格栅的设计计算
- 格式:doc
- 大小:100.00 KB
- 文档页数:3
计算提纲:本章节选取商业外街格栅进行计算,计算点标高选取15m计算,格栅材质6063-T5。
(参照S-DY-01/01C(2-2剖面))一、荷载计算1、风荷载标准值计算W k: 作用在幕墙上的风荷载标准值(kN/m2)z : 计算高度15mμz: 15m高处风压高度变化系数(按C类区计算): (GB50009-2012 条文说明8.2.1)μz=0.544×(z10)0.44=0.650248I10: 10米高名义湍流度,对应A、B、C、D类地面粗糙度,分别取0.12、0.14、0.23、0.39。
(GB50009-2012 条文说明8.4.6)βgz: 阵风系数:βgz= 1 + 2×g×I10×(z10)(-α)= 1 + 2×2.5×0.23×(15 10)(-0.22)= 2.05186 由于2.05186>2.05,取βgz=2.05μsp1:局部正风压体型系数μsn1:局部负风压体型系数,通过计算确定μsz:建筑物表面正压区体型系数,按照(GB50009-2012 8.3.3)取1μsf:建筑物表面负压区体型系数,按照(GB50009-2012 8.3.3-2)取-1.4对于封闭式建筑物,考虑内表面压力,取-0.2或0.2μsa:维护构件面板的局部体型系数μs1z=μsz+0.2=1.2μs1f=μsf-0.2=-1.6按照以上计算得到对于面板有:μsp1=1.2μsn1=-1.6面板正风压风荷载标准值计算如下W kp=βgz×μsp1×μz×W0(GB50009-2012 8.1.1-2)=2.05×1.2×0.65×0.3=0.4797 kN/m2W kp<1kN/m2,取W kp=1kN/m2面板负风压风荷载标准值计算如下W kn=βgz×μsn1×μz×W0(GB50009-2012 8.1.1-2)=2.05×(-1.6)×0.65×0.3=-0.6396 kN/m2W kn>-1kN/m2,取W kn=-1kN/m22、风荷载设计值计算W: 风荷载设计值: kN/m2γw : 风荷载作用效应的分项系数:1.4按《玻璃幕墙工程技术规范》JGJ 102-2003 5.4.2条规定采用面板风荷载作用计算Wp=γw×Wkp=1.4×1=1.4kN/m2Wn=γw×Wkn=1.4×(-1)=-1.4kN/m23、水平地震作用计算GAK: 面板平米重量取0.4kN/m2αmax: 水平地震影响系数最大值:0.16qEk: 分布水平地震作用标准值(kN/m2)qEk=βE×αmax×GAK (JGJ102-2003 5.3.4) =5×0.16×0.4=0.32kN/m2rE: 地震作用分项系数: 1.3qEA: 分布水平地震作用设计值(kN/m2)qEA=rE×qEk=1.3×0.32=0.416kN/m24、荷载组合计算幕墙承受的荷载作用组合计算,按照规范,考虑正风压、地震荷载组合: Szkp=Wkp=1kN/m2Szp=Wkp×γw+qEk×γE×ψE=1×1.4+0.32×1.3×0.5=1.608kN/m2考虑负风压、地震荷载组合:Szkn=Wkn=-1kN/m2Szn=Wkn×γw-qEk×γE×ψE=-1×1.4-0.32×1.3×0.5=-1.608kN/m2综合以上计算,取绝对值最大的荷载进行强度演算采用面板荷载组合标准值为1kN/m2面板荷载组合设计值为1.608kN/m2二、格栅强度计算1、格栅荷载计算(1)风荷载线分布最大荷载集度设计值(矩形分布)qw: 风荷载线分布最大荷载集度设计值(kN/m)rw: 风荷载作用效应的分项系数:1.4Wk: 风荷载标准值: 1kN/m2B : 格栅宽: 0.05mqwk=Wk×B=1×0.05=0.05kN/mqw=1.4×qwk=1.4×0.05=0.07kN/m(2)分布水平地震作用设计值GAK:格栅自重(kN/m)格栅密度为28(kN/m3)格栅断面面积5.04cm2GAK=28×5.04×10(-4)=0.014112kN/m水平地震作用计算:qEk=5×αmax×GAK=5×0.16×0.014112=0.0112896kN/mqe=1.3×qEk=1.3×0.0112896=0.0146765kN/m格栅在重力方向所受的线荷载设计值为:g= γg×GAK= 1.2×0.014112= 0.0169344kN/m(3)格栅荷载组合格栅所受组合荷载标准值(仅考虑风荷载)为:qk=qwk=0.05kN/m格栅所受组合荷载设计值(考虑风荷载和地震荷载组合)为: q =qw+ψE×qe=0.07+0.5×0.0146765=0.0773382kN/m2、格栅截面特性选定格栅材料类别: 铝-6063-T5选用格栅型材名称: 80x50x2型材强度设计值: 90N/mm2型材弹性模量: E=70000N/mm2X轴惯性矩: Ix=45.0592cm4Y轴惯性矩: Iy=21.6872cm4X轴上部抵抗矩: Wx1=11.2648cm3X轴下部抵抗矩: Wx2=11.2648cm3Y轴左部抵抗矩: Wy1=8.67488cm3Y轴右部抵抗矩: Wy2=8.67488cm3型材截面积: A=5.04cm2型材计算校核处抗剪壁厚: t=2mm型材截面面积矩: Ss=6.788cm3塑性发展系数: γ=13、格栅强度计算校核依据: N A +M γ×w≤fa (1)格栅计算简图如下:(3)格栅弯矩:通过有限元分析计算得到格栅的弯矩图如下: 80x50x2n 0n 1b 0立柱计算简图5250q 1q2立柱受力简图5250q1=0.077kN/mq2=0.017kN/m最大弯矩发生在2.625m 处M: 格栅在风荷载和地震作用下产生弯矩(kN ·m)M=0.266454kN ·m格栅在荷载作用下的轴力图如下:(4)数据效核f: 格栅计算强度(N/mm 2)A: 格栅型材截面积: 5.04cm 2Nl: 当前杆件最大轴拉力(kN)Ny: 当前杆件最大轴压力(kN)Mmax:当前杆件最大弯矩(kN.m)Wz: 格栅截面抵抗矩(cm 3)γ: 塑性发展系数: 1M m a x =0.266k N .m通过上面计算可知,格栅杆件b0的应力最大,为23.8301N/mm 2≤fa=90N/mm 2,所以格栅承载力满足要求4、格栅刚度计算校核依据: Umax ≤L 180Dfmax: 格栅最大允许挠度:通过有限元分析计算得到格栅的挠度图如下:最大挠度发生在2.625m 处,最大挠度为15.6807mmDfmax=Hvmax 180×1000=5.25180×1000=29.1667mm格栅最大挠度Umax 为: 15.6807mm ≤29.1667mm挠度满足要求5、格栅抗剪计算校核依据: τmax ≤[τ]=55N/mm 2通过有限元分析计算得到格栅的剪力图如下:D m a x =15.681m m最大剪力发生在5.25m 处τ: 格栅剪应力:Q: 格栅最大剪力: 0.203013kNSs: 格栅型材截面面积矩: 6.788cm 3 Ix: 格栅型材截面惯性矩: 45.0592cm 4 t: 格栅抗剪壁厚: 2mmτ=Q×Ss×100Ix×t=0.203013×6.788×10045.0592×2=1.52916N/mm 21.52916N/mm 2≤55N/mm 2格栅抗剪强度可以满足Q m a x =0.203k N。
碳化段需氧量工程总水量Q=4000.00m3/d每小时水量Q1=166.67m3/h格栅设计污水处理系统前,栅条间隙采用机械清除时为16~100mm,采用人工清除时为25~100mm细格栅为1.5~10mm污水过栅流速宜采用0.6~1.0m/s。
除转鼓式格栅外,机械清除格栅倾角宜采用60°~90°;人工清除宜栅条间隙e= 3.00mm格栅倾度a=75.00栅前水深h=0.40m栅条宽度S=0.01sina=0.97tga= 3.73隔栅间隙数n=47栅槽宽度B=0.81m水头损失h1= 1.14m栅前渠道超高h2=0.30栅槽总高度H= 1.84m进水渠宽B1=0.50m则进水渠道渐宽部分长度L1=栅槽总长度L= 2.62m栅渣量(m3/103m3污水),取0.1~0.01,粗格栅用小值,细格栅用大值,中格栅用中值。
平均日流量(L/s) 4.00 6.0010.0015.0025.00K总 2.30 2.20 2.10 2.00 1.89该工程平均日流量=46.30L/s则生活污水流量总变化系数K总=每日栅渣量W=0.16m3/d格栅设计Q1872.000.02变化系数 1.00最大设计流量0.02栅前水深h0.40m过栅流速V0.80m/s格栅倾度a=75.00度sina0.87sina0.50.93展开角a1=20.00度栅条间隙宽宽度b0.02M栅条间隙e0.02m栅条间隙数n 3.51栅条宽度S s0.01m栅槽宽度B B0.09m进水渠宽B10.65m渐宽部分展开角度a120.00L1°;人工清除宜采用30°~60°度过栅流速v=0.80m/sm展开角a1=20.00度tga1=0.36m0.42m渐缩部分L2=0.21mW1=0.0740.0070.00120.00200.00400.00750.001600.001.80 1.69 1.59 1.51 1.40 1.30 1.20化系数K总= 1.80(也可按K总=2.74/(Q0.11)计算,Q的单位L/s)K总= 1.80。
2.2粗细格栅间1、设计流量(高日高时):Q=30000m3/d=1250 m3/h=0.347 m3/s2、渠道分组:分两格,则单格设计流量:Q=1250/2 m3/h=625 m3/h=0.174 m3/s3、格栅机的选用:选用回转式格栅除污机。
格条宽S=10mm,栅条间隙b=20mm(规范16—25mm),α=60°4、一般规定(给排水手册五P280页)a格栅前渠道内的水流速度一般采用0。
4~0.9 m/s。
(设计手册280页)b过栅流速一般采用0。
6~1。
0 m/s.(设计规范45页)5、设计计算:a、假定渠道中水流速度V=0.4~0。
9 m/s相应单格渠道过水断面积:A0.4=Q/V=0.174/0。
4=0。
435m2A0.9=Q/V=0。
174/0.9=0。
193m2假定渠道宽选用0.8m,则渠中有效水深:h0.4=0。
435/0。
8=0.544mh0。
9=0.193/0.8=0.242m按常规选用渠道有效宽度0.8m,在流速0.4m/s时有效水深已达0。
54m,应该说渠道宽是合适的,另一方面有助于设备安装及检修.根据天雨公司回转式格栅除污机样本,井宽B=0。
8m,其设备宽为B1=B—0。
06=0.74m,埋件宽B2=B+0。
4=1.2m。
功率为1。
1kw。
格栅机过栅流速核算:假定栅前水深h=0.544格栅栅条间隙数目:n=(0.74+0。
01)/(0.01+0.02)=25个格栅栅条间隙总面积:A=0。
544*25*0。
02=0。
272m2过栅流速:V=Q/A=0。
174X(sin750)1/2/0。
272=0.63(在0。
6~1。
0m/s 的范围内)所以设备选用及渠道流速是合适的.b、粗格栅前后设备配置:○1在格栅前后设闸板方便检修。
错误!设置配套的起重装置,方便设备检修。
错误!格栅机后设设栅渣压榨输送机.6、根据给排水手册五P282页,计算如下:设栅前水深h=0。
544m ,过栅流速v=0.6m/s ,格条宽S=10mm ,栅条间隙b=20mm,格栅倾角α=75°栅条的间隙数: n= bhv a Q sin ⋅=6.0*544.0*02.075sin 174.0⨯≈27个栅槽宽度:B=S (n-1)+bn=0.01x (27-1)+0.02x27=0.80m通过格栅的水头损失:设栅条断面为锐边矩形断面h 1= K g v b S αβsin 2)(23/4=375sin 6.196.0)02.001.0(42.223/4x x x =2。
3.细格栅设计计算(1)栅条间隙数(n ): bhvQ n αsin max = 式中Q max ------最大设计流量,0.327m 3/s ;28252.8 m 3/dα------格栅倾角,(o ),取α=60;b ------栅条隙间,m ,取b=0.03 m ;n-------栅条间隙数,个;h-------栅前水深,m ,取h=0.4m ;v-------过栅流速,m/s,取v=0.9 m/s ;隔栅设两组,按两组同时工作设计,一格停用,一格工作校核30个(2)栅条宽度(B):设栅条宽度 S=0.01m栅槽宽度一般比格栅宽0.2~0.3 m,取0.2 m ;则栅槽宽度 B= S(n-1)+bn+0.2=0.01×(28-1)+0.02×28+0.2=1.32 (m)(3)进水渠道渐宽部分的长度L 1,设进水渠道B 1=0.85m ,其渐宽部分展开角度α1=20°,进水渠道内的流速为0.77 m/s.m B B ≈⨯-=⨯-=α (4)格栅与出水总渠道连接处的渐窄部分长度L 2 .)(37.0274.02L 12m L === (5)通过格栅的水头损失 h 1,mh 1=h 0⨯k0h 342)(,2sin b S g v βεαε== 式中 h 1 -------设计水头损失,m ;h 0 -------计算水头损失,m ;g -------重力加速度,m/s 2k ------系数,格栅受污物堵塞时水头损失增大倍数,一般采用 3; ξ ------阻力系数,与栅条断面形状有关;设栅条断面为锐边矩形 断面,β=2.42. g k v b S k h h 2sin )(23401αβ== 6.19360sin 9.0)02.001.0(42.20234⨯⨯= =0.1 (m)(符合0.08~0.15m 范围).(6)栅槽总长度L ,m αtan 0.15.0121H L L L ++++= 式中,H 1为栅前渠道深, 21h h H += m. 360tan 3.04.00.15.037.074.00≈+++++=L m (7)栅前槽总高度H 1,mH 1=h+h 2=0.425+0.3=0.725m(8)栅后槽总高度H ,m设栅前渠道超高h 2=0.3mH=h+h 1+h 2=0.425+0.1+0.3=0.825(m)(9)每日栅渣量W ,m 3/d 1000864002max ⨯⨯=Z K W Q W 式中,W 1为栅渣量,m 3/103m 3污水,格栅间隙16~25mm 时,W 1=0.10~0.05m 3/103m 3污水;格栅间隙30~50mm 时,W 1=0.03~0.1m 3/103m 3污水;本工程格栅间隙为20mm ,取W 1=0.08污水332.0/m 6.110004.18640008.0327.0m d W >=⨯⨯⨯=采用机械清渣.。
栅渣量计算过程:(1)设计流量已知流量Q=7000m3/h≈1944L/sK Z=2.7/Q0.11=2.7/19440.11=1.17即平均生活污水流量总变化系数取K Z=1.17,故最大日流量Q max =K Z .Q=1.17×7000 m3/h=8190m3/h=2.28m3 /s(2)设计参数栅条净间隙取b=40mm(中:40mm)栅前流速 V1=0.8m/s 过栅流速 v=0.9m/s栅前部分长度:0.5m 格栅倾角&=60°单位栅渣量:W1=O.O2m3栅渣/1O3m3污水(3)设计计算a、栅前水深(h)根据最优水利断面公式Q=B12v1/2计算得:B1=√(2Q/v1)=√(2×2.28/0.8)=2.4mh=B1/2=1.2m所以栅前槽宽约2.4m,栅前水深h≈1.2mb、格栅的间隙数(n)n=Q max√sin&/bhv=2.28×√sin60°/0.04×1.2×0.9=49(条)其中, Q max————最大设计流量,m3/s& ————格栅安置的倾角,60°h ————栅前水深,mv ————过栅流速,m/sb ————栅条净间隙,mm∴当栅条的间隙数为49时,栅条的数目应为48。
c、栅条有效宽度(B)设计采用Ø20圆钢为栅条,即S=0.02mB=S(n-1)+bn=0.02×(49-1)+0.04×49=2.92 md、通过格栅的水头损失(h1)h1=k§v2/2g×sin&=3×1.79×(0.01/0.04)4/3×0.92/(2×9.8)×sin60°=0.12 m式中,§=1.79(S/b)4/3g ————重力加速度,m/s²k ————格栅受筛余物堵塞后格栅阻力增大的系数,一般采用k=3§————阻力系数e、栅后槽总高度(H)H=h1+h2+h=0.12+O.3+1.2=1.62m其中,h2为栅前渠道超高,一般取0.3m。
格栅的设计计算 Document number:PBGCG-0857-BTDO-0089-PTT1998格栅的设计计算(1)栅条的间隙数nmax Q n ehv =式中 Qmax ——最大设计流量,m 3/sα——格栅倾角,度,取α=600h ——栅前水深,m ,取h=0.4me ——栅条间隙,m ,取e=0.02mn ——栅条间隙数,个v ——过栅流速,m/s ,取v=1.0m/s格栅设两组,按两组同时工作设计,一格停用,一格工作校核。
则:max 230.02*0.4*1.0Q n ehv ==≈个(2)栅槽宽度B栅槽宽度一般比格栅宽米,取米。
设栅条宽度S=10mm则栅槽宽度(1)B S n bn =-+0.01*(231)0.02*230.68m =-+≈(3)通过格栅的水头损失h10h h k =20sin 2v h g ξα= 43()s b ξβ=式中 1h ——过栅水头损失,m0h ——计算水头损失,mg ——重力加速度,2/m sk ——系数,格栅受污物堵塞后,水头损失增大的倍数,一般采用k=3ξ——阻力系数,与栅条断面形状有关,43()s eξβ=,当为矩形断面时,β=。
24103()sin 2s v h h k k b gβα== 20430.01 1.02.42*()sin 60*30.022*9.8= 0.13m =(4)栅后槽总高度H设栅前渠道超高20.3h m =120.40.130.30.83H h h h m =++=++=(5)栅槽总长度L进水渠道渐宽部分的长度L 1,设进水渠宽B 1=,其渐宽部分展开角度α1=200,进水渠道内的流速为s 。
11010.680.450.362tan 2tan 20B B L m α--==≈ 栅槽与出水渠道连接处的渐窄部分长度2L120.360.1822L L m ==≈ 112 1.00.5tan H L L L α=++++ 式中 1H 为栅前渠道深,12H h h =+00.40.30.360.180.5 1.0tan 60L +=++++2.44m =(6)每日栅渣量W max 1864001000ZQ W W K =式中 W ——每日栅渣量3/m d 1W ——栅渣量(333/10m m 污水)取,粗格栅用小值,细格栅用大值,中格栅用中值Z K ——生活污水流量总变化系数 386400*0.2*0.050.6/1000*1.5W m d ==。
2.2粗细格栅间1、设计流量(高日高时):Q=30000m3/d=1250 m3/h=0.347 m3/s2、渠道分组:分两格,则单格设计流量:Q=1250/2 m3/h=625 m3/h=0.174 m3/s3、格栅机的选用:选用回转式格栅除污机。
格条宽S=10mm,栅条间隙b=20mm(规范16-25mm),α=60°4、一般规定(给排水手册五P280页)a格栅前渠道内的水流速度一般采用0.4~0.9 m/s。
(设计手册280页)b过栅流速一般采用0.6~1.0 m/s。
(设计规范45页)5、设计计算:a、假定渠道中水流速度V=0.4~0.9 m/s相应单格渠道过水断面积:A0.4=Q/V=0.174/0.4=0.435m2A0.9=Q/V=0.174/0.9=0.193m2 假定渠道宽选用0.8m,则渠中有效水深:h0.4=0.435/0.8=0.544mh0.9=0.193/0.8=0.242m按常规选用渠道有效宽度0.8m,在流速0.4m/s时有效水深已达0.54m,应该说渠道宽是合适的,另一方面有助于设备安装及检修。
根据天雨公司回转式格栅除污机样本,井宽B=0.8m,其设备宽为B1=B-0.06=0.74m,埋件宽B2=B+0.4=1.2m。
功率为1.1kw。
格栅机过栅流速核算:假定栅前水深h=0.544格栅栅条间隙数目:n=(0.74+0.01)/(0.01+0.02)=25个格栅栅条间隙总面积:A=0.544*25*0.02=0.272m2过栅流速:V=Q/A=0.174X(sin750)1/2/0.272=0.63(在0.6~1.0m/s的范围内)所以设备选用及渠道流速是合适的。
b 、粗格栅前后设备配置: ○1在格栅前后设闸板方便检修。
○2设置配套的起重装置,方便设备检修。
○3格栅机后设设栅渣压榨输送机。
6、根据给排水手册五P282页,计算如下:设栅前水深h=0.544m ,过栅流速v=0.6m/s ,格条宽S=10mm ,栅条间隙b=20mm ,格栅倾角α=75°栅条的间隙数: n=bhv a Q sin ⋅=6.0*544.0*02.075sin 174.0⨯≈27个 栅槽宽度:B=S (n-1)+bn=0.01x(27-1)+0.02x27=0.80m通过格栅的水头损失:设栅条断面为锐边矩形断面h 1= K g v b S αβsin 2)(23/4=375sin 6.196.0)02.001.0(42.223/4x x x =2.42x0.5946x0.018x0.966x3=0.075m ,取粗格栅过栅损失0.1m每日栅渣量:在格栅间隙20mm 的情况下,(设计手册五280页)设栅渣量为每1000m 3污水产0.07m 3,(设计手册五282页)W=1000864001x K x QW z =10005.18640007.0347.0x x x =1.4m 3/d >0.2m 3/d 宜采用机械清渣。
2.2粗细格栅间1、设计流量(高日高时):Q=30000imd=1250 m'/h=0.347 m 3/s2、渠道分组:分两格,则单格设计流量:3 3 3Q=1250/2 m/h=625 m /h=0.174 m /s3、格栅机的选用:选用回转式格栅除污机。
4、一般规定(给排水手册五P280页)a 格栅前渠道内的水流速度一般采用0.4~0.9 m/s。
(设计手册280 页)b过栅流速一般采用0.6~1.0 m/s 。
(设计规范45页)5、设计计算:a、假定渠道中水流速度V=0.4~0.9 m/s相应单格渠道过水断面积: A.4 =Q/V=0.174/0.4=0.435m 宜采用机械清渣所以设备选用及渠道流速是合适的。
b、粗格栅前后设备配置:①在格栅前后设闸板方便检修。
运设置配套的起重装置,方便设备检修。
③格栅机后设设栅渣压榨输送机。
6、根据给排水手册五P282页,计算如下:设栅前水深h=0.544m,过栅流速v=0.6m/s,格条宽S=10mm栅条间隙b=20mm格栅倾角a =75°栅条的间隙数:Q Vsin a = 0.174 Vs in 75bhv 0.02*0.544*0.6栅槽宽度:B=S (n-1) +bn=0.01x(27-1)+0.02x27=0.80m 通过格栅的水头损失:设栅条断面为锐边矩形断面h1= (S)4/3— sin K =2.42x(-0^)4/3x墮sin 75x3b 2g 0.02 19.6=2.42x0.5946x0.018x0.966x3=0.075m,每日栅渣量:在格栅间隙20mm的情况下,(设计手册五280页)设栅渣量为每1000m污水产0.07m3,(设计手册五282页)W=QW1x86400=0347x0^86400 ^亦加>0.2m 3/dK z x1000 1.5x1000宜采用机械清渣2.3细格栅间1、设计流量(高日高时):Q=30000md=1250 m'/h=0.347 m 3/s2、渠道分组:分两格,则单格设计流量:Q=1250/2 m7h=625 m3/h=0.174 m 3/s3、格栅机的选用:选用循环齿耙式格栅除污机(或选用阶梯式格栅除污机)。
一. 格栅的计算 设计说明格栅是一组(或多组)相互平行的金属栅条与框架组成,倾斜安装在进水渠道,以控制 水中粗大悬浮物及杂质,对下面的微滤机和水泵其保护作用,拟采用细格姗,格栅间距取 16mm.设计流量:最大流量 Q max 8000m 3/d 0.092m 3/s设计参数:栅条间距d=16.00mm 栅前水深h=0.3m,过栅流速v=0.6m/s ,安装倾角a =60°1. 栅条的间隙数nQ max 暫 —0.092 Jsin 60。
nbhv 0.0160.3 0.62. 栅槽的有效宽度b.取C b s(n 1) dn 0.20.01(30 1)0.016 300.2 0.97(m)0.2-0.3m,这里取 0.2 m.3. 通过格栅的水头损失h 2, m设栅条断面为锐边圆形断面,取阻力系数 =1.83,k=3.36v-1.32=3.36*0.6-1.32=0.7 ,则4. 栅后槽总高度H, m设栅前渠道超高 h 1=0.3m.,有 H=h+h+h 2=0.3+0.3+0.02=0.62 m ,5. 格姗的总建设长度LL h 丨21.0 0.5 ——tg丨1----进水渠道渐宽部分的长度(m ),设进水渠宽b 1=0.23 m,其渐宽部分展开角度a =200 丨2----栅槽与出水渠道连接处的渐窄部分长度(m), —般丨2=0.5丨1b b 10.970.23l 1 0 0.5(m)L 的2 1.02tg20 —- 0.5 0.25 1.0 0.5 一 0-2.42(m)tg tg 60则6. 每日的栅渣量w工 艺 设 计 和 计 算30(个)10圆钢为栅条,即s=0.01m,栅槽宽度一般要比格姗宽h 1y 2——ksin 2g1.83 0.622 9.8 0.7 si n60° 0.02(m)设栅渣量w1为0.10 (m /10 3m 污水),变化系数kz=1.6 则86400Q max W iw -1000k z所以采用机械清渣7. 选型与决定根据拦截污泥量,采用机械清渣,选用WGS-5C 高链式格栅除污机一台,该格栅水槽高0.62m, 有效宽 0.97m,长度 2.42m,占地面积 L*b=2.42*0.59=1.43 m 2 二. 沉砂池沉砂池的作用是去除废水中比重较大的无机颗粒 (如泥沙,煤渣等),一般设在水泵和沉 淀池前,以减轻水泵和管道的磨损,防止后续处理的构筑物管道的堵塞,提高污泥有机成分 的含量.本研究采用平流沉砂池 ⑴长度L , m设污水在池内流速 v=0.3 m/s,停留时间t=30s , L=vt=0.3 x 30=9m ⑵水流断面积A , m A Qmax 0.0920.31(m 2)v 0.3 ⑶池总长度B , m设n=2格,每格宽b=0.6m ,则: B nb 2 0.61.2(m) ⑷有效水深h 2, m,A 0.31 h2B 1.2 0.26(m)⑸沉砂斗所需容积v, m设排砂时间间隔T=2 d ,城市污水的沉砂量X=30 (m /10 6m 3污水)则:Q max X T 864000.092 30 2 864006 6k z 101.6 10⑹每个沉砂斗容积V m设每个分格有2个沉砂斗,即共有4个沉砂斗,则:86400°.092 °.10 0.50(m 3/d) 0.2(m 3/d)1000 1.630.30(m )V 00.300.075 0.1(m 3)2 2⑺沉砂斗各部分尺寸设斗底宽a i =0.5 m ,斗壁与水平面的倾角600,斗高h s ' =0.3m,贝U:砂斗上口宽a , m 沉砂斗容积V ), mIV 0 h s (2a 2 2aa 1 2a ;)6 0.3(2 0.852 2 0.8 0.5 2 0.52) 6330.14m ( 0.1m )⑻沉砂室高度h 3, m设采用重力排砂,设池底坡度为i=0.06,坡向砂斗,沉砂室含两部分:一部分为沉砂斗,另一部分为沉砂池坡向沉砂斗的过渡部分。
设计参数确定流量(Q)1500m3/d变化系数Kz 1.998过栅流速(v)0.6m/s一般取值0.6-1.0栅条间隙(b)0.003m粗格栅:机械清除时宜为16-25mm,人工清除时宜格栅倾角(α)70º机械清除为60-90,人工清除为30-60度栅条宽度(S)0.001m栅前水深(h)0.3m重力加速度(g)9.8m/s2系数(k)3格栅受污物堵塞时水头损失增大的倍数,一般采用栅条断面形状锐边矩形迎水面为半圆形矩形圆形迎水、背水面均为半圆形矩形梯形正方形格栅宽度计算栅条间隙数(n)62.2690369363个格栅宽度(B)0.2550.3m栅前渠宽(B1)0.144531250.1m通过格栅的水头损失(h1)计算水头损失(h0)=ξ*v^2*sinα/(2*g)=0.009653525mh1=h0*k=0.028960576m栅后槽总高度(H)H=h+h1+h2=0.6289605760.63h2——栅前渠道超高,一般取值0.3m栅槽总长度(L)进水渠道肩宽部分的展开角度α1=20º进水渠道肩宽部分的长度l1=0.5494954840.55m渐窄部分长度l2=0.275m栅前渠道深(H1)0.6mL= 3.9734864524m每日栅渣量(W)栅渣率W1=0.1——0.05间隙为16-25时0.03——0.01间隙为30-50时W=0.15m3最大流量(Q max )2997m3/d,人工清除时宜为25-40mm,最大可到100mm。
细格栅:1.5-10mm清除为30-60度损失增大的倍数,一般采用3。
形状系数阻力系数(ξ)β=2.420.559311428β=1.830.422950377β=1.790.41370556β=1.670.385971109β=2.000.46224085ε=0.64ξ=((b+S)/εb-1)^2 1.173611111ξ=β(S/b )^(4/3)。
格栅的设计计算
(1)栅条的间隙数n
max Q n ehv
= 式中 Qmax ——最大设计流量,m 3/s
α——格栅倾角,度,取α=600
h ——栅前水深,m ,取h=0.4m
e ——栅条间隙,m ,取e=0.02m
n ——栅条间隙数,个
v ——过栅流速,m/s ,取v=1.0m/s
格栅设两组,按两组同时工作设计,一格停用,一格工作校核。
则
:max 230.02*0.4*1.0
Q n ehv ==≈个 (2)栅槽宽度B
栅槽宽度一般比格栅宽0.2-0.3米,取0.2米。
设栅条宽度S=10mm
则栅槽宽度(1)B S n bn =-+
0.01*(231)0.02*230.68m
=-+≈ (3)通过格栅的水头损失h
10h h k =
2
0sin 2v h g ξα= 43()s b
ξβ= 式中 1h ——过栅水头损失,m+
0h ——计算水头损失,m
g ——重力加速度,9.82/m s
k ——系数,格栅受污物堵塞后,水头损失增大的倍数,一般采用k=3
ξ——阻力系数,与栅条断面形状有关,43
()s e ξβ=,当为矩形断面时,β=2.42。
S=栅条的宽度 b=栅条的间隙 24103()sin 2s v h h k k b g
βα== 20430.01 1.02.42*()sin 60*30.022*9.8
= 0.13m =
(4)栅后槽总高度H
设栅前渠道超高20.3h m =
120.40.130.30.83H h h h m =++=++=
(5)栅槽总长度L
进水渠道渐宽部分的长度L 1,设进水渠宽B 1=0.45m ,其渐宽部分展开角度α1=200,进水渠道内的流速为0.77m/s 。
11010.680.450.362tan 2tan 20
B B L m α--==≈ 栅槽与出水渠道连接处的渐窄部分长度2L
120.360.1822
L L m ==≈ 112 1.00.5tan H L L L α
=++++ 式中 1H 为栅前渠道深,12H h h =+
00.40.30.360.180.5 1.0tan 60L +=++++
2.44m =
(6)每日栅渣量W
max 1864001000Z
Q W W K = 式中 W ——每日栅渣量3/m d 1W ——栅渣量(333/10m m 污水)取0.1-0.01,粗格栅用小值,细格栅用
大值,中格栅用中值 Z K ——生活污水流量总变化系数 386400*0.2*0.050.6/1000*1.5W m d =
=。