与角平分线有关的证明、计算(含答案)
- 格式:doc
- 大小:701.00 KB
- 文档页数:14
【中考数学必备专题】几何辅助线大揭秘之角
平分线问题
一、证明题(共3道,每道40分)
1.已知,如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F.求证:点F在∠DAE的平分线上.
答案:∵BF是∠CBD的平分线∴FG=FI ∵CF是∠BCE的平分线∴FH=FI ∴FG=FH ∴点F在∠DAE的平分线上
解题思路:过F作FG⊥AD于点G,FH⊥AE于点H,FI⊥BC于点I,如图只要证明FG=FH即可
试题难度:三颗星知识点:三角形角平分线
2.如图,在△ABC中,AD为∠BAC的平分线,∠B=2∠C.求证:AC=AB+BD.
答案:∵AD是∠BAC的平分线∴∠BAD=∠EAD 在△ABD和△AED中AB=AE ∠BAD=∠EAD AD=AD ∴△ABD≌△AED(SAS)∴BD=ED,∠B=∠AED ∵∠AED=∠B=2∠C ∴∠CDE=∠AED ﹣∠C=∠C ∴DE=CE ∴BD=CE ∵AC=AE+CE ∴AC=AB+BD
解题思路:在AC上截取AE=AB,连接DE,如图只要证明BD=CE即可
试题难度:三颗星知识点:三角形角平分线
3.已知:如图,在△ABC中,BE平分∠ABC,AD⊥BE,垂足为点D.求证:∠BAD=∠DAE+∠C.
答案:∵BE平分∠ABC,AD⊥BE ∴△ABF为等腰三角形(三线合一)∴∠BAD=∠BFD ∵∠BFD 为△ACF的外角∴∠BFD=∠DAE+∠C ∴∠BAD=∠DAE+∠C
解题思路:延长AD与BC交于点F,如图只要证明∠BFD=∠BAD即可
试题难度:三颗星知识点:三角形角平分线。
5角平分线知识互联网板块一角平分线的性质与判定知识导航角平分线的性质与判定:⑴定义:把一个角分成两个相等的角的射线叫做角的平分线.⑵角平分线的性质定理:如果一条射线是一个角的平分线,那么它把这个角分成两个相等的角.在角的平分线上的点到这个角的两边的距离相等.⑶角平分线的判定定理12如果一条射线的端点与角的顶点重合,且把一个角分成两个等角,那么这条射线是这个角的平分线;在角的内部,到角两边距离相等的点在这个角的平分线上.夯实基础【例1】⑴证明:三角形三个角的角平分线交于一点.⑵已知:如图,ABC △的两条外角平分线交于点P .求证:PB 平分ABC ∠.BAP【解析】⑴如图,在ABC △中,设BAC ABC ∠∠、的平分线的交点为I ,过I 点作ID AB ⊥于D ,IE AC ⊥于E ,IF BC ⊥于F ,连接IC .∵AI BI 、都是角平分线,∴ID IE =,ID IF =,∴IE IF =,∴IC 是ACB ∠的平分线,∴三角形三个角的平分线交于一点.这一点称之为三角形的内心,常用大写字母I 来表示,三角形的内心到三角形三条边的距离相等,它是三角形内切圆的圆心.⑵如图,过P 作PM BA ⊥于M ,PN AC ⊥于N ,PQ BC⊥于Q .由角平分线的性质定理,易证PM PN =,PN PQ =,故PM PQ =,因此根据角平分线的判定定理,PB 平分ABC ∠,得证.这一点称之为三角形的旁心,三角形的旁心到三角形三条边的距离相等,它是三角形旁切圆的圆心.旁心有3个.【例2】如图,点C 为线段AB 上一点,ACM △、CBN △是等边三角形.请你证明:CF 平分AFB ∠.M D NEC BFAGM H D NEC BF AI FE DCB ANMC B AQ P3【解析】过点C 作CG AN ⊥于G ,CH BM ⊥于H ,由ACN MCB △≌△,利用AAS 进而再证BCH NCG △≌△,可得AFC BFC ∠=∠,故CF 平分AFB ∠.【点评】此图在前面的学习中做过介绍,老师可以先带着学生简单复习一下相关结论。
角平分线的性质定理和判定第一部分:知识点回顾1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上第二部分:例题剖析例1.已知:在等腰Rt△ABC中,AC=BC,∠C=90°,AD平分∠BAC,DE⊥AB于点E,AB=15cm,(1)求证:BD+DE=AC.(2)求△DBE的周长.例2.如图,∠B=∠C=90°,M是BC中点,DM平分∠ADC,求证:AM平分∠DAB.例3. 如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC 的面积是多少?第三部分:典型例题例1、已知:如图所示,CD⊥AB于点D,BE⊥AC于点E,BE、CD交于点O,且AO平分∠BAC,求证:OB=OC.【变式练习】如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC,求证:∠PCB+∠BAP=180º例2、已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;(2)线段DM与AM有怎样的位置关系?请说明理由.(3)CD、AB、AD间?直接写出结果【变式练习】如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上.21NPF CBA例3.如图,在△ABC中,BD为∠ABC的平分线,DE⊥AB于点E,且DE=2cm,AB=9cm,BC=6cm,求△ABC的面积.【变式练习】如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF的面积相等.求证:AD平分∠BAC.第四部分:思维误区一、忽视“垂直”条件例1.已知,如图,CE⊥AB,BD⊥AC,∠B=∠C,BF=CF。
【典型例题】例1.已知:如图所示,/ C=/ C'= 90 °, AC= AC 求证:(1)Z ABC=Z ABC ;(2)BO BC(要求:不用三角形全等判定).分析:由条件/ C=Z C = 90°, AO AC,可以把点A看作是/ CBC平分线上的点,由此可打开思路.证明:(1)vZ C=Z C = 90°(已知),••• ACL BC, AC丄BC (垂直的定义).又••• AO AC (已知),•••点A在/CBC勺角平分线上(到角的两边距离相等的点在这个角的平分线上).• / ABC=Z ABC.(2)vZ C=Z C;Z ABC=Z ABC,•180°—(/ C+Z ABC = 180°—(/ C '+/ ABC)(三角形内角和定理)即/ BAC=Z BAC,••• AC L BC, AC L BC,•BO BC (角平分线上的点到这个角两边的距离相等).评析:利用三角形全等进行问题证明对平面几何的学习有一定的积极作用,但也会产生消极作用,在解题时,要能打破思维定势,寻求解题方法的多样性.例 2.女口图所示,已知△ ABC中, PE// AB交BC于E, PF// AC交BC于F, P是AD上一点,且D点到PE的距离与到PF的距离相等,判断AD是否平分Z BAC 并说明理由.分析:判定一条射线是不是一个角的平分线,可用角平分线的定义和角平分线的判定定理.根据题意,首先由角平分线的判定定理推导出Z 1 = Z 2,再利用平行线推得Z 3=Z 4,最后用角平分线的定义得证.解:AD平分Z BAC••• D到PE的距离与到PF的距离相等,•••点D在Z EPF的平分线上.• Z 1 = Z 2.又••• PE// AB •••/ 1 = Z 3.同理,/ 2二/4.•••/ 3=Z 4,二AD平分/ BAC评析:由角平分线的判定判断出PD平分/ EPF是解决本例的关键.“同理” 是当推理过程相同,只是字母不同时为书写简便可以使用“同理”.例3.如图所示,已知△ ABC的角平分线BM CN相交于点P,那么AP能否平分/ BAC请说明理由.由此题你能得到一个什么结论?分析:由题中条件可知,本题可以采用角的平分线的性质及判定来解答,因此要作出点P到三边的垂线段.解:AP平分/ BAC结论:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等. 理由:过点P分别作BC,AC, AB的垂线,垂足分别是E、F、D.••• BM是/ABC的角平分线且点P在BM上,••• PD= PE (角平分线上的点到角的两边的距离相等).同理PF= PE,A PD= PF.••• AP平分/ BAC(到角的两边的距离相等的点在这个角的平分线上).例4.如图所示的是互相垂直的一条公路与铁路,学校位于公路与铁路所夹角的平分线上的P点处,距公路400m现分别以公路、铁路所在直线为x轴、y 轴建立平面直角坐标系.(1)学校距铁路的距离是多少?(2)请写出学校所在位置的坐标.分析:因为角平分线上的点到角的两边距离相等,所以点P到铁路的距离与到公路的距离相等,也是4oom点P在第四象限,求点P的坐标时要注意符号.解:(1)v点p在公路与铁路所夹角的平分线上,•••点P到公路的距离与它到铁路的距离相等,又•••点P到公路的距离是4oom•••点P (学校)到铁路的距离是400m(2)学校所在位置的坐标是(400,—400).评析:角平分线的性质的作用是通过角相等再结合垂直证明线段相等.例5.如图所示,在△ ABC中,/ C= 90°, AOBC, DA平分/ CAB交BC于D, 问能否在AB上确定一点巳使厶BDE的周长等于AB的长?若能,请作出点E, 并给出证明;若不能,请说明理由.分析:由于点D在/ CAB的平分线上,若过点D作DEL AB于E,则DE= DC 于是有BD+ DE= BD+ DC= BO AC,只要知道AC与AE的关系即可得出结论.解:能.过点D作DEIAB于丘,则厶BDE勺周长等于AB的长.理由如下:••• AD平分/ CAB DC L AC, DEL AB••• DC= DE在Rt △ ACD和Rt △ AED中,,••• Rt △ AC坠Rt △ AED( HL).••• AO AE又••• AO BC,二AE= BC.•••△ BDE的周长=B» DE^ BE= B» DC+ BE= BC^ BE= AE^ BE= AB.评析:本题是一道探索题,要善于利用已知条件获得新结论,寻找与要解决的问题之间的联系.本题利用角平分线的性质将要探究的结论进行转化. 这是初中几何中常用的一种数学思想.【方法总结】学过“角的平分线上的点到角的两边的距离相等”与“到角的两边的距离相等的点在角的平分线上”这两个结论后,许多涉及角的平分线的问题用这两个结论解决很方便,需要注意的是有许多同学对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用这两个结论,仍然去找全等三角形,结果相当于重新证明了一次这两个结论. 所以特别提醒大家,能用简单方法的,就不要绕远路.Welcome !!! 欢迎您的下载, 资料仅供参考!。
⾓平分线四⼤模型总结+习题+解析(最全版)⾓平分线四⼤辅助线模型⾓平分线的性质为证明线段或⾓相等开辟了新的途径,同时也是全等三⾓形知识的延续,⼜为后⾯⾓平分线的判定定理的学习奠定了基础.涉及到⾓平分线的考点主要是性质、判定以及四⼤辅助线模型,在初⼆上期中、期末考试中都是经常考察的⽅向。
⾓平分线性质:⾓平分线上的点到⾓两边的距离相等.⾓平分线判定:到⾓的两边距离相等的点在⾓的⾓平分线上.四⼤模型1、⾓平分线+平⾏线,等腰三⾓形必出现已知:OC平分∠AOB,CD∥OB交OA于D.则△ODC为等腰三⾓形,OD=CD.2、⾓平分线+两垂线,线等全等必出现已知:OC平分∠AOB.辅助线:过点C作CD⊥OA,CE⊥OB.则CD=CE,△ODC ≌△OEC.3、⾓平分线+⼀垂线,中点全等必出现已知:OC平分∠AOB,DC垂直OC于点C.辅助线:延长DC交OB于点E.则C是DE的中点,△ODC ≌△OEC.4、⾓平分线+截长补短线,对称全等必出现已知:OC平分∠AOB,截取OE=OD,连接CD、CE.则△ODC和△OCE关于OC对称,即△ODC ≌△OEC.【核⼼考点⼀】⾓平分线的性质与判定1.(2016?张家界模拟)如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上⼀个动点,若3PA =,则PQ 的最⼩值为( )A B .2C .3D .2.(2016秋?抚宁县期末)如图,在ABC ?中,AD 是它的⾓平分线,8AB cm =,6AC cm =,则:(ABD ACD S S ??= )A .3:4B .4:3C .16:9D .9:163.(2017春?崇仁县校级⽉考)如图,在ABC ?中,90ACB ∠=?,BE 平分ABC ∠,DE AB ⊥于点D ,如果3AC cm =,那么AE DE +等于( )A .2cmB .3cmC .4cmD .5cm4.(2018春?⼤东区期中)如图,在Rt ABC ?中,90C ∠=?,BD 是⾓平分线,若CD m =,2AB n =,则ABD ?的⾯积是( )A .mnB .5mnC .7mnD .6mn5.(2019秋?樊城区期末)⼩明同学在学习了全等三⾓形的相关知识后发现,只⽤两把完全相同的长⽅形直尺就可以作出⼀个⾓的平分线.如图:⼀把直尺压住射线OB ,另⼀把直尺压住射线OA 并且与第⼀把直尺交于点P ,⼩明说:“射线OP 就是BOA ∠的⾓平分线.”他这样做的依据是( )A .⾓的内部到⾓的两边的距离相等的点在⾓的平分线上B .⾓平分线上的点到这个⾓两边的距离相等C .三⾓形三条⾓平分线的交点到三条边的距离相等D .以上均不正确6.(2019秋?梁平区期末)如图,若BD AE ⊥于B ,DC AF ⊥于C ,且DB DC =,40BAC ∠=?,130ADG ∠=?,则DGF ∠=.7.(2018春?开江县期末)如图,在Rt ABC ?中,90C ∠=?,以顶点A 为圆⼼,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆⼼,⼤于12MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( ) A .CAD BAD ∠=∠B .若2CD =,则点D 到AB 的距离为2C .若30B ∠=?,则CDA CAB ∠=∠D .2ABD ACD S S ??=8.(2014秋?西城区校级期中)如图,点E 是AOB ∠的平分线上⼀点,EC OA ⊥,ED OB ⊥,垂⾜分别是C ,D .下列结论中正确的有( )(1)ED EC =;(2)OD OC =;(3)ECD EDC ∠=∠;(4)EO 平分DEC ∠;(5)OE CD ⊥;(6)直线OE 是线段CD 的垂直平分线.A .3个B .4个C .5个D .6个9.(2019春?杜尔伯特县期末)如图:在ABC ?中,90C ∠=?,AD 是BAC ∠的平分线,DE AB ⊥于E ,F 在AC 上,BD DF =,证明:(1)CF EB =.(2)2AB AF EB =+.10.(2019秋?垦利区期中)如图,ABC⊥⊥且平分BC,DE AB中,AD平分BAC∠,DG BC于E,DF AC⊥于F.(1)判断BE与CF的数量关系,并说明理由;(2)如果8AB=,6AC=,求AE、BE的长.11.(2017秋?遂宁期末)某地区要在区域S内(即COD∠内部)建⼀个超市M,如图所⽰,按照要求,超市M到两个新建的居民⼩区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)【核⼼考点⼆】⾓平分线+⾓两边垂线12.(2019秋?肥城市期末)如图,//AB CD ,BP 和CP 分别平分ABC ∠和DCB ∠,AD 过点P ,且与AB 垂直,垂⾜为A ,交CD 于D ,若8AD =,则点P 到BC 的距离是.13.(2015?湖州)如图,已知在ABC ?中,CD 是AB 边上的⾼线,BE 平分ABC ∠,交CD 于点E ,5BC =,2DE =,则BCE ?的⾯积等于( )A .10B .7C .5D .414.(2010秋?涵江区期末)如图所⽰,在Rt ABC ?中,90C ∠=?,BC AC =,AD 平分BAC ∠交BC 于D ,求证:AB AC CD =+.15.(2012秋?蓬江区校级期末)如图,已知90∠=∠=?,M是BC的中点,DM平分B C∠.求证:ADC(1)AM平分DAB∠;(2)DM AM⊥.16.(2016秋?西城区校级期中)已知:如图,12∠=∠,P为BN上的⼀点,PF BC⊥于F,=,PA PC(1)求证:180∠+∠=?;PCB BAP(2)线段BF、线段BC、线段AB之间有何数量关系?写出你的猜想及证明思路.【核⼼考点三】⾓平分线+垂线17.(2017秋?和平区校级⽉考)如图.在ABC ?中,BE 是⾓平分线,AD BE ⊥,垂⾜为D ,求证:21C ∠=∠+∠.18.(2013秋?昌平区期末)已知:如图,在ABC ?中,AD 平分BAC ∠,CD AD ⊥于点D ,DCB B ∠=∠,若10AC =,6AD=,求AB 的长.19.如图所⽰,ABC ?中,ACB ABC ∠>∠,AE 平分BAC ∠,CD AE ⊥于D ,求证:ACD B ∠>∠.20.已知:如图,在ABC ?中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21.(2019秋?下陆区期中)如图,BD 是ABC ∠的⾓平分线,AD BD ⊥,垂⾜为D ,20DAC ∠=?,38C ∠=?,则BAD ∠=.22.(2019秋?曲⾩市校级⽉考)如图,在ABC ?中,AB AC =,90BAC ∠=?,BD 平分ABC ∠交AC 于D ,过C 作CE BD ⊥交BD 延长线于E .求证:12CE BD =.23.(2019?沂源县⼀模)(1)如图(a)所⽰,BD、CE分别是ABC的外⾓平分线,过点A作AD BD⊥,AE CE⊥,垂⾜分别为D、E,连接DE,求证:1() 2DE AB BC AC=++;(2)如图(b)所⽰,BD、CE分别是ABC的内⾓平分线,其他条件不变,DE与ABC三边有怎样的数量关系?并证明这个数量关系;(3)如图(c)所⽰,BD为ABC的内⾓平分线,CE为ABC的外⾓平分线,其他条件不变,DE与ABC三边⼜有怎样的数量关系?并证明这个数量关系.24.(2017秋?夏⾢县期中)如图,在ABC ?中,ABC ∠、ACB ∠的平分线相交于F ,过F 作//DE BC ,交AB 于D ,交AC 于E ,那么下列结论:①BDF ?、CEF ?都是等腰三⾓形;②DE DB CE =+;③AD DE AE AB AC ++=+;④BF CF =.正确的有.25.(2019秋?垦利区期末)如图,平⾏四边形ABCD 中,3AB cm =,5BC cm =;,BE 平分ABC ∠,交AD 于点E ,交CD 延长线于点F ,则DE DF +的长度为.26.(2010秋?海淀区期末)如图,BD 是ABC ?的⾓平分线,//DE BC ,DE 交AB 于E ,若AB BC =,则下列结论中错误的是( )A .BD AC ⊥B .A EDA ∠=∠C .2AD BC =D .BE ED =27.如图,若BD 、CD 分别平分ABC ∠和ACB ∠,过D 作//DE AB 交BC 于E ,作//DF AC 交BC 于F ,求证:BC 的长等于DEF ?的周长.28.(2018秋?邳州市期中)如图,在四边形ABCD中,对⾓线AC平分BAD >,∠,AB AD 下列结论正确的是()A.AB AD CB CD->-B.AB AD CB CD-=-C.AB AD CB CD-<-D.AB AD-与CB CD-的⼤⼩关系不确定29.(2012?⿇城市校级模拟)在ABC∠的外⾓平分线,P是AD上的任意中,AD是BAC⼀点,试⽐较PB PC+与AB AC+的⼤⼩,并说明理由.30.(2018秋?万州区期中)已知:如图,在四边形ABCD中,AC平分BAD ∠,CE AB⊥于=+.E,且180B D∠+∠=?,求证:AE AD BE31.(2017秋?海淀区期中)如图,已知AD是BAC∠=?,C=+,31的⾓平分线,AC AB BD 求B∠的度数.32.(2019秋?平⼭县期中)如图,90∠=?,OM平分AOB∠,将直⾓三⾓板的顶点PAOB在射线OM上移动,两直⾓边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.33.(2016秋?丰宁县期中)如图,在ABC ?中,100A ∠=?,40ABC ∠=?,BD 是ABC ∠的平分线,延长BD ⾄E ,使DE AD =.求证:BC AB CE =+.34.(2018秋?丰城市期中)在ABC ?中,2ACB B ∠=∠,(1)如图1,当90C ∠=?,AD 为BAC ∠的⾓平分线时,在AB 上截取AE AC =,连接DE ,求证:AB AC CD =+;(2)如图2,当90C ∠≠?,AD 为BAC ∠的⾓平分线时,线段AB 、AC 、CD ⼜有怎样的数量关系?请直接写出你的结论,不需要证明;(3)如图3,当AD 为ABC ?的外⾓平分线时,线段AB 、AC 、CD ⼜有怎样的数量关系?请写出你的猜想,并说明理由.35.(2019春?利津县期末)如图,在ABC∠平分线,AD的垂直平分线分中,AD是BAC别交AB、BC延长线于F、E.求证:(1)EAD EDA∠=∠;(2)//DF AC;(3)EAC B∠=∠.36.(2014?西城区⼆模)在ABC>,AD平分BAC∠交BC于点∠为锐⾓,AB AC,BACD.(1)如图1,若ABC是等腰直⾓三⾓形,直接写出线段AC,CD,AB之间的数量关系;(2)BC的垂直平分线交AD延长线于点E,交BC于点F.①如图2,若60∠=?,判断AC,CE,AB之间有怎样的数量关系并加以证明;ABE②如图3,若AC AB+,求BAC∠的度数.⾓平分线四⼤辅助线模型--解析⼀.⾓平分线的性质与判定(共11⼩题)1.(2016?张家界模拟)如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上⼀个动点,若3PA =,则PQ 的最⼩值为( )A B .2C .3D .【分析】⾸先过点P 作PB OM ⊥于B ,由OP 平分MON ∠,PA ON ⊥,3PA =,根据⾓平分线的性质,即可求得PB 的值,⼜由垂线段最短,可求得PQ 的最⼩值.【解答】解:过点P 作PB OM ⊥于B , OP 平分MON ∠,PA ON ⊥,3PA =,3PB PA ∴==,PQ ∴的最⼩值为3.故选:C .2.(2016秋?抚宁县期末)如图,在ABC ?中,AD 是它的⾓平分线,8AB cm =,6AC cm =,则:(ABD ACD S S ??= )A .3:4B .4:3C .16:9D .9:16【分析】利⽤⾓平分线的性质,可得出ABD ?的边AB 上的⾼与ACD ?的AC 上的⾼相等,估计三⾓形的⾯积公式,即可得出ABD ?与ACD ?的⾯积之⽐等于对应边之⽐.【解答】解:AD 是ABC ?的⾓平分线,∴设ABD ?的边AB 上的⾼与ACD ?的AC 上的⾼分别为1h ,2h ,12h h ∴=,ABD ∴?与ACD ?的⾯积之⽐:8:64:3AB AC ===,故选:B .3.(2017春?崇仁县校级⽉考)如图,在ABC ?中,90ACB ∠=?,BE 平分ABC ∠,DE AB ⊥于点D ,如果3AC cm =,那么AE DE +等于( )A .2cmB .3cmC .4cmD .5cm【分析】根据⾓平分线的性质得到ED EC =,计算即可.【解答】解:BE 平分ABC ∠,DE AB ⊥,90ACB ∠=?, ED EC ∴=,3AE DE AE EC AC cm ∴+=+==,故选:B .4.(2018春?⼤东区期中)如图,在Rt ABC ?中,90C ∠=?,BD 是⾓平分线,若CD m =,2AB n =,则ABD ?的⾯积是( )A .mnB .5mnC .7mnD .6mn【分析】过点D 作DE AB ⊥于E ,根据⾓平分线上的点到⾓的两边距离相等可得DE CD =,然后根据三⾓形的⾯积公式即可得到结论.【解答】解:如图,过点D 作DE AB ⊥于E ,BD 是ABC ∠的平分线,90C ∠=?,DE CD m ∴==,ABD ∴?的⾯积122n m mn =??=,故选:A.5.(2019秋?樊城区期末)⼩明同学在学习了全等三⾓形的相关知识后发现,只⽤两把完全相同的长⽅形直尺就可以作出⼀个⾓的平分线.如图:⼀把直尺压住射线OB,另⼀把直尺压住射线OA并且与第⼀把直尺交于点P,⼩明说:“射线OP就是BOA∠的⾓平分线.”他这样做的依据是()A.⾓的内部到⾓的两边的距离相等的点在⾓的平分线上B.⾓平分线上的点到这个⾓两边的距离相等C.三⾓形三条⾓平分线的交点到三条边的距离相等D.以上均不正确【分析】过两把直尺的交点C作CE AO=,再根据⾓⊥,CF BO⊥,根据题意可得CE CF的内部到⾓的两边的距离相等的点在这个⾓的平分线上可得OP平分AOB∠;【解答】解:(1)如图所⽰:过两把直尺的交点P作PE AO⊥,⊥,PF BO两把完全相同的长⽅形直尺,PE PF∴=,∠(⾓的内部到⾓的两边的距离相等的点在这个⾓的平分线上),OP∴平分AOB故选:A.。
三角形内外角平分线一.命题的证明及应用在中考常有与三角形内外角平分线有关的题目,若平时不注意总结是很难一下子解决的.下面来一起学习一下.命题1 如图1,点D是△ABC两个内角平分线的交点,则∠D=90°+∠A.证明:如图1:∵∠1=∠,∠2=∠,∴2∠1+2∠2+∠A=180°①∠1+∠2+∠D=180°②①-②得:∠1+∠2+∠A=∠D③由②得:∠1+∠2=180°-∠D④把③代入④得:∴180°-∠D+∠A=∠D∠D=90°+∠A.点评利用角平分线的定义和三角形的内角和等于180°,不难证明.命题2 如图2,点D是△ABC两个内角平分线的交点,则∠D=90°-∠A.证明:如图2:∵DB和DC是△ABC的两条外角平分线,∴∠D=180°-∠1-∠2=180°-(∠DBE+∠DCF)=180°-(∠A+∠4+∠A+∠3)=180°-(∠A+180°)=180°-∠A-90°=90°-∠A;点评利用角平分线的定义和三角形的一个外角等于与它不相邻两外角的和以及三角形的内角和等于180°,可以证明.命题3 如图3,点E是△ABC一个内角平分线与一个外角平分线的交点,则∠E=∠A.证明:如图3:∵∠1=∠2,∠3=∠4,∠A+2∠1=2∠4①∠1+∠E=∠4②①×代入②得:∠E=∠A.点评利用角平分线的定义和三角形的一个外角等于与它不相邻两外角的和,很容易证明.命题4如图4,点E是△ABC一个内角平分线BE与一个外角平分线CE 的交点,证明:AE是△ABC的外角平分线.证明:如图3:∵BE是∠ABC的平分线,可得:EH=EFCE是∠ACD的平分线, 可得:EG=EF∴过点E分别向AB、AC、BC所在的直线引垂线,所得的垂线段相等.即EF=EG=EH∵EG=EH∴AE是△ABC的外角平分线.点评利用角平分线的性质和判定能够证明.应用上面的结论能轻松地解答一些相关的比较复杂的问题,下面来一起看.例1如图5,PB和PC是△ABC的两条外角平分线.①已知∠A=60°,请直接写出∠P的度数.②三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形?解析:①由命题2的结论直接得:∠P=90°-∠A=90°-×60°=60°②根据命题2的结论∠P=90°-∠A,知三角形的三条外角平分线所在的直线形成的三角形的三个角都是锐角,则该三角形是锐角三角形.点评此题直接运用命题2的结论很简单.同时要知道三角形按角分为锐角三角形、直角三角形和钝角三角形.例2如图6,在△ABC中,延长BC到D,∠ABC与∠ACD的角平分线相较于点,∠BC与∠CD 的平分线交与点,以此类推,…,若∠A=96°,则∠= 度.解析:由命题③的结论不难发现规律∠∠A .可以直接得:∠=×96°=3°.点评 此题是要找出规律的但对要有命题③的结论作为基础知识.例3(203陕西第一大题填空题第八小题,此题3分)如图7,△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______________.解析:此题直接运用命题4的结论可以知道AP是△ABC 的一个外角平分线,结合命题3的结论知道∠BAC=2∠BPC, CAP=(180°-∠BAC )= (180°-2∠BPC )=50°.点评 对命题3、4研究过的读者此题不难,否则将是一道在考试的时候花时间也不一定做的出来的题目. 例4 (2003年山东省)如图,在Rt △ABC 中,∠ACB=90°,∠BAC=30°,∠ACB 的平分线与∠ABC 的外角平分线交与E 点,连接AE ,则∠AEB= 度.解析:有题目和命题4的结论可以知道AE 是△ABC 的一个外角平分线, 结合命题2的结论知道∠AEB=∠ACB -∠ACB=90°-×90°=45°点评 从上面的做题过程来看题目中给出的“∠A=30°”这个条件是可以不用的.二.角平分线定理使用中的几种辅助线作法一、已知角平分线,构造三角形例题、如图所示,在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于F 。
微专题六与角平分线有关的问题模型一:过角平分线上一点向角两边作垂线模型特点过角平分线上的一点向角的两个边作垂线段,得到垂线段相等模型示例解题思路及结论如图,P是∠MON的平分线上一点,过点P作PA⊥OM 于点A,PB⊥ON于点B,∴PB=PA,∴Rt △AOP≌Rt △BOP.1.(2019·湖州中考)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是(B)A.24 B.30 C.36 D.422.(2021·铜仁中考)如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,按下列步骤作图:步骤1:以点A 为圆心,小于AC 的长为半径作弧分别交AC ,AB 于点D ,E.步骤2:分别以点D ,E 为圆心,大于12 DE 的长为半径作弧,两弧交于点M.步骤3:作射线AM 交BC 于点F.则AF 的长为(B)A .6B .3 5C .4 3D .6 2模型二:利用角平分线,构造对称图形模型特点在角的平分线的两边上截长补短,构造全等三角形模型示例解题思路及结论如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB =OA ,连接PB ,则△OPB ≌△OPA.1.(2021·临沂模拟)如图,在△ABC 中,AD 平分∠BAC ,∠C =2∠B , 求证:AB =AC +CD.【证明】在AB 上取点E ,使得AE =AC ,连接DE ,在△AED 和△ACD 中⎩⎪⎨⎪⎧AE =AC ∠1=∠2AD =AD,∴△AED ≌△ACD(SAS),∴∠AED =∠C ,ED =CD ,∵∠C =2∠B ,且∠AED =∠B +∠BDE ,∴∠B =∠BDE ,∴BE =DE ,∴AB =AE +BE =AC +DE =AC +CD.2.(2021·齐齐哈尔质检)阅读下面文字并填空:数学习题课上李老师出了这样一道题:“如图1,在△ABC 中,AD 平分∠BAC ,∠B =2∠C.求证:AB +BD =AC.”李老师给出了如下简要分析:要证AB +BD =AC ,就是要证线段的和差问题,所以有两个方法:方法一:“截长法”.如图2,在AC 上截取AE =AB ,连接DE ,只要证BD =__EC__即可,这就将证明线段和差问题__转化__为证明线段相等问题,只要证出△__ABD__≌△__AED__,得出∠B =∠AED 及BD =__DE__,再证出∠__EDC__=__∠C__,进而得出ED =EC ,则结论成立.此种证法的基础是“已知AD 平分∠BAC ,将△ABD 沿直线AD 对折,使点B 落在AC 边上的点E 处”成为可能.方法二:“补短法”.如图3,延长AB 至点F ,使BF =BD.只要证AF =AC 即可,此时先证∠__F__=∠C ,再证出△__AFD__≌△__ACD__,则结论成立.“截长补短法”是我们今后证明线段或角的“和差倍分”问题常用的方法.模型三:作角平分线的垂线构造等腰三角形模型特点从角一边上的一点作角平分线的垂线,构造等腰三角形,利用“三线合一”解题模型示例解题思路及结论如图,P是∠MON的平分线上一点,A是射线OM上一点,AP⊥OP于点P,延长AP交ON于点B,Rt△AOP≌Rt△BOP,△AOB是等腰三角形1. (2021·深圳质检)如图,已知D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=9,BC=5,则CD的长为(C)A.214 B.4C.21 D.52.(2021·武汉质检)如图,等腰直角三角形ABC中,∠C=90°,∠CAB 的平分线AD交BC于点D,过B作BE⊥AD,垂足为E,求证:AD=2BE.【证明】延长BE 和AC 相交于点M ,如图所示:∵△ABC 是等腰直角三角形,∴AC =BC ,又∵AD 是∠CAB 的平分线,∴∠MAE =∠BAE ,又∵BE ⊥AD ,∴∠AEB =∠AEM =90°,在△AME 和△BAE 中⎩⎪⎨⎪⎧∠MAE =∠BAE AE =AE∠AEM =∠AEB ,∴△AME ≌△ABE(ASA),∴BE =ME ,∴BM =2BE ,又∵∠ACB =90°,∴∠ADC +∠DAC =90°,又∵∠BDE +∠DBE =90°,∠ADC =∠BDE ,∴∠DAC =∠MBC ,在△ACD 和△BCM 中,⎩⎪⎨⎪⎧∠ACD =∠BCM =90°AC =BC∠DAC =∠MBC,∴△ACD ≌△BCM(ASA)∴AD =BM ∴AD =2BE.模型四:过角平分线上一点作角一边的平行线构造等腰三角形模型特点过角平分线上的一点作角一边的平行线,从而构造等腰三角形模型示例解题思路及结论如图,点P是∠MON的平分线上一点,过点P作PQ∥ON,则△QOP为等腰三角形1.(2021·高邮质检)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC于点E,若BD=3.5,DE=6,则线段EC的长为(D)A.3 B.4 C.2 D.2.52.(2021·广安模拟)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=__2__.3.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【解析】(1)∵AB =AC ,∴∠C =∠ABC ,∵∠C =36°,∴∠ABC =36°,∵BD =CD ,AB =AC ,∴AD ⊥BC ,∴∠ADB =90°,∴∠BAD =90°-36°=54°.(2)∵BE 平分∠ABC ,∴∠ABE =∠CBE =12∠ABC , ∵EF ∥BC ,∴∠FEB =∠CBE ,∴∠FBE =∠FEB ,∴FB =FE.模型五:两内角平分线交角模型特点 三角形的两内角平分线相交模型示例解题思 路及结论 如图,若点P 是∠ABC 和∠ACB 平分线的交点,则∠P=90°+12∠A(2021·巴中模拟)如图,在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB.若∠BOC =110°,则∠A =__40°__.模型六:两外角平分线交角模型特点三角形的两外角平分线相交模型示例解题思路及结论如图,若点P是外角∠CBF和∠BCE平分线的交点,则∠P=90°-12∠A(2021·江阴质检)如图,AD,CD是△ABC两个外角的角平分线,若∠BAC =60°,∠BCA=80°,则∠B=__40__°,∠D=__70__°.模型七:一内角一外角平分线交角模型特点三角形的内角平分线与外角平分线相交模型示例解题思路及结论如图,若点P是∠ABC和外角∠ACE的平分线的交点,则∠P=12∠A1.(2019·大庆中考)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是(B)A.15°B.30°C.45°D.60°2.(2021·绍兴模拟)如图,点A,B分别在射线OM,ON上运动(不与点O 重合).(1)如图1,若∠MON=90°,∠OBA,∠OAB的平分线交于点C,则∠ACB =__________°;(2)如图2,若∠MON=n°,∠OBA,∠OAB的平分线交于点C,求∠ACB的度数;(3)如图2,若∠MON=n°,△AOB的外角∠ABN与∠BAM的平分线交于点D,求∠ACB与∠ADB之间的数量关系,并求出∠ADB的度数;(4)如图3,若∠MON=80°,BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点E.试问:随着点A,B的运动,∠E的大小会变吗?如果不会,求∠E的度数;如果会,请说明理由.【解析】(1)∵∠MON=90°,∴∠OBA+∠OAB=90°,∵∠OBA,∠OAB的平分线交于点C,∴∠ABC +∠BAC =12 ×90°=45°,∴∠ACB =180°-45°=135°;答案:135(2)在△AOB 中,∠OBA +∠OAB =180°-∠AOB=180°-n°,∵∠OBA ,∠OAB 的平分线交于点C , ∴∠ABC +∠BAC =12 (∠OBA +∠OAB)=12 (180°-n°),即∠ABC +∠BAC =90°-12 n°,∴∠ACB =180°-(∠ABC +∠BAC)=180°-⎝ ⎛⎭⎪⎫90°-12n° =90°+12 n°;(3)∵BC ,BD 分别是∠OBA 和∠NBA 的角平分线, ∴∠ABC =12 ∠OBA ,∠ABD =12 ∠NBA ,∴∠ABC +∠ABD =12 ∠OBA +12 ∠NBA =12 (∠OBA +∠NBA)=90°,即∠CBD =90°,同理:∠CAD =90°,∵四边形内角和等于360°,∴∠ACB +∠ADB =360°-90°-90°=180°, 由(2)知:∠ACB =90°+12 n°,∴∠ADB =180°-⎝ ⎛⎭⎪⎫90°+12n° =90°-12 n°,∴∠ACB +∠ADB =180°,∠ADB =90°-12 n°.(4)∠E 的度数不变,∠E =40°;理由如下:∵∠NBA =∠AOB +∠OAB ,∴∠OAB =∠NBA -∠AOB ,∵AE ,BC 分别是∠OAB 和∠NBA 的角平分线, ∴∠BAE =12 ∠OAB ,∠CBA =12 ∠NBA ,∵∠CBA =∠E +∠BAE ,即12 ∠NBA =∠E +12 ∠OAB ,∴12 ∠NBA =∠E +12 (∠NBA -80°)=∠E +12 ∠NBA -40°,∴∠E =40°.。
解三角形专题------角平分线与三角形4心秒杀秘籍一:张角定理在△ABC 中,D 为BC 边上的一点,连接AD ,设βα=∠=∠CAD BAD ,,则一定有ABAC AD βαβαsin sin )sin(+=+,(证明:等积法) 【例1】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,△ABC=120°,BD△BC 交AC 于点D ,且BD=1,则2a +c 的最小值为 .【例2】在在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知点D 在BC 边上,AD△AC ,sin△BAC=322,AB=23,AD=3,则CD 的长为【例3】(2015年全国课标卷II )在△ABC 中,D 是BC 上的点,AD 平分△BAC ,△ABD 的面积是△ACD 面积的2倍.(1)求CBsin sin 的值;(2)若22,1==DC AD ,求BD 和AC 的长.秒杀秘籍二:角平分线张角定理,当βα=时, ①)(21cos c AD b AD +=α(角平分线张角定理) ②ααtan sin )(212AD c b AD S ABC ≥+=∆(角平分线面积) 证明:αααααααtan sin 2sin 2sin sin )(21sin )11(212sin 21∆∆==≥+=+⋅==S AD S AD bc AD c b AD AD c b bc bc S 【例4】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,b cosC=a ,点M 在线段AB 上,且△ACM=△BCM ,若b=6CM=6,则cos△BCM=( )46.47.43.410.D C B A 【例5】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,32π=∠ABC ,△ABC 的平分线交AC 于点D ,BD=1,则a +c 的最小值为 .【例6】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,32π=∠ABC ,BD 平分△ABC 交AC 于点D ,BD=2,则△ABC 的面积的最小值为( )36.35.34.33.D C B A秒杀秘籍3:角平分线之斯库顿定理如图,AD 是△ABC 的角平分线,则DC BD AC AB AD ⋅-⋅=2.就其位置关系而言:中方=上积-下积 求证:AC AB DC BD AD ⋅=⋅+2,,~ACAEAD AB ADC ABE =∴∆∆ 即,)(,AC AB DE AD AD AC AB AE AD ⋅=+⋅∴⋅=⋅证毕注意:角平分线张角定理强调的是角度,斯库顿定理强调的是长度,斯库顿定理可以绕过求张角而直接求出三角形的各边长,通常和内角平分线定理合在一起出考题.【例7】在△ABC 中,AB=5,AC=7,BC=6,△A 的平分线AD 交BC 于点D ,则AD= . 【例8】在△ABC 中,△C=2△B ,AC=3,BC=5,求AB 之长. 秒杀秘籍4:角平分线之倍角定理)(2);(2);(2222b c c a C A a b b c B C c a a b A B +=⇔=+=⇔=+=⇔=,这样的三角形称为“倍角三角形”【例9】在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知8b=5c ,C=2B ,则cosC=( )2524.257.257.257.D C B A ±-【例10】设锐角△ABC 的内角A 、B 、C 所对的边分别是a 、b 、c ,且c=1,A=2C ,则△ABC 周长的取值范围为( )]33,22.()33,22.()33,0.()22,0.(++++++D C B A【例11】在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,若bc b a +=22且)2,3(ππ∈A ,则ba的取值范围是 .【12】如图,四边形ABCD 中,CE 平分△ACD ,AE=CE=32,DE=3,若△ABC=△ACD ,则四边形ABCD 周长的最大值为( )3315.318.3312.24.++D C B A例1、设G 是ABC ∆的重心,且0)sin 35()sin 40()sin 56(=++GC C GB B GA A ,则角B 的大小为_______例2、若点O 在ABC ∆的内部,且053=++OB OC OA ,则ABC ∆的面积与AOC ∆的面积之比是________. 例3、若点O 在ABC ∆的内部,且02 =++OC m OB OA ,74=∆∆ABC AOB S S ,则实数m =_________. 例4、(2016清华大学自主招生)若点O 在ABC ∆的内部,2:3:4::=∆∆∆AOC BOC AOB S S S ,设AC AB AO μλ+=,则实数λ=_____,μ=_____.例5、已知ABC Δ的外接圆的圆心为O ,且60∠=A ,若)∈β,α(βαR AC AB AO +=,则βα+的最大值是 能力提升1、已知ABC ∆中,I 为内心,,4,3,2===AB BC AC 且AC y AB x AI +=,则,则y x +的值为______ .2、设P 是ABC ∆所在平面上一点,且满足)0(,43>=+m AB m PC PA ,若ABP ∆的面积为8,则ABC ∆的面积是_______.3、在ABC ∆中,H BC AC AB ,2,3,4===为ABC ∆的垂心,AC y AB x AH +=,则xy=______. 4、已知G 是ABC ∆的重心,点N M ,分别在边AC AB ,上,满足AN y AM x AG +=,1=+y x ,若,43AB AM =则ABC ∆和AMN ∆的面积之比是____________.5、正三角形ABC 内一点M ,满足CB n CA m CM +=,45=∠MCA ,则nm=______________. 6、已知ABC ∆的外接圆O 的半径为1,且BC BA BO μλ+=,若60=∠ABC ,则μλ+的最大值是________. 7、已知点O 是锐角ABC ∆的外心,3π=∠A ,且OC y OB x OA +=,则y x -2的取值范围是_______________.三角形的四“心”,四“线”① 已知G 是ABC △所在平面上的一点,若0GA GB GC ++=,则G 是ABC △的重心.已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的重心.② P 是ABC △所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是ABC △的垂心.已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足cos cos AB AC OP OA AB B AC C λ⎛⎫ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的垂心.③ 已知I 为ABC △所在平面上的一点,且AB c =,AC b =,BC a = .若0aIA bIB cIC ++=,则I 是ABC △的内心.已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足AB AC OP OA AB AC λ⎛⎫⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的内心.④ 已知O 是ABC △所在平面上一点,若222OA OB OC ==,则O 是ABC △的外心.已知O 是平面上的一定点,AB C ,,是平面上不共线的三个点,动点P 满足2cos cos OB OC AB AC OP AB B AC C λ⎛⎫+ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的外心。
角的平分线的性质重难点题型①以O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于E.②分别以D 、E 为圆心,大于DE 的长为半径画弧,两弧在∠AOB 内部交于点C. ③画射线OC.即射线OC 即为所求.【题型1 角平分线的作法及应用】【例1】(2020秋•曲靖校级月考)如图所示,已知∠AOB ,求作射线OC ,使OC 平分∠AOB ,作法的合理顺序是 .(将①②③重新排列)①作射线OC ;②以O 为圆心,任意长为半径画弧交OA 、OB 于D 、E ;③分别以D 、E 为圆心,大于12DE 的长为半径作弧,在∠AOB 内,两弧交于点C .12【解题思路】根据角平分线的作法进行解答.【解答过程】解:作法:(1)以O 为圆心,任意长为半径画弧交OA 、OB 于D 、E ;(2)分别以D 、E 为圆心,大于12DE 的长为半径作弧,在∠AOB 内,两弧交于点C , (3)作射线OC ,所以OC 就是所求作的∠AOB 的平分线.故题中的作法应重新排列为:②③①.故答案为:②③①.【变式1-1】(2020•连城县模拟)如图,已知∠MON ,点B ,C 分别在射线OM ,ON 上,且OB =OC .(1)用直尺和圆规作出∠MON 的角平分线OP ,在射线OP 上取一点A ,分别连接AB 、AC (只需保留作图痕迹,不要求写作法).(2)在(1)的条件下求证:AB =AC .【解题思路】(1)根据作角平分线的方法画图即可;(2)先判断出∠POB =∠POC ,进而根据全等三角形的判定定理和性质即可得到结论.【解答过程】解:(1)如图所示:射线OP 即为所求;(2)由(1)知,OP 是∠MON 的角平分线,∴∠POB =∠POC ,在△ABO 与△ACO 中{OB =OC∠AOB =∠AOC OA =OA,∴△ABO ≌△ACO (SAS ),∴AB =AC .【变式1-2】(2020秋•沛县期中)如图,已知点D在△ABC的边AB上,且AD=CD,(1)用直尺和圆规作∠BDC的平分线DE,交BC于点E(不写作法,保留作图痕迹);(2)在(1)的条件下,判断DE与AC的位置关系,并写出证明过程.【解题思路】(1)根据角平分线的尺规作图可得;(2)先由AD=CD知∠A=∠DCA,继而得∠BDC=∠A+∠DCA=2∠A,再由DE平分∠BDC知∠BDC =2∠BDE,从而得∠BDE=∠A,从而得证.【解答过程】解:(1)如图所示,DE即为所求.(2)DE∥AC.理由如下:因为AD=CD,所以∠A=∠DCA,所以∠BDC=∠A+∠DCA=2∠A,因为DE平分∠BDC,所以∠BDC=2∠BDE,所以∠BDE=∠A,所以DE∥AC.【变式1-3】(2021秋•孟州市校级期中)数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:根据以上情境,解决下列问题:作法:(如图1)①在OA 和OB 上分别截取OD 、OE ,使OD =OE .②分别以D 、E 为圆心,以大于12DE 的长为半径作弧,两弧在∠AOB 内交于点C .③作射线OC ,则OC 就是∠AOB 的平分线.小聪只带来直角三角板,他发现利用三角板也可以作角平分线(如图2),方法如下:步骤:①利用三角板上的刻度,在OA 和OB 上分别截取OM 、ON ,使OM =ON .②分别过M 、N 作OM 、ON 的垂线,交于点P .③作射线OP ,则OP 为∠AOB 的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.①李老师用尺规作角平分线时,用到的三角形全等的判定方法是 .②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)【解题思路】①根据全等三角形的判定即可求解;②根据HL 可证Rt △OMP ≌Rt △ONP ,再根据全等三角形的性质即可作出判断;③根据用刻度尺作角平分线的方法作出图形,写出作图步骤即可.【解答过程】解:①李老师用尺规作角平分线时,用到的三角形全等的判定方法SSS ;故答案为SSS ;②小聪的作法正确.理由:∵PM ⊥OM ,PN ⊥ON∴∠OMP =∠ONP =90°,在Rt △OMP 和Rt △ONP 中,∵{OP =OP OM =ON, ∴Rt △OMP ≌Rt △ONP (HL ),∴∠MOP =∠NOP ,∴OP 平分∠AOB .③如图所示:步骤:①利用刻度尺在OA 、OB 上分别截取OG =OH ,②连接GH ,利用刻度尺作出GH 的中点Q ,③作射线OQ ,则OQ 为∠AOB 的平分线.【题型2 角平分线的性质的应用】【例2】(2021春•毕节市期末)如图,已知△ABC中,∠C=90o,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=10,则△DEB的周长为()A.9B.5C.10D.不能确定【解题思路】先利用角平分线的性质得到DE=DC,再证明Rt△ACD≌Rt△AED得到AC=AE,然后利用等线段代换得到△DEB的周长=AB.【解答过程】解:∵AD平分∠CAB,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△ACD和Rt△AED中,{AD=ADDC=DE,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∵AC=BC,∴BC=AE,∴△DEB的周长=BD+DE+BE=BD+CD+BE=BC+BE=AE+BE=AB=10.故选:C.【变式2-1】(2021春•汉寿县期中)如图,四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,垂足是D且∠ADB=∠C,点P是边BC上的一动点,则DP的最小值是()A.1B.2C.3D.4【解题思路】根据等角的余角相等求出∠ABD=∠CBD,再根据垂线段最短可知DP⊥BC时DP最小,然后根据角平分线上的点到角的两边距离相等可得DP=AD.【解答过程】解:∵BD⊥CD,∠A=90°∴∠ABD+∠ADB=90°,∠CBD+∠C=90°,∴∠ABD=∠CBD,由垂线段最短得,DP⊥BC时DP最小,此时,DP=AD=3.故选:C.【变式2-2】(2020秋•增城区期末)如图,已知△ABC的周长是18cm,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点D,若OD=3cm,则△ABC的面积是()cm2.A.24B.27C.30D.33【解题思路】过O点作OE⊥AB于E,OF⊥AC于F,连接OA,如图,根据角平分线的性质得OE=OD =3,OF=OD=3,由于S△ABC=S△OAB+S△OBC+S△OAC,所以根据三角形的面积公式可计算出△ABC的面积.【解答过程】解:过O点作OE⊥AB于E,OF⊥AC于F,连接OA,如图,∵OB平分∠ABC,OD⊥BC,OE⊥AB,∴OE=OD=3,同理可得OF=OD=3,∴S△ABC=S△OAB+S△OBC+S△OAC=12×OE×AB+12×OD×BC+12×OF×AC=32(AB+BC+AC),∵△ABC的周长是18,∴S△ABC=32×18=27(cm2).故选:B.【变式2-3】(2021春•武侯区校级期中)如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=24,S△AED=18,则△DEF的面积为()A.2B.3C.4D.6【解题思路】过点D作DH⊥AC于H,根据角平分线的性质得到DH=DF,进而证明Rt△DEF≌Rt△DGH,根据全等三角形的性质得到△DEF的面积=△DGH的面积,根据题意列出方程,解方程得到答案.【解答过程】解:过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,DH⊥AC,∴DH=DF,在Rt△DEF和Rt△DGH中,{DF=DHDE=DG,∴Rt△DEF≌Rt△DGH(HL),∴△DEF的面积=△DGH的面积,设△DEF的面积=△DGH的面积=S,同理可证,Rt△ADF≌Rt△ADH,∴△ADF的面积=△ADH的面积,∴24﹣S=18+S,解得,S=3,故选:B.【题型3 角平分线的性质与等积法】【例3】(2020秋•云南期末)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是152cm2,AB=20cm,AC=18cm,求DE的长.【解题思路】根据S△ABC=S△ABD+S△ACD,再利用角平分线的性质即可解决问题.【解答过程】解:∵AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵S△ABC=S△ABD+S△ACD,∴S△ABC=12×AB×DE+12×AC×DF,∵△ABC面积是152cm2,AB=20cm,AC=18cm,∴152=12×20×DE+12×18×DF,∴10DE+9DF=152,∵DE=DF,∴19DE=152,∴DE=8.【变式3-1】(2021春•浦江县期末)如图,在△ABC中,∠BAC=90°,AB=6,AC=8,BC=10,若AD 平分∠BAC交BC于点D,求BD的长.【解题思路】过A 点作AH ⊥BC 于H ,过D 点作DE ⊥AB 于E ,DF ⊥AC 于F ,如图,利用面积法先求出AH =245,再根据角平分线的性质得到DE =DF ,接着利用面积法得到12AB •DE +12AC •DF =12AB •AC ,则可求出DE =247,然后利用12AH •BD =12AB •DE 可求出BD 的长. 【解答过程】解:过A 点作AH ⊥BC 于H ,过D 点作DE ⊥AB 于E ,DF ⊥AC 于F ,如图,∵12AH •BC =12AC •AB , ∴AH =6×810=245, ∵AD 平分∠BAC ,∴DE =DF ,∵12AB •DE +12AC •DF =12AB •AC , ∴3DE +4DF =24,∴DE =247, ∵S △ABD =12AH •BD =12AB •DE ,∴BD =6×247245=307.【变式3-2】(2020春•番禺区校级期中)点P 为△ABC 三内角平分线的交点,∠ACB =90°,AB =10cm ,AC =6cm ,BC =8cm ,求:点P 到三边的距离.【解题思路】根据点P 为三角形三个内角平分线的交点,作PD ⊥BC 于D ,PE ⊥AC 于E ,PF ⊥AB 于F ,连接P A ,PB ,PC ,可得PD =PE =PF ,根据三角形的面积公式即可求出点P 到三边的距离.【解答过程】解:∵点P 为三角形三个内角平分线的交点,作PD ⊥BC 于D ,PE ⊥AC 于E ,PF ⊥AB 于F ,连接P A ,PB ,PC ,如图,∴PD =PE =PF ,设PD =PE =PF =R ,由三角形的面积公式得:S △ACB =S △APC +S △APB +S △BPC ,∴12×AC ×BC =12×AC ×R +12×BC ×R +12×AB ×R , 6×8=6R +8R +10R ,R =2,即PD =2cm .答:点P 到三边的距离为2cm .【变式3-3】(2020秋•渝水区校级期中)知识储备:(1)如图1,AD 是△ABC 的高,则△ABC 的面积S △ABC =12BC •AD .比例的性质:若b a =d c =⋯=n m ,则b+d+⋯+n a+c+⋯+m =b a =d c =n m .知识运用:(2)如图2,BE 是△ABC 的角平分线,运用上述知识,求证:AB BC =AE CE ;知识延展:(3)如图3,△ABC 的角平分线BE 平分△ABC 的周长,求证:△ABC 是等腰三角形.【解题思路】2.作EF ⊥AB ,EG ⊥BC ,BH ⊥AC ,垂足分别是F ,G ,H ,根据角平分线的性质得到EF =EG ,根据三角形的面积公式即可得到结论;3.由(1)得到AB BC =AE CE ,根据等腰三角形的判定定理即可得到结论.【解答过程】2.证明:作EF ⊥AB ,EG ⊥BC ,BH ⊥AC ,垂足分别是F ,G ,H ,∵BE 平分∠ABC ,∴EF =EG ,∵S △ABE =12AB ⋅EF ,S △BCE =12BC ⋅EG ,∴S △ABES △BCE =AB BC ,∵S △ABE =12AE ⋅BH ,S △BCE =12CE ⋅BH ,∴S △ABE S △BCE =AE CE , ∴AB BC =AE CE ,3.证明:由(1)知AB BC =AE CE , ∴AB BC =AE+AB CE+BC ,∵AB +AE =BC +CE ,∴AB BC =1,∴AB =BC ,∴△ABC 是等腰三角形.【题型4 角平分线的性质与全等】【例4】(2020秋•肇源县期末)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,DE ⊥AB 于点E ,点F 在AC 上,BE =FC .求证:BD =DF .【解题思路】因为∠C =90°,DE ⊥AB ,所以∠C =∠DEB ,又因为AD 平分∠BAC ,所以CD =DE ,已知BE =FC ,则可根据SAS 判定△CDF ≌△EDB ,根据全等三角形的性质即可得到结论.【解答过程】证明:∵AD 平分∠BAC ,DE ⊥AB ,∠C =90°,∴DC =DE ,在△DCF 和△DEB 中,{DC =DE∠C =∠BED CF =BE,∴△DCF ≌△DEB ,(SAS ),∴BD =DF .【变式4-1】(2020秋•平山县期中)如图,∠AOB =90°,OM 平分∠AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.【解题思路】先过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,构造全等三角形:Rt △PCE 和Rt △PDF ,这两个三角形已具备两个条件:90°的角以及PE =PF ,只需再证∠EPC =∠FPD ,根据已知,两个角都等于90°减去∠CPF ,那么三角形全等就可证.【解答过程】解:PC 与PD 相等.理由如下:过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F .∵OM 平分∠AOB ,点P 在OM 上,PE ⊥OA ,PF ⊥OB ,∴PE =PF (角平分线上的点到角两边的距离相等)又∵∠AOB =90°,∠PEO =∠PFO =90°,∴四边形OEPF 为矩形,∴∠EPC +∠CPF =90°,又∵∠CPD =90°,∴∠CPF +∠FPD =90°,∴∠EPC =∠FPD =90°﹣∠CPF .在△PCE 与△PDF 中,∵{∠PEC =∠PFDPE =PF ∠EPC =∠FPD,∴△PCE ≌△PDF (ASA ),∴PC =PD .【变式4-2】(2021春•盐田区校级期中)已知:如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA ,PE ⊥OB ,垂足分别为D 、E ,点F 是OC 上的另一点,连接DF ,EF .求证:DF =EF .【解题思路】根据角平分线上的点到角的两边距离相等可得PD =PE ,利用“HL ”证明Rt △OPD 和Rt △OPE 全等,根据全等三角形对应边相等可得OD =OE ,再利用“边角边”证明△ODF 和△OEF 全等,然后利用全等三角形对应边相等证明即可.【解答过程】证明:∵OC 是∠AOB 的平分线,PD ⊥OA ,PE ⊥OB ,∴PD =PE ,在Rt △OPD 和Rt △OPE 中,{OP =OP PD =PE, ∴Rt △OPD ≌Rt △OPE (HL ),∴OD =OE ,∵OC 是∠AOB 的平分线,在△ODF和△OEF中,{OD=OE∠DOF=∠EOF OF=OF,∴△ODF≌△OEF(SAS),∴DF=EF.【变式4-3】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于12EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M(1)求证:AP平分∠CAB;(2)若∠ACD=114°,求∠MAB的度数;(3)若CN⊥AM,垂足为N,求证:△CAN≌△CMN.【解题思路】(1)利用基本作图得到AE=AF,PE=PF,则可根据“SSS“判断△AEP≌△AFP,从而得到∠EAP=∠F AP;(2)利用平行线的性质可计算出∠BAC=66°,然后利用角平分线的定义可计算出∠MAB的度数;(3)利用CD∥AB得到∠BAM=∠CMA,加上∠CAM=∠BAM,所以∠CAM=∠CMA,则CA=CM,则可利用“AAS”判断△CAN≌△CMN.【解答过程】(1)证明:连接PE、PF,如图,由作法得AE=AF,PE=PF,而AP=AP,∴△AEP≌△AFP(SSS),∴∠EAP=∠F AP,即AP平分∠CAB;(2)解:∵CD∥AB,∴∠BAC+∠ACD=180°,∴∠BAC=180°﹣114°=66°,∵AP平分∠CAB,∴∠MAB =12∠BAC =33°;(3)解:∵CD ∥AB ,∴∠BAM =∠CMA ,∵∠CAM =∠BAM ,∴∠CAM =∠CMA ,∴CA =CM ,∵CN ⊥AM ,∴∠CNA =∠CNM ,在△CAN 和△CMN 中{∠CAN =∠CMN ∠ANC =∠MNC AC =CM∴△CAN ≌△CMN (AAS ).【题型5 角平分线的判定】【例5】(2020秋•鼓楼区校级期中)如图,l3与两条平行公路l1,l2三条公路相交,若要在l1上确定某个位置,使其到另两条公路的距离相等,这样的位置有()A.1个B.2个C.3个D.无数个【解题思路】根据角平分线的性质可作直线l2与l3夹角的平分线与直线l1的交点即为符合条件的点.【解答过程】解:作直线l2与l3夹角的平分线OA,OB,交直线l1于A,B两点,则在l1上到另两条公路的距离相等的位置有点A和点B两个位置.故选:B.【变式5-1】(2020秋•长垣市月考)如图为三条两两相交的公路,某石化公司拟建立一个加油站,计划使得该加油站到三条公路的距离相等,则加油站的可选位置有()A.1个B.2个C.3个D.4个【解题思路】从已知提供的条件结合角平分线的性质进行思考,在三角形内部三条角平分线相交于同一点,三外角平分线有三交点,除去深水湖泊那里的交点,共有三个;【解答过程】解:在三角形内部三条角平分线相交于同一点,三外角平分线有三交点,除去深水湖泊那里的交点,共有三个,故选:C.【变式5-2】(2020秋•夏津县期末)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【解题思路】过两把直尺的交点P作PE⊥AO,PF⊥BO,根据题意可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB;【解答过程】解:如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.【变式5-3】(2021春•道县期末)如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是()A.①②③④B.①②③C.④D.②③【解题思路】根据在角的内部到角的两边距离相等的点在角的平分线上对各小题分析判断即可得解.【解答过程】解:∵点P到AE、AD、BC的距离相等,∴点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD的平分线上,故③正确;点P在∠BAC,∠CBE,∠BCD的平分线的交点上,故④正确,综上所述,正确的是①②③④.故选:A.【题型6 角平分线的性质与判定综合】【例6】(2020秋•朝阳区校级期中)如图,OD 平分∠AOB ,OA =OB ,P 是OD 上一点,PM ⊥BD 于点M ,PN ⊥AD 于点N .求证:PM =PN .【解题思路】由已知容易求证△OBD ≌△OAD (SAS ),可得∠3=∠4,再根据角平分线性质的逆定理,可证PM =PN .【解答过程】证明:∵OD 平分∠AOB ,∴∠1=∠2.在△OBD 和△OAD 中,{OB =OA ∠1=∠2OD =OD,∴△OBD ≌△OAD (SAS ).∴∠3=∠4.∵PM ⊥BD ,PN ⊥AD ,∴PM =PN .【变式6-1】(2020秋•临西县期末)已知:如图,BP 、CP 分别是△ABC 的外角平分线,PM ⊥AB 于点M ,PN ⊥AC 于点N .求证:P A 平分∠MAN .【解题思路】作PD⊥BC于点D,根据角平分线的性质得到PM=PD,PN=PD,得到PM=PN,根据角平分线的判定定理证明即可.【解答过程】证明:作PD⊥BC于点D,∵BP是△ABC的外角平分线,PM⊥AB,PD⊥BC,∴PM=PD,同理,PN=PD,∴PM=PN,又PM⊥AB,PN⊥AC,∴P A平分∠MAN.【变式6-2】(2020秋•常熟市期中)如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(1)求∠CAD的度数;(2)求证:DE平分∠ADC;(3)若AB=7,AD=4,CD=8,且S△ACD=15,求△ABE的面积.【解题思路】(1)根据直角三角形的性质求出∠F AE,根据补角的定义计算,得到答案;(2)过点E作EG⊥AD于G,EH⊥BC于H,根据角平分线的性质得到EF=EG,EF=EH,等量代换得到EG=EH,根据角平分线的判定定理证明结论;(3)根据三角形的面积公式求出EG,再根据三角形的面积公式计算,得到答案.【解答过程】(1)解:∵EF⊥AB,∠AEF=50°,∴∠F AE=90°﹣50°=40°,∵∠BAD=100°,∴∠CAD=180°﹣100°﹣40°=40°;(2)证明:过点E 作EG ⊥AD 于G ,EH ⊥BC 于H ,∵∠F AE =∠DAE =40°,EF ⊥BF ,EG ⊥AD ,∴EF =EG ,∵BE 平分∠ABC ,EF ⊥BF ,EH ⊥BC ,∴EF =EH ,∴EG =EH ,∵EG ⊥AD ,EH ⊥BC ,∴DE 平分∠ADC ;(3)解:∵S △ACD =15,∴12×AD ×EG +12×CD ×EH =15,即12×4×EG +12×8×EG =15, 解得,EG =EH =52,∴EF =EH =52,∴△ABE 的面积=12×AB ×EF =12×7×52=354.【变式6-3】(2020秋•庆阳期中)如图,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线交于点P ,PD ⊥AC 于点D ,PH ⊥BA 于点H .(1)若PH =8cm ,求点P 到直线BC 的距离;(2)求证:点P 在∠HAC 的平分线上.【解题思路】(1)作PQ ⊥BE 于Q ,如图,利用角平分线的性质得到PH =PQ =8cm ;(2)根据角平分线的性质得到PD =PQ ,PH =PQ ,则PD =PH ,然后根据角平分线的性质定理的逆定理得到结论.【解答过程】(1)解:作PQ⊥BE于Q,如图,∵BP平分∠ABC,∴PH=PQ=8,即点P到直线BC的距离为8cm;(2)证明:∵PC平分∠ACE,∴PD=PQ,而PH=PQ,∴PD=PH,∴点P在∠HAC的平分线上.。
⾓平分线的性质定理和判定定理(含答案)⼏何专题2:⾓平分线的性质定理和判定定理⼀、知识点(抄⼀遍):1. ⾓平分线:把⼀个⾓平均分为两个相同的⾓的射线叫该⾓的平分线.2. ⾓平分线的性质定理:⾓平分线上的点,到这个⾓的两边的距离相等. 3. ⾓平分线的判定定理:⾓的内部到⾓的两边距离相等的点在⾓的平分线上. ⼆、专题检测题1. 证明⾓平分线的性质定理.(注意:证明⽂字性命题的三个步骤:①根据题意,画出图形;②写出已知和求证;③写出证明过程.) 2. 证明⾓平分线的判定定理. 3. 定理的⼏何语⾔表⽰(1)⾓平分线的性质定理:∵,∴ . (2)⾓平分线的判定定理:∵,∴ .4. 已知:如图所⽰,BN 、CP 分别是∠ABC 、∠ACB 的⾓平分线,BN 、CP 相交于O点,连接AO ,并延长交BC 于M 求证:AM 是∠BAC 的⾓平分线.5. 如图,已知BE ⊥AC ,CF ⊥AB ,点E ,F 为垂⾜,D 是BE 与CF 的交点,AD 平分∠BAC. 求证:BD=CD.B6. 如图,在Rt △ABC 中,∠C=90°,AC=BC. AD 是∠CAB 的平分线. 求证:AB=AC+CD.7. 如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB.8. 如图,已知P 是∠AOB 平分线上的⼀点.PC ⊥OA ,PD ⊥OB ,垂⾜分别是点C ,D ,CD 与OP 交于点M. 求证:(1)∠PCD=∠PDC ;(2)OP 是CD 的垂直平分线;(3)OC=OD.O⼏何专题2:⾓平分线的性质定理和判定定理答案1. 证明⾓平分线的性质定理.已知:如图,OC 平分∠AOB ,点P 在OC 上,PD ⊥OA 于点D ,PE ⊥OB 于点E求证: PD=PE证明:∵OC 平分∠ AOB∴∠1= ∠2∵PD ⊥ OA,PE ⊥ OB ∴∠PDO= ∠PEO 在△PDO 和△PEO 中∠PDO= ∠PEO ∠1= ∠2 OP=OP∴△PDO ≌△PEO(AAS) ∴PD=PE2.证明⾓平分线的判定定理.已知:如图,PD ⊥OA ,PE ⊥OB ,点D 、E 为垂⾜,PD =PE .求证:点P 在∠AOB 的平分线上证明: 经过点P 作射线OC ∵ PD ⊥OA ,PE ⊥OB∴∠PDO =∠PEO =90°在Rt △PDO 和Rt △PEO 中PO =PO PD=PE ∴ Rt △PDO ≌Rt △PEO (HL )∴∠ POD =∠POE ∴点P 在∠AOB 的平分线上.3. 定理的⼏何语⾔表⽰(1)⾓平分线的性质定理:∵ OP 平分∠AOB ,DP ⊥OA ,PE ⊥OB ,∴ DP=EP. (2)⾓平分线的判定定理:∵ PD⊥OA,PE⊥OB,PD =PE .∴ OP 平分∠AOB .OO4.已知:如图所⽰,BN、CP分别是∠ABC、∠ACB的⾓平分线,BN、CP相交于O 点,连接AO,并延长交BC于M求证:AM是∠BAC的⾓平分线.证明:作OE⊥AC,OG⊥AB,OF⊥BC,垂⾜分别为E、G、F.∵BN平分∠ABC,OG⊥AB,OF⊥BC,∴OG=OF.同理可证:OE=OF.∴OG=OE⼜∵OE⊥AC,OG⊥AB,∴AM是∠BAC的⾓平分线.5.如图,已知BE⊥AC,CF⊥AB,点E,F为垂⾜,D是BE与CF的交点,AD平分∠BAC.求证:BD=CD.证明:∵AD平分∠BAC,BE⊥AC,CF⊥AB,∴DF=DE.∵BE⊥AC,CF⊥AB,∴∠DFB=∠DEC=90°. 在△DFB和△DEC中,∠EDC=∠FDBDF=DE∠DFB=∠DEC∴△DFB≌△DEC(ASA)∴BD=CD.6.如图,在Rt△ABC中,∠C=90°,AC=BC. AD是∠CAB的平分线.求证:AB=AC+CD.证明:过点D作DE⊥AB,垂⾜为点E.∵AD平分∠CAB,∴∠CAD=∠BAD.∵DE⊥AB∴∠DEA=90°=∠C.在△CAD和△EAD中,∠CAD=∠BAD,∠DEA=∠C,AD=AD.∴△CAD≌△EAD(AAS).∴AC=AE,CD=DE.∵AC=BC,∴∠B=∠BAC=45°,∵∠DEB=90°,∴∠EDB=45°=∠B.∴DE=BE,∴CD=BE,∴AB=AE+BE=AC+CD.B7. 如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB.证明:过点M 作ME ⊥AD ,垂⾜为E ,∵DM 平分∠ADC ,∴∠1=∠2,∵MC ⊥CD ,ME ⊥AD ,∴ME=MC (⾓平分线上的点到⾓两边的距离相等),⼜∵MC=MB ,∴ME=MB ,∵MB ⊥AB ,ME ⊥AD ,∴AM 平分∠DAB (到⾓的两边距离相等的点在这个⾓的平分线上).8. 如图,已知P 是∠AOB 平分线上的⼀点.PC ⊥OA ,PD ⊥OB ,垂⾜分别是点C ,D ,CD 与OP 交于点M. 求证:(1)∠PCD=∠PDC ;(2)OP 是CD 的垂直平分线;(3)OC=OD.证明:(1)∵OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,∴PC=PD ∴∠PCD=∠PDC. (2)∵OP 平分∠AOB ,∴∠COP=∠DOP. ∵PC ⊥OA ,PD ⊥OB ,∴∠PCO=∠PDO=90°,∴∠CPO=∠DPO. ∵PC=PD ,∴△CDP 是等腰三⾓形,∴PM 是等腰三⾓形底边上的中线和⾼线. 即OP 是CD 的垂直平分线. (3)由(2)知,∠CPO=∠DPO. ∴OP 平分∠CPD ,⼜∵CP ⊥OA ,DP 垂直OB ,∴OC=OD (⾓平分线的性质定理).O。
学生做题前请先回答以下问题
问题1:总结角平分线的相关定理:
①______________________________________________;
②_____________________________________________;
③在下图中成立的比例_________________.
问题2:总结角平分线常见的组合搭配:
①等腰三角形“三线合一”,___________重合,考虑角平分线;
②平行线+角平分线出现_______________________;
③___________(填“三大变换”)会出现角平分线,四边形背景下会出现角平分线+_____________,进而出现等腰结构.
以下是问题及答案,请对比参考:
问题1:总结角平分线的相关定理:
①
;
②
;
③在下图中成立的比例.
答:
问题2:总结角平分线常见的组合搭配:
①等腰三角形“三线合一”,重合,考虑角平分线;
②平行线+角平分线出现;
③(填“三大变换”)会出现角平分线,四边形背景下会出现角平分线
+ ,进而出现等腰结构.
答:
与角平分线有关的证明、计算
一、单选题(共8道,每道11分)
1.如图,点A,C在直线上,点B在射线AD上,,分别是∠BAE,∠CBD的平分线.若,则∠BAE的度数为( )
A.150°
B.168°
C.135°
D.160°
答案:B
解题思路:
试题难度:三颗星知识点:角平分线的性质
2.如图,梯形ABCD中,∠ABC和∠DCB的平分线相交于梯形中位线EF上的一点P,若EF=3,则梯形ABCD的周长为( )
A.9
B.10.5
C.12
D.15
答案:C
解题思路:
试题难度:三颗星知识点:角平分线
3.如图,在△ABC中,AD平分∠BAC,过B作BE⊥AD于点E,过E作EF∥AC交AB于F,连接CF,则下列判断正确的是( )
A.BE=BF
B.BE=EF
C.BF=EF
D.
答案:C
解题思路:
试题难度:三颗星知识点:角平分线
4.如图,已知等腰Rt△ABC中,∠ACB=90°,点D为等腰Rt△ABC内一点,
∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA,连接BE,若CD=2,则BE的长为( )
A. B.
C.6
D.
答案:D
解题思路:
试题难度:三颗星知识点:等边三角形
5.(用两种方法进行求解)如图,在△ABC中,若∠C=90°,,AD平分∠CAB,则
sin∠CAD=______.( )
(提示:从角平分线的相关思考角度出发)
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:角平分线
6.(用三种方法进行求解)如图,在Rt△ABC中,AB=10,AC=6,AF平分∠BAC交BC于点F,BD⊥AF,交AF的延长线于点D,则AD的长为____________.( )
(提示:从角平分线的相关思考角度出发)
A.8
B.6
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:角平分线性质定理
7.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处.若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是__________.( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:折叠问题
8.如图,在正方形ABCD中,对角线AC,BD相交于点O,且,CE交OB
于点E,过点B作BF⊥CE于点F,交AC于点G,则的值为( )
A.1
B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:全等三角形的性质与判定
二、填空题(共1道,每道12分)
9.如图,在梯形ABCD中,AD∥BC,∠BCD的平分线CE交AB于点E,且CE⊥AB,BE=2AE.若四边形AECD的面积为7,则梯形ABCD的面积为____.
答案:15
解题思路:
试题难度:知识点:三线合一。