第1章多项式
- 格式:ppt
- 大小:959.00 KB
- 文档页数:76
第一章 多项式(第1讲)目标与要求理解数域、一元多项式的概念,掌握一元多项式的运算及基本性质.重点难点重点:一元多项式的概念、运算及基本性质.难点:一元多项式的定义.设计安排实际问题为出发点,引出数域的概念,通过教材P 2(例1)加深对概念的理解,最后指出:任何数域都包含有理数域作为它的一部分.给出一元多项式的有关概念,进而讨论其运算及基本性质,补充例题(幻灯片例2)加深对本段内容的理解.教学进程见幻灯片部分.(2课时)教学内容§1 数域定义 设P 是由一些复数组成的集合,其中包括0与1.如果P 中任意两个数的和、差、积、商(除数不为零)仍然是中的数,那么P 就称为一个数域.全体有理数的全体组成一数域全体实数组成的集合、全体复数组成的集合也都是数域.上述三个数域常用字母Q 、R 、C 表示.注意:全体整数组成的集合就不是数域.数的加、减、乘、除等运算的性质通常称为数的代数性质.而代数所研究的问题主要涉及数的代数性质.例1 所有具有形式2b a 的数(其中b a ,是任何有理数),构成一个数域.例2 所有整组成的数集,对于乘法是封闭的,但对于除法不封闭.所有的数域都包含有理数域作为它的一部分.§2 一元多项式1 一元多项式定义 设n 是一非负整数,形式表达式0111a x a x a x a n n n n ++++-- ,其中n a a a ,,,10 全属于数域P ,称为系数在数域P 中的一元多项式,或者简称为数域P 上的一元多项式.i i x a 称为i 次项,i a 称为i 次项的系数.用 ),(),(x g x f 或 ,,g f 等来表示多项式. 同次项的系数全相等,那么)(x f 与)(x g 就称为相等,记为)()(x g x f =.系数全为零的多项式称为零多项式,记为0.如果0≠n a ,那么nn x a 称为多项式的首项,n a 称为首项系数,n 称为多项式的次数.零多项式是唯一不定义次数的多项式.多项式)(x f 的次数记为))((x f ∂.2 多项式的运算设 0111)(a x a x a x a x f n n n n ++++=--0111)(b x b x b x b x g m m m m ++++=--是数域P 上两个多项式,即∑==n i i ix a x f 0)(,∑==m j j j x b x g 0)(在表示多项式)(x f 与)(x g 的和时,如m n ≥,为了方便起见,在)(x g 中令011====+-m n n b b b ,那么)(x f 与)(x g 的和为∑=---+=++++++++=+n i i i i n n n n n n xb a b a x b a x b a x b a x g x f 00011111)()()()()()()(而)(x f 与)(x g 的乘积为001001111)()()()(b a x b a b a x b a b a x b a x g x f m n m n m n m n m n ++++++=-+--+其中s 次项的系数是∑=+--=++++s j i j i s s s s b a b a b a b a b a 011110所以)(x f )(x g 可表成 s mn s s j i j i x b a x g x f )()()(0∑∑+==+=.显然,)))(()),((max())()((x g x f x g x f ∂∂≤+∂.对于多项式的乘法,可以证明,若0)(,0)(≠≠x g x f ,则0)()(≠x g x f ,并且))(())(())()((x g x f x g x f ∂+∂=∂多项式乘积的首项系数等于因子首项系数的乘积. 结果均可推广到多个多项式的情形. 运算法则:1. )()()()(x f x g x g x f +=+. (加法交换律)2. ))()(()()())()((x h x g x f x h x g x f ++=++ (加法结合律)3. )()()()(x f x g x g x f = (乘法交换律)4. ))()()(()())()((x h x g x f x h x g x f = (乘法结合律)5. )()()()())()()((x h x f x g x f x h x g x f +=+ (乘法分配律)另外:若)()()()(x h x f x g x f =且0)(≠x f ,则)()(x h x g =.定义 所有系数在数域P 中的一元多项式的全体,称为数域P 上的一元多项式环,记为][x P .备注提出如下问题:1.中学数学中的多项式与高等代数中的多项式有何区别?2.多项式相等与方程有无区别?3.次数公式∂(f +g )≤max (∂(f ),∂(g ))中何时取“=”号?作业布置课后相应习题第一章 多项式(第2讲)目标与要求理解整除的概念;掌握整除的基本性质和带余除法定理.重点难点重点:掌握整除的基本性质和带余除法定理.难点:整除的概念、性质.设计安排通过P[x]中多项式的运算,引出如何描述两个多项式的相除关系问题,进而讨论带余除法、整除问题.最后强调:P [x ]中的多项式不能做除法,整除性不是多项式的运算,它是P [x ]中元素间的一种关系,即任给f (x ) , g (x ) ∈P [x ],可以判断 g (x ) | f (x ) 或 g (x ) | f (x ).教学进程见幻灯片部分.(2课时)教学内容§3 整除的概念1 整除的概念带余除法 对于][x P 中任意两个多项式)(x f 与)(x g ,其中0)(≠x g ,一定有][x P 中的多项式)(),(x r x q 存在,使 )()()()(x r x g x q x f += 成立,其中))(())((x g x r ∂<∂或者0)(=x r ,并且这样的)(),(x r x q 是唯一决定的. 带余除法中所得的)(x q 通常称为)(x g 除)(x f 的商,)(x r 称为)(x g 除)(x f 的余式. 定义 数域P 上的多项式)(x g 称为整除)(x f ,如果有数域P 上的多项式)(x h 使等式)()()(x h x g x f =成立.用“)(|)(x f x g ”表示)(x g 整除)(x f ,用“)(|)(x f x g /”表示)(x g 不能整除)(x f .当)(|)(x f x g 时,)(x g 就称为)(x f 的因式,)(x f 称为)(x g 的倍式.定理1 对于数域P 上的任意两个多项式)(x f ,)(x g ,其中0)(≠x g ,)(|)(x f x g 的充要条件是)(x g 除)(x f 的余式为零.当)(|)(x f x g 时,如0)(≠x g ,)(x g 除)(x f 的商)(x q 有时也用)()(x g x f 来表示. 2 整除的几个常用性质 性质1. 若)(|)(),(|)(x f x g x g x f ,则)()(x cg x f =,其中c 为非零常数.性质2. 若)(|)(),(|)(x h x g x g x f ,则)(|)(x h x f (整除的传递性).性质3. 零次多项式,即非零常数,能整除任一个多项式.性质4. 任一多项式)(x f 一定整除它自身.性质5. 任一多项式)(x f 都能整除零多项式0.称)()()()()()(2211x g x u x g x u x g x u r r +++ 为)(,),(),(21x g x g x g r 的一个组合. 于是,有若r i x g x f i ,,2,1),(|)( =,则))()()()()()((|)(2211x g x u x g x u x g x u x f r r +++ .最后,两个多项式之间的整除关系不因系数域的扩大而改变. 即若)(x f ,)(x g 是][x P 中两个多项式,P 是包含P 的一个较大的数域.当然,)(x f ,)(x g 也可以看成是][x P 中的多项式.从带余除法可以看出,不论把)(x f ,)(x g 看成是][x P 中或者是][x P 中的多项式,用)(x g 去除)(x f 所得的商式及余式都是一样的.因此,若在][x P 中)(x g 不能整除)(x f ,则在][x P 中,)(x g 也不能整除)(x f .备注整除的定义应注意:1.整除的定义与数域扩大(缩小)无关;2.由2211[]x x x x P x x x=⋅∈不能认为可以整除,因为。
第一章多项式(讲授7课时)一、教学目的:1、掌握数域的定义,会判定一个代数系统是否是多项式;2、正确理解数域p上的一元多项式的定义,多项式相乘,次数,一元多项式环等概念。
3、掌握多项式的运算及规律。
4、掌握整除的定义,熟练掌握带余除法及整除的性质。
5、正确理解和掌握两个(或者若干个)多项式的最大公因式,互素等概念及性质。
能用辗转相除法求两个多项式的最大公因式。
6、正确理解和掌握不可约多项式的定义与性质及判定。
7、正确理解和掌握k重因式的定义。
8、掌握余数定理,多项式的根及性质。
9、理解代数基本定理,熟练掌握复系数多项式分解定理及标准分解式。
二、教学内容:1、数域、一元多项式、多项式根、多项式整除。
2、最大公因式、不可约多项式、重因式、复系数与实系数多项式的因式分解。
三、教学重点:多项式整除及性质、多项式互素、最大公因式、重因式、不可约多项式判定及多项式的标准分解四、教学难点:多项式互素、最大公因式、不可约多项式及多项式分解五、教学方法:启发讲授六、教学过程:(一)、多项式整除基本知识点1、定义:设(),()[]f x gxhxg x f x。
=,则称()|()∃∈,使()()()hx Pxf xg x P x∈,若()[]2、带余除法定理:(),()[],()0∃∈,有q x r x P x∈≠,则(),()[]f xg x P x g x=+f xg x q x r x()()()()其中()0∂<∂。
r x=,或(())(())r x g x3、整除的性质:(1)、()|(),()|()()()⇒=;f xg x g x f x f x cg x(2)、()|(),()|()()|()f x g x g x h x f x h x ⇒; (3)、11()|(),1,,()|(()()()())i n n f x g x i n f x u x f x u x f x =⇒++;(4)、整除与系数域大小无关;(5)、()|()()g x f x g x ⇔的所有根都是()f x 的根(含重根)常见的n 次单位根。
若()()()x m x l x h +=,且()()x m x p |,()()x l x p |/,则()()x h x p |/。
证法1: 由()()x m x p |/有 ()()()x p x m x m 1=。
由()()x l x p |/有()()()()()0,1≠+=x r x r x p x l x l 。
于是 ()()()()()()()()x r x p x l x m x m x l x h ++=+=11。
因()0≠x r ,故()()x h x p |/。
证明2:用反证法。
若()()x h x p |,即()()()()x m x l x p +|, 又()()x m x p |,故()()()()()x m x m x l x p -+|,即()()x l x p |,矛盾。
问:若()()()()x g x h x f x h |,|//, 则()()()()x g x f x h +|成立吗?试举例说明。
答:不一定。
例如 ()()()1,1,+=-==x x g x x f x x h ,则()()()()x g x h x f x h |,|//,但()()()()x g x f x h +|。
例如 ()()()2,1,+=-==x x g x x f x x h , 则()()()()x g x h x f x h |,|//,且()()()()x g x f x h +/|。
例 求m l ,, 使()2523+++=x lx x x f 能被()12++=mx x x g 整除。
解法1:因()()3=∂x f ,()()2=∂x g ,故商()x q 满足()()1=∂x q ,且设()p x x q +=,则由 ()()()x g x q x f =,可得()()p x pm x p m x x lx x +++++=+++1252323,l m p pm p =+=+=,51,2,从而 4,2,2===l m p 。
第一章 多项式一. 内容概述1. 多项式的概念多项式有两种不同的定义。
设F 是一个域i a ∈F ,)(x f =n a ++--11n n nxa x +01a x a + (1)(1) 不定元的观点(形式表达式)把x 看作一个文字,形如表达式(1),)(x f 称为F 上的多项式。
若两个多项式的形式表达式完全一样,则称两个多项式相等。
即)(x f =n a ++--11n n nx a x +01a x a +,)(x g = n b 0111b x b x b x n n n++++--规定)(x f =)(x g ⇔i i b a =,i =1,2,……n 因此,每一个多项式的表达式是唯一的。
(2)函数观点把x 看作F 中的取值的自变量, )(x f 看成定义在F 上的一个函数,其值域是F 上的一个子集。
在这一观点下,两个多项式函数)(x f 与)(x g 相等。
记住)(x f ≡ )(x g 是指的对0x ∀∈F ,f (0x )=g (0x )有相等的函数值。
应当注意这时的函数表示法不一定是唯一的。
例如,二元域F ={0,1}上多项式函数)(x f =12+x ,)(x g =1+x 是相等的,但表示法不一样,而在无限域上多项式的表示法是唯一的。
即在有限域上)(x f =)(x g 不能推出)(x f ≡)(x g ; 在无限域上)(x f =)(x g ⇔)(x f ≡ )(x g 2.多项式的运算 (1)加法定义 ∀)(x f , )(x g ∈][x F ,在其中适当添上一些系数为零的项,总可设)(x f =i ni i x a ∑=0,)(x g =∑=ni ii x b 0,令)(x h =ii ni i x b a )(0+∑=,显然h(x)∈][x F ,称)(x h 为)(x f 与)(x g 的和,记为)(x f +)(x g =ii ni ix b a)(0+∑=。
第一章 多项式多项式是高等代数的重要组成部分一、基本概念1、一元多项式定义 设n 是一非负整数,形式表达式()111n n n n 0f x a x a x a x a −−=++++", (1)其中全属于数域n a a a ,,,10"P ,称为系数在数域P 中的一元多项式,或者简称为数域上的一元多项式.P 在多项式(1)中,称为i 次项,称为次项的系数. 称为常数项. 如果,那么称为多项式的首项,称为首项系数,n 称为多项式的次数.多项式的次数记为.系数全为零的多项式称为零多项式. 零多项式是唯一不定义次数的多项式.i i x a i a i 0a 0≠n a n n x a n a )(x f ))((x f ∂2、整除 设(),()[]f x g x P x ∈,若存在()[]h x P x ∈,使)()()(x h x g x f =,则称整除.记,其中称为的因式.)(x g )(x f )(|)(x f x g )(x g )(x f 3、最大公因式 设(),(),()[]f x g x d x P x ∈,若(i),即为与的一个公因式;()|(),()|()d x f x d x g x )(x d )(x f )(x g (ii)对与的任一公因式,都有,)(x f )(x g ()h x ()|()h x d x 则称为与的最大公因式.把首系数为1的最大公因式记作)(x d )(x f )(x g ()(),()f x g x .4、互素 设(),()[]f x g x P x ∈,若与除零次多项式外没有其它的公因式,则称与互素,记为())(x f )(x g )(x f )(x g (),()1f x g x =上述两个定义可推广到n 个多项式的情形.需要注意的是,个多项式(2n n >)12(),(),()n f x f x f x "互素时,它们不一定两两互素.5、不可约多项式 中次数大于零的多项式不能表示成数域上的两个次数比的次数低的多项式的乘积,则称为数域上不可约多项式.换句话说,在中只有平凡因式.[]P x )(x p P )(x p )(x p P )(x p []P x 对此需注意两点,其一对零和零多项式不定义它们的可约性;其二多项式的可约性依赖于系数域.6、重因式 设是数域上的不可约多项式,且,但, )(x p P )(|)(x f x p k )(|)(1x f x p k /+则称是的重因式.特别地,当)(x p )(x f k 1k =时,称是的单因式.)(x p )(x f 7、多项式的微商 设1110()[]n n n n f x a x a x a x a P x −−=++++∈",规定它的微商(也称导数或一阶导数)是1211)1()(a x n a nx a x f n n n n ++−+=′−−−"此定义不是用函数与极限概念给出的,而是借用于数学分析中函数的导数形式的定义.上述诸定义都是把多项式看作形式表达式给出的,并且定义2~7都限制在数域上一元多项式环中讨论.多项式的重要性在于它是最基本的函数,用它可去逼近一个比较复杂的函数,这对数学分析、微分方程等学科,在理论和实际求解上有重要意义.因此下面我们将从函数观点来讨论多项式.P []P x 8、多项式函数 设0111)(a x a x a x a x f n n n n ++++=−−" (2)是中的多项式,][x P α是中的数,在(2)中用P α代x 所得的数0111a a a a n n n n ++++−−ααα"称为当)(x f α=x 时的值,记为)(αf .这样,多项式就定义了一个数域上的函数.可以由一个多项式来定义的函数就称为数域上的多项式函数.)(x f 9、本原多项式 系数互素的整系数多项式.二、基本理论1、次数定理:设(),()[]f x g x P x ∈(i) )))(()),((max())()((x g x f x g x f ∂∂≤+∂(ii) 若,则0)(,0)(≠≠x g x f 0)()(≠x g x f ,且))(())(())()((x g x f x g x f ∂+∂=∂2、整除性质:(1) 任一多项式都能整除零多项式0.)(x f (2) ,,都有∀0c ≠∀()[]g x P x ∈|(),()|()c f x cf x f x(3) 若,则.(整除的传递性))(|)(),(|)(x h x g x g x f )(|)(x h x f (4) 若,则)(|)(),(|)(x f x g x g x f )()(x cg x f =,其中c 为非零常数.(5) 若,则()|(),()|()h x f x h x g x ()()|()()h x f x g x ±(6) 若,对,则()|()h x f x ∀()[]g x P x ∈()|()()h x f x g x (7) ,对都有()|()i h x f x ∀()[]i g x P x ∈()11()|()()()()r r h x f x g x f x g x ±±",其中 1,2,,i r =".3、带余除法: 对于中任意两个多项式与,其中,一定有中的多项式存在,使][x P )(x f )(x g 0)(≠x g ][x P )(),(x r x q )()()()(x r x g x q x f += (3)成立,其中或者))(())((x g x r ∂<∂0)(=x r ,并且这样的是唯一决定的. )(),(x r x q 多项式和称为除的商式和余式.)(x q )(x r )(x g )(x f 因此得到两个推论(1)()|()()0g x h x r x ⇔=(2) 多项式的整除性不因数域的扩大而改变.4、最大公因式存在唯一定理:中任意两个多项式与一定有最大公因式,除相差一个零次因式外,与的最大公因式是唯一的.][x P )(x f )(x g )(x f )(x g 需注意的是两个多项式的最大公因式不因数域的扩大而改变,但它们的公因式却不然.5、倍式和定理: 对于的任意两个多项式,,在中存在一个最大公因式,且可以表成,的一个组合,即有中多项式使][x P )(x f )(x g ][x P )(x d )(x d )(x f )(x g ][x P )(),(x v x u )()()()()(x g x v x f x u x d +=6、互素判别: 中两个多项式,互素][x P )(x f )(x g ⇔1))(),((=x g x f ⇔(),()[]u x v x P x ∃∈,使1)()()()(=+x g x v x f x u互素性质:(1) 如果,且,那么.1))(),((=x g x f )()(|)(x h x g x f )(|)(x h x f (2) 如果,1))(),((1=x g x f 1))(),((2=x g x f ,那么1))(),()((21=x g x f x f (3) 如果,且)(|)(),(|)(21x g x f x g x f 1))(),((21=x f x f ,那么. )(|)()(21x g x f x f 此性质可推广大有限多个多项式的情形.7、不可约多项式的判别:在上不可约的充要条件是在中任一分解式)(x f P )(x f ][x P 12()()()f x f x f x =中的因式1()f x 与2()f x 总有一个是零次的 不可约多项式的性质:(1) 若是不可约多项式,则)(x p )0)((≠c x cp 也是不可约多项式.即不可约多项式的相伴元仍是不可约的.(2) 若是不可约多项式,对)(x p ∀()[]f x P x ∈,则有或者或者)(|)(x f x p 1))(),((=x f x p (3) 若是不可约多项式,对于)(x p ∀(),()[]f x g x P x ∈,有,则或)()(|)(x g x f x p )(|)(x f x p )(|)(x g x p 8、多项式因式分解唯一定理:数域上次数的多项式都可以唯一地分解成数域P 1≥)(x f P 上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式)()()()()()()(2121x q x q x q x p x p x p x f t s ""==,那么必有,并且适当排列因式的次序后有t s =s i x q c x p i i i ,,2,1,)()("==.其中是一些非零常数.),,2,1(s i c i "=一般地有(4))()()()(2121x p x p x cp x f s r s r r "=其中其中c 是的首项系数,是互不相同的首项系数为1的不可约多项式,而是正整数.这种分解式称为的标准分解式或典型分解式.)(x f )(,),(),(21x p x p x p s "s r r r ,,,21")(x f9、重因式的判别:(1) 如果不可约多项式是的一个重因式,那么是的重因式.)(x p )(x f )1(≥k k )(x p )(x f ′1−k (2) 如果不可约多项式是的一个重因式, 那么是,,…,)的因式,但不是的因式. )(x p )(x f )1(≥k k )(x p )(x f )(x f ′()1(x f k −)()(x f k 特别,当时不是的因式.反之,若,且为的重因式,则是的重因式1k =)(x p )(x f ′()|()p x f x )(x p )(x f ′1k −)(x p )(x f )1(≥k k (3) 不可约多项式是的重因式的充要条件是是与的公因式)(x p )(x f )(x p )(x f )(x f ′(4) 无重因式)(x f 1))(),((=′⇔x f x f .由此可知无重因式不因数域扩大而改变.同时当形如(4)式,则)(x f )(x f ()12'()()()()()(),()s f x q x cp x p x p x f x f x ==" 即与有完全相同的不可约多项式,且都是单因式.()q x )(x f 10、余式定理:设()[]f x P x ∈,P α∈,用x α−除所得余式是常数)(x f ()f α11、因式定理:()()0x f x f αα−⇔=12、中次多项式在数域中的根不可能多于个,重根按重数计算. ][x P n )0(≥n P n 13、。
第一章 多项式§1多项式的整除一、含单位根多项式的整除问多项式12++x x 能否整除1717++x x? 若∑=++++305234)(|1i i ix x f x x x x ,则)(|1x f x i -,3,2,1,0=i设n 为非负整数,则1222)1(1++++++n n x xx x 122)1()(+++-=n n n x x x f ,证明1))(,1(2=++x f x x n设i a 为非负整数,问∑=++n i a i xx x 121的充要条件是什么? 设m 为大于1的整数,∑-==10)(m i i x x f ,且c x f x f m +)(|)(,试求常数c 。
设∑-==10)(n i i x x g ,n n x x x g x f -+=2))(()(,则)(|)(x f x g(苏州大学2002)设,,,k m r s 都是非负整数。
设23()1,f x x x x =+++4414243()k m r s g x x x x x +++=+++。
证明:()f x 整除()g x 。
苏州大学(2000)设多项式)(),(),(x h x g x f 满足0)()2()()1()()1(4=-+-++x h x x g x x f x ,0)()2()()1()()1(4=+++++x h x x g x x f x证明:)(|14x g x +§2最大公因式与互素如果)(x d 是)(x f 与)(x g 的公因式,且)(x d 是)(x f 与)(x g 的一个组合,那么)(x d 是)(x f 与)(x g 的一个最大公因式。
如果1))(),((=x g x f ,证明1))()(),()((=+x g x f x g x f(南京大学2001)设1F ,2F 是数域,且1F F ⊆,f (x),g (x)F ∈[x].(1) 证明:如果在1F [x]中有g (x)| f (x),则在F [x],也有g (x)| f (x)(2) 证明: f (x)与g (x)在F [x]中互素当且仅当f (x) 与g (x)在1F [x]中互素.(3) 证明:设f (x)是数域F 的不可约多项式,则f (x)全是单根.证明n n n x g x f x g x f ))(),(())(),((=(大连理工2005 )设)(x f ,)(x g 是数域P 上的多项式,若33)]([)]([x g x f ,证明)()(x g x f 。
第1章多项式1.1知识点归纳与要点解析一.多项式的定义与运算1.定义形式表达式110()n n n n f x a x a x a L 称为数域P 上以x 为文字的一元多项式,其中01na ,a ,a P L ,n 是非负整数.当0n a 时,称多项式()f x 的次数为n ,记为()f x n ,并称n n a x 为()f x 的首项,n a 为()f x 的首项系数.i i a x 为()f x 的i 次项,i a 称为()f x 的i 次项系数.当11000n n a a a ,a L时,称多项式()f x 为零次多项式,即()0f x ;当1100n n a a a a L 时,称()f x 为零多项式.注:零多项式是唯一不定义次数的多项式. 2.多项式的相等数域P 上以x 为文字的两个一元多项式()f x 与()g x 相等是指它们有完全相同的项. 注:证明两个多项式的相等除了利用定义外,还可以在它们首项系数相等的情况下,证明两个多项式相互整除. 3.多项式次数设()()[]f x g x P x ,, 性质1.当()()0f x g x 时,(()())(()),(())f x g x max f x g x ;性质2.(()())(())+(())f x g x f x g x . 二.多项式的整除1.带余除法(1)定义:设()()[]f x g x P x ,, ()0g x ,则存在唯一的多项式()q x ,()[]r x P x ,使()()()+()f x q x g x r x =.其中()=0r x 或()()r x g x .其中()q x 为()g x 除()f x 的商式, ()r x 为()g x 除()f x 的余式.注:带余除法是多项式分类的工具,是辗转相除法的基础,也是求最大公因式的基础. 2.综合除法3.整除的判定(1)定义设()()[]f x g x P x ,,如果存在()[]q x P x ,使得()()()f x q x g x =,则称()g x 整除。