初中数学竞赛完全平方数
- 格式:doc
- 大小:62.50 KB
- 文档页数:2
一、内容提要一定义1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数.例如0,1,0.36,254,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方.2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式.如果没有特别说明,完全平方式是在实数范围内研究的.例如:在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式.在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式. 二. 整数集合里,完全平方数的性质和判定1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数.2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除..若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数.例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数.又如:444能被3整除,但不能被9整除,所以444不是完全平方数.三. 完全平方式的性质和判定在实数范围内如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0;如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式.在有理数范围内当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式.四. 完全平方式和完全平方数的关系1. 完全平方式(ax+b )2 中当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数;当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数.2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数.例如: n 2+9, 当n=4时,其值是完全平方数.所以,完全平方式和完全平方数,既有联系又有区别.五. 完全平方数与一元二次方程的有理数根的关系1. 在整系数方程ax 2+bx+c=0(a ≠0)中① 若b 2-4ac 是完全平方数,则方程有有理数根;② 若方程有有理数根,则b 2-4ac 是完全平方数.2. 在整系数方程x 2+px+q=0中① 若p 2-4q 是整数的平方,则方程有两个整数根;② 若方程有两个整数根,则p 2-4q 是整数的平方.二、例题例1. 求证:五个连续整数的平方和不是完全平方数.证明:设五个连续整数为m -2, m -1, m, m+1, m+2. 其平方和为S.那么S =(m -2)2+(m -1)2+m 2+(m+1)2+(m+2)2=5(m 2+2).∵m 2的个位数只能是0,1,4,5,6,9∴m 2+2的个位数只能是2,3,6,7,8,1∴m 2+2不能被5整除.而5(m 2+2)能被5整除,即S 能被5整除,但不能被25整除.∴五个连续整数的平方和不是完全平方数.例2 m 取什么实数时,(m -1)x 2+2mx+3m -2 是完全平方式?解:根据在实数范围内完全平方式的判定,得当且仅当⎩⎨⎧>-010m △=时,(m -1)x 2+2mx+3m -2 是完全平方式△=0,即(2m )2-4(m -1)(3m -2)=0.解这个方程, 得 m 1=0.5, m 2=2.解不等式 m -1>0 , 得m>1.即⎩⎨⎧>==125.0m m m 或它们的公共解是 m=2.答:当m=2时,(m -1)x 2+2mx+3m -2 是完全平方式.例3. 已知: (x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式.求证: a=b=c.证明:把已知代数式整理成关于x 的二次三项式,得原式=3x 2+2(a+b+c)x+ab+ac+bc∵它是完全平方式,∴△=0.即 4(a+b+c)2-12(ab+ac+bc)=0.∴ 2a 2+2b 2+2c 2-2ab -2bc -2ca=0,(a -b)2+(b -c)2+(c -a)2=0.要使等式成立,必须且只需:⎪⎩⎪⎨⎧=-=-=-000a c c b b a解这个方程组,得a=b=c.例4. 已知方程x 2-5x+k=0有两个整数解,求k 的非负整数解.解:根据整系数简化的一元二次方程有两个整数根时,△是完全平方数.可设△= m 2 (m 为整数),即(-5)2-4k=m 2 (m 为整数),解得,k=4252m -. ∵ k 是非负整数,∴ ⎪⎩⎪⎨⎧-≥-的倍数是42502522m m 由25-m 2≥0, 得 5≤m , 即-5≤m ≤5; 由25-m 2是4的倍数,得 m=±1, ±3, ±5. 以 m 的公共解±1, ±3, ±5,分别代入k=4252m -. 求得k= 6, 4, 0.答:当k=6, 4, 0时,方程x 2-5x+k=0有两个整数解例5. 求证:当k 为整数时,方程4x 2+8kx+(k 2+1)=0没有有理数根.证明: (用反证法)设方程有有理数根,那么△是整数的平方.∵△=(8k )2-16(k 2+1)=16(3k 2-1).设3k 2-1=m 2 (m 是整数).由3k 2-m 2=1,可知k 和m 是一奇一偶,下面按奇偶性讨论3k 2=m 2+1能否成立.当k 为偶数,m 为奇数时,左边k 2是4的倍数,3k 2也是4的倍数;右边m 2除以4余1,m 2+1除以4余2.∴等式不能成立.; 当k 为奇数,m 为偶数时,左边k 2除以4余1,3k 2除以4余3右边m 2是4的倍数,m 2+1除以4余1∴等式也不能成立.综上所述,不论k, m 取何整数,3k 2=m 2+1都不能成立.∴3k 2-1不是整数的平方, 16(3k 2-1)也不是整数的平方.∴当k 为整数时,方程4x 2+8kx+(k 2+1)=0没有有理数根三、练习1. 如果m 是整数,那么m 2+1的个位数只能是____.2. 如果n 是奇数,那么n 2-1除以4余数是__,n 2+2除以8余数是___,3n 2除以4的余数是__.3. 如果k 不是3的倍数,那么k 2-1 除以3余数是_____.4. 一个整数其中三个数字是1,其余的都是0,问这个数是平方数吗?为什么?5. 一串连续正整数的平方12,22,32,………,1234567892的和的个位数是__.(1990年全国初中数学联赛题)6. m 取什么值时,代数式x 2-2m(x -4)-15是完全平方式?7. m 取什么正整数时,方程x 2-7x+m=0的两个根都是整数?8. a, b, c 满足什么条件时,代数式(c -b)x 2+2(b -a)x+a -b 是一个完全平方式?9. 判断下列计算的结果,是不是一个完全平方数:① 四个连续整数的积; ②两个奇数的平方和.10. 一个四位数加上38或减去138都是平方数,试求这个四位数.11. 已知四位数aabb 是平方数,试求a, b.12. 已知:n 是自然数且n>1. 求证:2n-1不是完全平方数.13. 已知:整系数的多项式4x 4+ax 3+13x 2+bx+1 是完全平方数,求整数a 和b 的值.14. 已知:a, b 是自然数且互质,试求方程x 2-abx+21(a+b)=0的自然数解. (1990年泉州市初二数学双基赛题)练习题参考答案1. 1,2,5,6,7,02. 0,3,33. 04. 不是平方数,因为能被3整除而不能被9整除5. 5。
初中数学竞赛重要定理、公式及结论代数篇【乘法公式】完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2,立方和(差)公式:(a±b)(a2 ∓ab+b2)=a3±b3多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2±10a2b3+5ab4±b5)…………在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1- a2n-2b+a2n-3b2- …+ab2n-2- b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2n-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n公式的变形及其逆运算由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b)得a3+b3=(a+b)3-3ab(a+b)由公式的推广③可知:当n为正整数时a n-b n能被a-b 整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b 及a-b整除。
重要公式(欧拉公式)(a+b+c)(a2+b2+c2+ab+ac+bc)=a3+b3+c3-3abc【综合除法】一个一元多项式除以另一个一元多项式,并不是总能整除。
当被除式f(x)除以除式g(x),(g(x)≠0) 得商式q(x)及余式r(x)时,就有下列等式:f(x)=g(x)q(x)-r(x)其中r(x)的次数小于g(x)的次数,或者r(x)=0。
教学设计:完全平方公式一、教学课题:完全平方公式二、教学重点:(a ±b)2=a 2±2ab +b 2的推导及应用三、教学难点:完全平方公式的推导和公式结构特点及其应用四、 预备知识和工具:多项式乘以多项式的法则五、教学内容的取舍:没有舍去的部分完全平方公式: (a +b )2=a 2+2ab +b 2, (a -b )2=a 2-2ab +b 2六、 要注意的问题:1、完全平方公式特征的口诀:首平方,尾平方,二倍乘积在中央。
2、完全平方公式的特征:(1)左边为两个数的和或差的平方;(2)右边为两个数的平方和再加或减这两个数的积的2倍.七、配套的例题和练习: 教学过程:一、 激发学生兴趣,引出本节内容活动1 探究,计算下列各式,你能发现什么规律?(1)(p +1)2 =(p +1)(p +1)=_________;(2)(m +2)2=(m +2)(m +2)=_________;(3)(p -1)2 =(p -1)(p -1)=_________;(4)(m -2)2=(m -2)(m -2)=_________.答案:(1)p 2+2p +1;(2)m 2+4m +4;(3)p 2-2p +1;(4)m 2-4m +4. 活动2 在上述活动中我们发现(a +b )2=222b ab a ++,是否对任意的a 、b ,上述式子都成立呢?学生利用多项式与多项式相乘的法则进行计算,观察计算结果,寻找一般性的结论,并进行归纳,用多项式乘法法则可得(a +b )2=(a +b )(a +b )= a (a +b )+b (a +b )=a 2+ab +ab +b 2 =a 2+2ab +b 2.(a -b )2=(a -b )(a -b )=a (a -b )-b (a -b )=a 2-ab -ab +b 2 =a 2-2ab +b 2.二、问题引申,总结归纳完全平方公式两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍,即(a + b )2=a 2+2ab +b 2,(a -b )2=a 2-2ab +b 2.在交流中让学生归纳完全平方公式的特征:(1)左边为两个数的和或差的平方;(2)右边为两个数的平方和再加或减这两个数的积的2倍. 例题例一:应用完全平方公式计算(1)(4m+n )2(2)(y-12)2 (3)(-a-b )2(4)(b-a )2例二:运用完全平方公式计算:(1)1022(2)992例三、(1)x 2+6xy+A 是一个完全平方式,求A(2)x 2+Kx+81是一个完全平方式,求K 。
初中数学竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。
当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+m y x n y 28112004有整数解x 0、y 0。
则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。
A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰是某正整数的立方,则这样的数共___个。
如下文章已经刊登于2013年12月《中学教研-数学》杂志第39页至40页解答与“完全平方数”有关的竞赛试题的一般方法518076 广东省深圳市南山区蛇口中学 王远征在数学竞赛试卷中,频繁出现这样的一类问题:“求自然数n ,使得关于n 的一个二次多项式b an n ++2的值是完全平方数,(b a ,为常数)”.在此,笔者给出解答这类问题的一般方法,即设参数、配方,对多项式分解因式,同时对常数分解成整数乘积的形式,然后构造方程组,进而求出满足题设条件的自然数n 和所设参数的值.举例介绍如下:例1.已知n 是自然数,且73172+-n n 是完全平方数,那么n 的值是 或 . (第13届希望杯初二年级(第一试)试题)解析:依题意设73172+-n n =2m ,(m 是自然数).配方得:3)172(2+-n =24m ,移项,并对多项式分解因式,且把常数3-也分解成两个整数乘积的形式,于是得: 13313)2172)(2172(⨯-=⨯-=-=+---m n m n ,因为n m ,都是自然数,所以m n 2172+-和m n 2172--都是整数,且m n 2172+-m n 2172-->。
于是有:⎩⎨⎧-=--=+-1217232172m n m n 或⎩⎨⎧-=--=+-3217212172m n m n ,分别解得:⎩⎨⎧==19m n 或⎩⎨⎧==18m n 。
故n 的值是8或9.该方法通俗易懂,有普遍的实用性,且解题过程简洁明了,易于被掌握和应用。
例题2.关于n m ,的方程431112=-+mn n m 的整数解()n m ,= 。
(2013年上海数学竞赛新知杯第6题)解析:视为“m ”为常数,由原方程整理成关于n 的一元二次方程得:()044342=-+-mn n m此方程有整数解的必要条件是:6448162+-=∆m m 是完全平方数。
因为()]732[2644816222+-=+-m m m 是完全平方数,可设()73222+-=m k ,则)7(1717)32)(32(-⨯-=⨯==-++-m k m k 。
完全平方公式的五种常见应用举例完全平方公式是整式乘法中最重要的公式之一在运用完全平方公式时,必须掌握一些使用技巧,才能灵活应用公式,其中包括“顺用”、“逆用”、“顺逆联用”,以及“特例应用”和“变形应用”等.下面举例说明.一、正用根据算式的结构特征,由左向右套用. 例1 计算22(23)m m -- 分析 本题是一个三项式的平方,可考虑将三项式中任意两项组合成一个整体,使其转化为一个二项式的平方,然后再运用完全平方公式便可以顺利求解.解 22(23)m m --22[(2)3]m m =--222(2)6(2)9m m m m =---+4322446129m m m m m =-+-++43242129m m m m =--++思考 本题中三项式转化为二项式的根据是什么?还有其它的方法吗? 二、逆用将公式逆向使用,即由右向左套用.例2 己知,,,则多项式20172018a x =+20172019b x =+20172020c x =+的值为( )222a b c ab bc ac ++--- (A) 0 (B)1 (C)2 (D)3分析观察本题已知条件,直接代入求值困难.但换个角度仔细观察多项式的结构就不难发现,该多项式的2倍恰好是3个完全平方公式的右端,于是逆用完全平方公式,就可以得到,而,,的值可求,故本题巧妙得解.222()()()a b b c c a -+-+-a b -b c -c a -解 ∵20172018a x =+20172019b x =+20172020c x =+∴,,1a b -=-1b c -=-2c a -=∴222a b c ab bc ac ++---2221(222222)2a b c ab bc ac =++---2222221(222)2a ab b b bc c c ac a =-++-++-+2221[()()()]2a b b c c a =-+-+-2221[(1)(1)2]2=-+-+3=应选D.三、正逆联用根据已知条件和待求式特征,有正用、又逆用,即综合运用.例3 (全国初中数学竞赛试题)已知,且,则21()()()4b c a b c a -=--0a ≠b c a +.= 分析 欲求的值,则需要明与之间的等量关系.而题目中的已知条件刚好就b c a+b c +a 是、、之间的关系式,于是将条件等式进行化简变形,明确与之间的关系,a b c b c +a 应该是一条即常规又恰当的选择.解 由已知,得2()4()()b c a b c a -=--22224444b bc c ac bc ab a ∴-+=-+-2222(44)40b bc c ab ac a ∴++-++=22()4()40b c a b c a ∴+-++=把和分别看成一个“整体”,再逆用完全平方公式,得b c +2a 2[()2]0b c a +-=,20b c a ∴+-=2b c a+=.22b c a a a+∴== 四、特例应用在完全平方公式中,如果,那么222()2a b a ab b +=++0ab =222()a b a b+=+反之,若,则一定有.222()a b a b +=+0ab =例5 若满足,则.n 22(2017)(2019)4n n -+-=(2019)(2017)n n --= 分析 若设,,则很容易验证,这正好2017n a -=2019n b -=222()a b a b +=+符合上面完全平方公式特例.据此,本题迎刃而解.解 设,,2017n a -=2019n b -= 则,2()4a b +=又已知224a b +=∴222()a b a b+=+于是0ab =∴(2019)(2017)n n --=(2017)(2019)n n --0ab ==五、变形应用由完全平方公式,易得如下的两个最常见的变形公式:222()2a b a ab b ±=±+①2222()2()2a b a b ab a b ab+=+-=-+②22()()4a b a b ab-=+-(或)221[()()]4ab a b a b =+-- 活用上面变形公式,常常会使问题化难为易,取得奇妙的解题效果。
初中数学竞赛中的数论问题
数论是一门交叉学科,它结合了数学、计算机科学等学科的思想和方法,是一门旨在解决数学中涉及数学和计算机的问题的科学。
初中数学竞赛中的数论问题是一种非常有趣的问题,它不仅考验学生的数学知识,还要求学生充分利用数论的一些思想和方法来解决问题。
近年来,随着数论在初中数学竞赛中的应用越来越广泛,许多数论问题变得越来越复杂。
在初中数学竞赛中,判断一个数是否为完全平方数、寻找一个数的所有可能因子、判断是否为素数、计算某数列的最大公因子、计算两个数的最小公倍数等都属于数论问题。
虽然这些问题看似简单,但是要想正确无误地解出每一道题,同学们就必须要用到一些数论的方法。
在解数论问题时,学生要做好抽象和模型的建立。
抽象思维能够帮助学生把复杂的问题简单化,而建立模型则能让学生更好地分析问题,帮助数论问题的解决。
此外,学生还必须做到把握住关键,将复杂的数论问题拆分为一系列的简单的子问题,并从实例出发,把抽象的解法转化为更具体的解题步骤,从而达到对问题的有效解决。
数论的实践性也是学生解决数论问题的一个重要方面,在学习数论的过程中,学生要培养自己的实践技能,使自己能够更好地掌握数论中的一些基本思想和重要方法,学会灵活应用它们在实际问题中以解决初中数学竞赛中的数论问题。
在初中数学竞赛中,解数论问题不仅考验学生的数学素养,更考验学生的抽象思维能力和实践能力,同学们要充分利用自己的智慧,
把抽象的数论知识转化为具体的问题解答,在初中数学竞赛中取得良好的成绩。
完全平方数知识定位完全平方数是初等数论中的一个重要内容,由于数论内涵丰富,因此数论问题灵活而富于变化,解答完全平方数问题往往需要较强的分析能力与具备一定的数学素养。
正因为如此,完全平方数的有关问题常常是各层次数学竞赛的主要题源之一。
在处理有关完全平方数问题时,除了要求会熟练地运用某些常用的方法外,更重要的是要善于分析,要学会抓问题的本质特征。
本节介绍一些常见题型和基本解题思想和技巧的方法来提高学生的解题能力,是完全必要的,也是比较符合中学生的认知规律的,本文主要介绍一些适合初中学生解答的完全平方数问题。
知识梳理1、完全平方数的定义一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。
2、完全平方数特征(1)末位数字只能是:0、1、4、5、6、9;反之不成立。
(2)除以3余0或余1;反之不成立。
(3)除以4余0或余1;反之不成立。
(4)约数个数为奇数;反之成立。
(5)奇数的平方的十位数字为偶数;反之不成立。
(6)奇数平方个位数字是奇数;偶数平方个位数字是偶数。
(7)两个相临整数的平方之间不可能再有平方数。
平方差公式:X2-Y2=(X-Y)(X+Y)完全平方和公式:(X+Y)2=X2+2XY+Y2完全平方差公式:(X-Y)2=X2-2XY+Y23、完全平方数的性质性质1:完全平方数的末位数只能是0,1,4,5,6,9。
性质2:奇数的平方的个位数字为奇数,十位数字为偶数。
性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1。
性质5:奇数的平方是8n+1型;偶数的平方为8n或8n+4型。
性质6:平方数的形式必为下列两种之一:3k,3k+1。
性质7:不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型。
性质8:平方数的形式具有下列形式之一:16m,16m+1,16m+4,16m+9。
第三十一讲 完全平方数和完全平方式设n 是自然数,若存在自然数m ,使得n=m 2,则称n 是一个完全平方数(或平方数).常见的题型有:判断一个数是否是完全平方数;证明一个数不是完全平方数;关于存在性问题和其他有关问题等.最常用的性质有:(1)任何一个完全平方数的个位数字只能是0,1,4,5,6,9,个位数字是2,3,7,8的数一定不是平方数;(2)个位数字和十位数字都是奇数的两位以上的数一定不是完全平方数,个位数字为6,而十位数字为偶数的数,也一定不是完全平方数;(3)在相邻两个平方数之间的数一定不是平方数;(4)任何一个平方数必可表示成两个数之差的形式;(5)任何整数平方之后,只能是3n 或3n+1的形式,从而知,形如3n+2的数绝不是平方数;任何整数平方之后只能是5n ,5n+1,5n+4的形式,从而知5n+2或5n+3的数绝不是平方数;(6)相邻两个整数之积不是完全平方数;(7)如果自然数n 不是完全平方数,那么它的所有正因数的个数是偶数;如果自然数n 是完全平方数,那么它的所有正因数的个数是奇数;(8)偶数的平方一定能被4整除;奇数的平方被8除余1,且十位数字必是偶数. 例题求解【例1】 n 是正整数,3n+1是完全平方数,证明:n+l 是3个完全平方数之和. 思路点拨 设3n+1=m 2,显然3卜m ,因此,m=3k+1或m=3k+2(k 是正整数).若rn=3k+1,则k k m n 233122+=-=. ∴ n+1=3k 2+2k+1= k 2+ k 2+( k+1)2.若m=3k+2,则1433122++=-=k k m n ∴ n+1=3k 2+4k+2= k 2+(k+1)2+( k+1)2.故n+1是3个完全平方数之和.【例2】一个正整数,如果加上100是一个平方数,如果加上168,则是另一个平方数,求这个正整数.思路点拨 引入参数,利用奇偶分析求解.设所求正整数为x ,则x+100=m 2 ----①x+168==n 2 -----②其中m ,n 都是正整数, ②—①得n 2—m 2=68,即 (n —m )(n+m)=22×17.---- ③ 因n —m ,n+m 具有相同的奇偶性,由③知n —m ,n+m 都是偶数.注意到0<n —m<n+m ,由③可得 ⎩⎨⎧⨯=+=-1722m n m n . 解得n=18.代人②得x=156,即为所求.【例3】 一个正整数若能表示为两个正整数的平方差,则称这个正整数为“智慧数”,比如16=52—32,16就是一个“智慧数”.在正整数中从1开始数起,试问第1998个“智慧数”是哪个数?并请你说明理由.思路点拨 1不能表为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数2k+1,有2k+1=(k+1)2-k 2(k=1,2,…).所以大于1的奇正整数都是“智慧数”. 对于被4整除的偶数4k ,有4k=(k+1)2—(k —1)2 (k=2,3,…).即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”.对于被4除余2的数4k+2 (k=0,1,2,3,…),设4k+2=x 2—y 2=(x+y)(x -y),其中x ,y 为正整数,当x ,y 奇偶性相同时,(x+y)(x -y)被4整除,而4k+2不被4整除;当x ,y 奇偶性相异时,(x+y)(x -y)为奇数,而4k+2为偶数,总得矛盾.所以不存在自然数x ,y 使得x 2—y 2=4k+2.即形如4k+2的数均不为“智慧数”.因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”.因为1998=(1+3×665)+2,4×(665+1)=2664,所以2664是第1996个“智慧数”,2665是第1997个“智慧数”,注意到2666不是“智慧数”,因此2667是第1998个“智慧数”,即第1998个“智慧数”是2667.【例4】(太原市竞赛题)已知:五位数abcde 满足下列条件:(1)它的各位数字均不为零;(2)它是一个完全平方数;(3)它的万位上的数字a 是一个完全平方数,干位和百位上的数字顺次构成的两位数bc 以及十位和个位上的数字顺次构成的两位数de 也都是完全平方数.试求出满足上述条件的所有五位数.思路点拨 设abcde M =2,且2m a =(一位数),2n bc = (两位数),2t de = (两位数),则 2224221010t n m M +⨯+⨯= ①由式①知 224222210210)10(t mt m t m M +⨯+⨯=+⨯= ②比较式①、式②得n 2=2mt .因为n 2是2的倍数,故n 也是2的倍数,所以,n 2是4的倍数,且是完全平方数. 故n 2=16或36或64.当n 2=16时,得8=mt ,则m=l ,2,4,8,t=8,4,2,1,后二解不合条件,舍去; 故116642=M 或41616.当n 2=36时,得18=mt .则m=2,3,1,t=9,6,18.最后一解不合条件,舍去. 故436812=M 或93636.当n 2= 64时,得32=mt .则m=1,2,4,8,t=32,16,8,4都不合条件,舍去. 因此,满足条件的五位数只有4个:11 664,41 616,43 681,93 636.【例5】 (2002年北京)能够找到这样的四个正整数,使得它们中任两个数的积与2002的和都是完全平方数吗?若能够,请举出一例;若不能够;请说明理由.思路点拨 不能找到这样的四个正整数,使得它们中任两个数的积与2002的和都是完全平方数.理由如下:偶数的平方能被4整除,奇数的平方被4除余1,也就是正整数的平方被4除余0或1.若存在正整数满足22002m n n j i =+;j i ,=1,2,3,4,rn 是正整数;因为2002被4除余2,所以j i n n 被4除应余2或3.(1)若正整数n 1,n 2,n 3,n 4中有两个是偶数,不妨设n 1,n 2是偶数,则200221+n n 被4除余2,与正整数的平方被4除余0或1不符,所以正整数n 1,n 2,n 3,n 4中至多有—个是偶数,至少有三个是奇数.(2)在这三个奇数中,被4除的余数可分为余1或3两类,根据抽屉原则,必有两个奇数属于同一类,则它们的乘积被4除余1,与j i n n 被4除余2或3的结论矛盾.综上所述,不能找到这样的四个正整数,使得褥它们中任两个数的积与2002的和都是完全平方数.【例6】 使得(n 2—19n+91)为完全平方数的自然数n 的个数是多少?思路点拨 若(n 2—19n+91)处在两个相邻整数的完全平方数之间,则它的取值便固定了. ∵ n 2一19n+91=(n-9)2 +(10一n)当n>10时,(n -10)2<n 2-19n+19<(n-9)2∴ 当n>10时(n 2—19n+19)不会成为完全平方数∴ 当n ≤10时,(n 2—19n+91)才是完全平方数经试算,n=9和n=10时,n 2—19n+91是完全平方数.所以满足题意的值有2个.【例7】 (“我爱数学”夏令营)已知200221a a a ,,, 的值都是1或—1,设m 是这2002个数的两两乘积之和.(1)求m 的最大值和最小值,并指出能达到最大值、最小值的条件;(2)求m 的最小正值,并指出能达到最小正值的条件.思路点拨 (1)m m a a a a a a 220022)(2200222212200221+=++++=+++ ,22002)(2200221-+++=a a a m . 当1200221====a a a 或1-时,m 取最大值2003001.当200221a a a ,,, 中恰有1001个1,1001个1-时,m 取最小值—1001.(2)因为大于2002的最小完全平方数为452=2025,且200221a a a +++ 必为偶数,所以,当46200221=+++a a a 或46-;即200221a a a ,,, 中恰有1024个1,978个1-或恰有1024个1-,978个1时,m 取最小值57)200246(212=-.【例8】 (全国竞赛题)如果对一切x 的整数值,x 的二次三项式c bx ax ++2都是平方数(即整数的平方),证明:(1) 2a 、2b 都是整数;(2)a 、b 、c 都是整数,并且c 是平方数.反过来,如果(2)成立,是否对一切x 的整数值,c bx ax ++2的值都是平方数?思路点拨 (1) 令x=0,得c=平方数=2l ;令x=±1,得2m c b a =++,2n c b a =+-,其中m 、n 都是整数.所以,c n m a 2222-+=, 222n m b -=都是整数.(2) 如果2b 是奇数2k+l(k 是整数),令x=4得22416h l b a =++,其中h 是整数. 由于2a 是整数,所以16a 被4整除,有2416416++=+k a b a 除以4余2.而))((22l h l h l h -+=-,在h 、l 的奇偶性不同时,))((l h l h -+是奇数;在h 、l 的奇偶性相同时,))((l h l h -+能被4整除.因此,22416l h b a -≠+,从而2b 是偶数,b 是整数,b c m a --=2 ^也是整数. 在(2)成立时,c bx ax ++2不一定对x 的整数值都是平方数.例如,a=2,b=2,c=4,x=1时,c bx ax ++2=8不是平方数.另解(2):令x=±2,得4a+2b+c=h 2,4a —2b+c=k 2,其中h 、k 为整数.两式相减得4b=h 2—k 2=(h+k)(h —k).由于4b=2(2b)是偶数,所以h 、k 的奇偶性相同,(h+k)(h —k)能被4整除.因此,b 是整数,b c m a --=2也是整数.学力训练(A 级)1.(山东省竞赛题)如果a -是整数,那么a 满足( )A .a>0,且a 是完全平方数B .a<0,且-a 是完全平方数C .a ≥0,且a 是完全平方数D .a ≤0,且—a 是完全平方数2.设n 是自然数,如果n 2的十位数字是7,那么n 2的末位数字是( )A .1B .4C .5D .63.(五羊杯,初二)设自然数N 是完全平方数,N 至少是3位数,它的末2位数字不是00,且去掉此2位数字后,剩下的数还是完全平方数,则N 的最大值是 .4.使得n 2—19n+95为完全平方数的自然数n 的值是 .5.自然数n 减去52的差以及n 加上37的和都是整数的平方,则n= .6.两个两位数,它们的差是56,它们的平方数的末两位数字相同,则这两个数分别是.7.是否存在一个三位数abc (a ,b ,c 取从1到9的自然数),使得cab bca abc ++为完全平方数?8.求证:四个连续自然数的积加l ,其和必为完全平方数.(B 级)1.若x 是自然数,设1222234++++=x x x x y ,则 ( )A .y 一定是完全平方数B .存在有限个,使y 是完全平方数C .y 一定不是完全平方数D .存在无限多个,使y 是完全平方数2.已知a 和b 是两个完全平方数,b 的个位数字为l ,十位数字为x ;b 的个位数为6,十位数字为y ,则( )A .x ,y 都是奇数B .x ,y 都是偶数C .x 是奇数,y 是偶数D .x 为偶数,y 为奇数3.若四位数xxyy 是一个完全平方数,则这个四位数是 .4.设m 是一个完全平方数,则比m 大的最小完全平方数是 .5.(全国联赛题)设平方数y 2是11个连续整数的平方和,则y 的最小值是 .6.(北京市竞赛,初二)p 是负整数,且2001+p 是—个完全平方数,则p 的最大值为 .7.有若干名战士,恰好组成一个八列长方形队列.若在队列中再增加120人或从队列中减去120人后,都能组成一个正方形队列.问原长方形队列共有多少名战士?8.证明:10006999309个各n n 是一个完全平方数.。
完全平方数
什么是完全平方数?
相等两个整数的乘积是完全平方数,常见的完全平方数有1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441……
例1.从1~10中最多可以选出个数,使得选出的数中,任何两个数的和不是完全平方数.
[答疑编号0518320101]
【答案】6
【解答】
选出2,3,4,8,9,10这六个数,可见其中任何两个数的和都不是完全平方数。
如果选出了七个数,将1~10分为6组,(10,6),(9,7),(8,1),(5,4),(2),(3),则必有一组中的两个数都被选出来了,那么它们的和是完全平方数。
所求的最大值是6。
完全平方数质因数分解的特征:
将一个完全平方数质因数分解后,每个质因数的次数都是偶数。
推论:只有完全平方数恰有奇数个约数。
例2.从1到2012的所有自然数中,有个数乘以72后是完全平方数.
[答疑编号0518320102]
【答案】31
【解答】因为,所以要想乘以72以后是完全平方数,这个数本身应该是某个完全平
方数的2倍.因为,所以从1到2012中,符合要求的数有31个.
例3.素数A、B互不相等,已知A的平方的2倍有4个约数,则B的平方的4倍有个约数.
[答疑编号0518320103]
【答案】9
【解答】如果A不是2,则A平方的2倍有3×2=6个约数,故A=2.所以B就不能是2,它平方的4倍有3×3=9个约数.本题答案为9.
涉及到完全平方的公式:
例4. 一个正整数,加上100后的结果是一个完全平方数,加上168后的结果也是一个完全平方数.那么这个正整数为.
[答疑编号0518320104]
【答案】156
【解答】设加上100后为,加上168后为,那么,
即.因为b+a和b-a的奇偶性相同,所以只可能是,
解得.因此原正整数是.
例5.一个正整数,如果能表示成两个完全平方数的差,就称它是一个“智慧数”,那么在1~2012中,有多少个“智慧数”?
[答疑编号0518320105]
【答案】1509
【解答】设这个正整数是n,。
两个完全平方数分别是a2和b.2。
.则n= a2-b2=(b-a)(b+a)。
(1)如果b-a和b+a都是奇数,则n是奇数。
(2)如果b-a和b+a都是偶数,则n是4的倍数。
下面,我们说明如下情况:
(1)被4除余2的数,不是“智慧数”。
(2)奇数都是“智慧数”。
因为n=2k+1=(k+1)2-k2
(3)4的倍数都是“智慧数”。
因为n=4k=(k+1)2-(k-1)2
所以,总共有2012÷4×3=1509个“智慧数”。
例6.证明:形如11,111,1111,11111,……的数中没有完全平方数。
[答疑编号0518320106]
【答案】根据完全平方数的特性:一个完全平方数要么是4的倍数,要么被4除余1。
形如4k+2和4k+3型的整数一定不是完全平方数,
而11、111、1111、......被4除的余数均为3,所以,它们中没有完全平方数。
我们不妨看一下奇数的平方:,
所以奇数的平方是除以4余1的数。
进一步思考:形如aa,aaa,aaaa,aaaaa,……的数中有没有完全平方数?
例7.四个质数的和是55,平方的和是1335,则这四个质数是:.
[答疑编号0518320107]
【答案】2,3,19,31
【解答】四个质数的和是55,由于质数中只有2是偶数。
说明四个质数中有一个数是2。
所以,a+b+c=53,a2+b2+c2=1331。
继续分析,完全平方数除以3的余数是0或1,1331除以3是余2的。
所以,有一个数是3的倍数,又由于是质数,所以,只能是3。
我们不妨设a是3。
所以,b+c=50,b2+c2=1322。
代入数字进行验证,满足以上两式的数是19和31。
所以,这四个质数是:2,3,19,31。