基区接触面积较大。 二. 三极管的工作原理 1. 三极管的三种基本组态 2. 三极管内各极电流的分配 * 共发射极电流放大系数 (表明三极管是电流控制器件
式子 称为穿透电流。 3. 共射电路的特性曲线 *输入特性曲线---同二极管。
* 输出特性曲线 (饱和管压降,用UCES表示 放大区---发射结正偏,集电结反偏。 截止区---发射结反偏,集电结反偏。 4. 温度影响 温度升高,输入特性曲线向左移动。 温度升高ICBO、 ICEO 、 IC以及β均增加。 三. 低频小信号等效模型(简化) hie---输出端交流短路时的输入电阻, 常用rbe表示; hfe---输出端交流短路时的正向电流传输比, 常用β表示;
四. 基本放大电路组成及其原则 1. VT、 VCC、 Rb、 Rc 、C1、C2的作用。 2.组成原则----能放大、不失真、能传输。 五. 放大电路的图解分析法 1. 直流通路与静态分析 *概念---直流电流通的回路。 *画法---电容视为开路。 *作用---确定静态工作点 *直流负载线---由VCC=ICRC+UCE 确定的直线。 *电路参数对静态工作点的影响
1)改变Rb :Q点将沿直流负载线上下移动。 2)改变Rc :Q点在IBQ所在的那条输出特性曲线上移动。 3)改变VCC:直流负载线平移,Q点发生移动。 2. 交流通路与动态分析 *概念---交流电流流通的回路 *画法---电容视为短路,理想直流电压源视为短路。 *作用---分析信号被放大的过程。 *交流负载线--- 连接Q点和V CC’点 V CC’= UCEQ+ICQR L’的 直线。 3. 静态工作点与非线性失真
(1)截止失真 *产生原因---Q点设置过低 *失真现象---NPN管削顶,PNP管削底。 *消除方法---减小Rb,提高Q。 (2) 饱和失真 *产生原因---Q点设置过高 *失真现象---NPN管削底,PNP管削顶。 *消除方法---增大Rb、减小Rc、增大VCC 。 4. 放大器的动态范围 (1) Uopp---是指放大器最大不失真输出电压的峰峰值。 (2)范围 *当(UCEQ-UCES)>(VCC’ - UCEQ )时,受截止失真限制,UOPP=2UOMAX=2ICQRL’。 *当(UCEQ-UCES)<(VCC’ - UCEQ )时,受饱和失真限制,UOPP=2UOMAX=2 (UCEQ-UCES)。 *当(UCEQ-UCES)=(VCC’ - UCEQ ),放大器将有最大的不失真输出电压。 六. 放大电路的等效电路法 1. 静态分析 (1)静态工作点的近似估算
(2)Q点在放大区的条件 欲使Q点不进入饱和区,应满足RB>βRc 。
2. 放大电路的动态分析
* 放大倍数 * 输入电阻 * 输出电阻 七. 分压式稳定工作点共射 放大电路的等效电路法 1.静态分析 2.动态分析 *电压放大倍数
在Re两端并一电解电容Ce后
输入电阻 在Re两端并一电解电容Ce后 * 输出电阻 八. 共集电极基本放大电路 1.静态分析
2.动态分析 * 电压放大倍数
* 输入电阻 * 输出电阻 3. 电路特点 * 电压放大倍数为正,且略小于1,称为射极跟随器,简称射随器。 * 输入电阻高,输出电阻低。
§2-2场效应管及其基本放大电路 一. 结型场效应管( JFET ) 1.结构示意图和电路符号
2. 输出特性曲线 (可变电阻区、放大区、截止区、击穿区)
转移特性曲线 UP ----- 截止电压
二. 绝缘栅型场效应管(MOSFET) 分为增强型(EMOS)和耗尽型(DMOS)两种。 结构示意图和电路符号 2. 特性曲线 *N-EMOS的输出特性曲线
* N-EMOS的转移特性曲线 式中,IDO是UGS=2UT时所对应的iD值。 * N-DMOS的输出特性曲线
注意:uGS可正、可零、可负。转移特性曲线上iD=0处的值是夹断电压UP,此曲线表示式与结型场效应管一致。 三. 场效应管的主要参数 1.漏极饱和电流IDSS 2.夹断电压Up 3.开启电压UT 4.直流输入电阻RGS 5.低频跨导gm (表明场效应管是电压控制器件)
四. 场效应管的小信号等效模型
E-MOS 的跨导gm --- 五. 共源极基本放大电路 1.自偏压式偏置放大电路 * 静态分析
动态分析 若带有Cs,则 2.分压式偏置放大电路 * 静态分析
* 动态分析 若源极带有Cs,则 六.共漏极基本放大电路 * 静态分析 或, * 动态分析
, 第三章 多级放大电路 第四章 集成运算放大电路 一. 级间耦合方式 1. 阻容耦合----各级静态工作点彼此独立;能有效地传输交流信号;体积小,成本低。但不便于集成,低频特性差。 2. 变压器耦合 ---各级静态工作点彼此独立,可以实现阻抗变换。体积大,成本高,无法采用集成工艺;不利于传输低频和高频信号。 3. 直接耦合----低频特性好,便于集成。各级静态工作点不独立,互相有影响。存在“零点漂移”现象。 *零点漂移----当温度变化或电源电压改变时,静态工作点也随之变化,致使uo偏离初始值“零点”而作随机变动。 二. 长尾差放电路的原理与特点 1. 抑制零点漂移的过程---- 当T↑→ iC1、iC2↑→ iE1、iE2 ↑→ uE↑→ uBE1、uBE2↓→ iB1、iB2↓→ iC1、iC2↓。 Re对温度漂移及各种共模信号有强烈的抑制作用,被称为“共模反馈电阻”。 2静态分析 1) 计算差放电路IC
设UB≈0,则UE=-0.7V,得 2) 计算差放电路UCE • 双端输出时 • • 单端输出时(设VT1集电极接RL)
对于VT1:
对于VT2: 3. 动态分析 1)差模电压放大倍数 • 双端输出 •
• 单端输出时 从VT1单端输出 :
从VT2单端输出 : 2)差模输入电阻 3)差模输出电阻
• 双端输出: • 单端输出: 三. 集成运放的电压传输特性 当uI在+Uim与-Uim之间,运放工作在线性区域 :
三.集成运放电路的基本组成 1.输入级----采用差放电路,以减小零漂。 2.中间级----多采用共射(或共源)放大电路,以提高放大倍数。 3.输出级----多采用互补对称电路以提高带负载能力。 4.偏置电路----多采用电流源电路,为各级提供合适的静态电流。 四. 理想集成运放的参数及分析方法 1. 理想集成运放的参数特征 * 开环电压放大倍数 Aod→∞; * 差模输入电阻 Rid→∞; * 输出电阻 Ro→0; * 共模抑制比KCMR→∞; 2. 理想集成运放的分析方法 1) 运放工作在线性区: * 电路特征——引入负反馈 * 电路特点——“虚短”和“虚断”:
“虚短” --- “虚断” --- 2) 运放工作在非线性区 * 电路特征——开环或引入正反馈 * 电路特点—— 输出电压的两种饱和状态: 当u+>u-时,uo=+Uom 当u+两输入端的输入电流为零: i+=i-=0