高等代数第一章答案(多项式)
- 格式:doc
- 大小:2.19 MB
- 文档页数:24
《高等代数》(上)题库第一章多项式填空题(1.7)1、设用x-1除f(x)余数为5,用x+1除f(x)余数为7,则用x2-1除f(x)余数是。
(1.5)2、当p(x)是多项式时,由p(x)| f(x)g(x)可推出p(x)|f(x)或p(x)|g(x)。
(1.4)3、当f(x)与g(x) 时,由f(x)|g(x)h(x)可推出f(x)|h(x)。
(1.5)4、设f(x)=x3+3x2+ax+b 用x+1除余数为3,用x-1除余数为5,那么a= b。
(1.7)5、设f(x)=x4+3x2-kx+2用x-1除余数为3,则k= 。
(1.7)6、如果(x2-1)2|x4-3x3+6x2+ax+b,则a= b= 。
(1.7)7、如果f(x)=x3-3x+k有重根,那么k= 。
(1.8)8、以l为二重根,2,1+i为单根的次数最低的实系数多项式为f(x)= 。
(1.8)9、已知1-i是f(x)=x4-4x3+5x2-2x-2的一个根,则f(x)的全部根是。
(1.4)10、如果(f(x),g(x))=1,(h(x),g(x))=1 则。
(1.5)11、设p(x)是不可约多项式,p(x)|f(x)g(x),则。
(1.3)12、如果f(x)|g(x),g(x)|h(x),则。
(1.5)13、设p(x)是不可约多项式,f(x)是任一多项式,则。
(1.3)14、若f(x)|g(x)+h(x),f(x)|g(x),则。
(1.3)15、若f(x)|g(x),f(x)| h(x),则。
(1.4)16、若g(x)|f(x),h(x)|f(x),且(g(x),h(x))=1,则。
(1.5)17、若p(x) |g(x)h(x),且则p(x)|g(x)或p(x)|h(x)。
(1.4)18、若f(x)|g(x)+h(x)且f(x)|g(x)-h(x),则。
(1.7)19、α是f(x)的根的充分必要条件是。
(1.7)20、f(x)没有重根的充分必要条件是。
第一章 多项式一 、习题及参考解答1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
【最新整理,下载后即可编辑】高等代数习题解答第一章 多项式补充题1.当,,a b c取何值时,多项式()5f x x =-与2()(2)(1)g x a x b x =-++ 2(2)c x x +-+相等?提示:比较系数得6136,,555a b c =-=-=. 补充题2.设(),(),()[]f x g x h x x ∈,2232()()()f x xg x x h x =+,证明:()()()0f x g x h x ===.证明 假设()()()0f x g x h x ===不成立.若()0f x ≠,则2(())f x ∂为偶数,又22(),()g x h x 等于0或次数为偶数,由于22(),()[]g x h x x ∈,首项系数(如果有的话)为正数,从而232()()xg x x h x +等于0或次数为奇数,矛盾.若()0g x ≠或()0h x ≠则232(()())xg x x h x ∂+为奇数,而2()0f x =或2(())f x ∂为偶数,矛盾.综上所证,()()()0f x g x h x ===.1.用g (x ) 除 f (x ),求商q (x )与余式r (x ): 1)f (x ) = x 3- 3x 2 -x -1,g (x ) =3x 2 -2x +1; 2)f (x ) = x 4 -2x +5,g (x ) = x 2 -x +2. 1)解法一 待定系数法.由于f (x )是首项系数为1的3次多项式,而g (x )是首项系数为3的2次多项式,所以商q (x )必是首项系数为13的1次多项式,而余式的次数小于 2.于是可设q (x ) =13x +a , r (x ) =bx +c 根据 f (x ) = q (x ) g (x ) + r (x ),即x 3-3x 2 -x -1 = (13x +a )( 3x 2 -2x +1)+bx +c 右边展开,合并同类项,再比较两边同次幂的系数,得 2333a -=-,1123a b -=-++,1a c -=+解得79a =-,269b =-,29c =-,故得17(),39q x x =- 262().99r x x =--解法二 带余除法.3 -2 1 1 -3 -1 -1 1379-1 23- 1373-43- -173-14979- 269- 29-得17(),39q x x =- 262().99r x x =--2)2()1,()57.q x x x r x x =+-=-+ 262().99r x x =--2.,,m p q 适合什么条件时,有1)231;x mx x px q +-++ 2)2421.x mx x px q ++++ 1)解21x mx +-除3x px q++得余式为:2()(1)()r x p m x q m =+++-,令()0r x =,即210;0.p m q m ⎧++=⎨-=⎩故231x mx x px q +-++的充要条件是2;10.m q p m =⎧⎨++=⎩2)解21x mx ++除42x px q++得余式为:22()(2)(1)r x m p m x q p m =-+-+--+,令()0r x =,即22(2)0;10.m p m q p m ⎧-+-=⎪⎨--+=⎪⎩解得2421x mx x px q ++++的充要条件是0;1m p q =⎧⎨=+⎩ 或 21;2.q p m =⎧⎨=-⎩ 3.求()g x 除()f x 的商()q x 与余式()r x : 1)53()258,()3;f x x x x g x x =--=+2)32(),()12.f x x x x g x x i =--=-+1)解法一 用带余除法(略).解法二 用综合除法.写出按降幂排列的系数,缺项的系数为0: -3 2 0 -5 0 -8 0 + -6 18 -39 117 -3272 -6 13 -39 109 -327 所以432()261339109,()327.q x x x x x r x =-+-+=-2)解法一 用带余除法(略).解法二 用综合除法.写出按降幂排列的系数,缺项的系数为0:()f x1-2i 1 -1 -1 0 + 1-2i -4-2i -9+8i 1 -2i -5-2i -9+8i 所以2()2(52),()98.q x x ix i r x i =--+=-+4.把()f x 表成0x x -的方幂和,即表成 201020()()c c x x c x x +-+-+的形式:1)50(),1;f x x x == 2)420()23,2;f x x x x =-+=-3)4320()2(1)37,.f x x ix i x x i x i =--+-++=-注 设()f x 表成201020()()c c x x c x x +-+-+的形式,则0c 就是()f x 被x x -除所得的余数,1c 就是()f x 被x x -除所得的商式212030()()c c x x c x x +-+-+再被0x x -除所得的余数,逐次进行综合除法即可得到01,,,.n c c c1)解用综合除法进行计算1 1 0 0 0 0 0+ 1 1 1 1 11 1 1 1 1 1 1+ 1 2 3 41 2 3 4 51 + 1 3 61 3 6 101 + 1 41 4 101 + 11 5所以5234515(1)10(1)10(1)5(1)(1).x x x x x x=+-+-+-+-+-2)3)略5.求()f x与()g x的最大公因式:1)43232()341,()1;f x x x x xg x x x x=+---=+--2)4332()41,()31;f x x xg x x x=-+=-+3)42432()101,()6 1.f x x xg x x x=-+=-+++1)解用辗转相除法()g x()f x2()q x12-141 1 -1 -1 1 1 -3 -4 -11 1 3212 1 1 -1 -112-32- -1 1()r x-2 -3 -13()q x834312- 34- 14- -2 -22()r x34-34--1 -1-1 -13()r x所以((),()) 1.f x g x x =+2)((),()) 1.f x g x = 3)2((),()) 1.f x g x x =--6.求(),()u x v x 使()()()()((),()):u x f x v x g x f x g x += 1)432432()242,()22f x x x x x g x x x x x =+---=+---; 2)43232()421659,()254f x x x x x g x x x x =--++=--+; 3)4322()441,()1f x x x x x g x x x =--++=--. 1)解 用辗转相除法()g x ()f x2()q x1 1 1 1 -1 -2 -2 1 2 -1 -4 -21 1 0 -2 0 1 1 -1 -2 -2 1 1 -2 -21()r x1 0 -2 03()q x1 01 0 -2 0 1 0 -22()r x1 0 -23()r x由以上计算得11()()()(),f x q x g x r x =+ 212()()()(),g x q x r x r x =+ 132()()(),r x q x r x =因此22((),())()2f x g x r x x ==-,且2((),())()f x g x r x =21()()()g x q x r x =-21()()[()()()]g x q x f x q x g x =-- 212()()[1()()]()q x f x q x q x g x =-++所以212()()1,()1()()2u x q x x v x q x q x x =-=--=+=+.2)((),())1f x g x x =-,21122(),()13333u x x v x x x =-+=--. 3)((),())1f x g x =,32()1,()32u x x v x x x x =--=+--.7.设323()(1)22,()f x x t x x u g x x tx u =++++=++的最大公因式是一个二次多项式,求,t u 的值.解 略.8.证明:如果()(),()()d x f x d x g x 且()d x 为()f x 与()g x 的一个组合,那么()d x 是()f x 与()g x 的一个最大公因式.证明 由于()(),()()d x f x d x g x ,所以()d x 为()f x 与()g x 的一个公因式.任取()f x 与()g x 的一个公因式()h x ,由已知()d x 为()f x 与()g x 的一个组合,所以()()h x d x .因此,()d x 是()f x 与()g x 的一个最大公因式.9.证明:(()(),()())((),())()f x h x g x h x f x g x h x =,(()h x 的首项系数为 1). 证明 因为存在多项式()u x 和()v x 使 ((),())()()()()f x g x u x f x v x g x =+,所以((),())()()()()()()()f x g x h x u x f x h x v x g x h x =+,这表明((),())()f x g x h x 是()()f x h x 与()()g x h x 的一个组合,又因为 ((),())(),((),())()f x g x f x f x g x g x , 从而((),())()()(),((),())()()()f x g x h x f x h x f x g x h x g x h x ,故由第8题结论,((),())()f x g x h x 是()()f x h x 与()()g x h x 的一个最大公因式.注意到((),())()f x g x h x 的首项系数为1,于是(()(),()())((),())()f x h x g x h x f x g x h x =.10.如果(),()f x g x 不全为零,证明:()()(,)1((),())((),())f xg x f x g x f x g x =.证明 存在多项式()u x 和()v x 使((),())()()()()f x g x u x f x v x g x =+,因为(),()f x g x 不全为零,所以((),())0f x g x ≠,故由消去律得()()1()()((),())((),())f xg x u x v x f x g x f x g x =+,所以()()(,)1((),())((),())f xg x f x g x f x g x =.11.证明:如果(),()f x g x 不全为零,且()()()()((),())u x f x v x g x f x g x +=,那么((),())1u x v x =.证明 因为(),()f x g x 不全为零,故 ((),())0f x g x ≠,从而由消去律得()()1()()((),())((),())f xg x u x v x f x g x f x g x =+,所以((),())1u x v x =.12.证明:如果((),())1f x g x = ,((),())1f x h x =,那么((),()())1f x g x h x =. 证法一 用反证法.假设()((),()())1d x f x g x h x =≠,则(())0d x ∂>,从而()d x 有不可约因式()p x ,于是()(),()()()p x f x p x g x h x ,但因为((),())1f x g x =,所以()p x 不整除()g x ,所以()()p x h x ,这与((),())1f x h x =矛盾.因此((),()())1f x g x h x =.证法二 由题设知,存在多项式1122(),(),(),()u x v x u x v x ,使得11()()()()1u x f x v x g x +=,22()()()()1u x f x v x h x +=,两式相乘得12121212[()()()()()()()()()]()[()()]()()1u x u x f x v x u x g x u x v x h x f x v x v x g x h x +++=,所以((),()())1f x g x h x =.13.设11(),,(),(),,()m n f x f x g x g x 都是多项式,而且((),())1(1,2,,;1,2,,).i j f x g x i m j n ===求证:1212(()()(),()()()) 1.m n f x f x f x g x g x g x =证法一 反复应用第12题的结果 证法二 反证法14.证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x +=. 证明 由于((),())1f x g x =,所以存在多项式()u x 和()v x 使 ()()()()1u x f x v x g x +=,由此可得()()()()()()()()1,u x f x v x f x v x f x v x g x -++= ()()()()()()()()1,u x f x u x g x u x g x v x g x +-+=即[][]()()()()()()1,u x v x f x v x f x g x -++=[][]()()()()()()1,v x u x g x u x f x g x -++= 于是((),()())1f x f x g x +=,((),()())1g x f x g x +=,应用第12题的结论可得(()(),()())1f x g x f x g x +=.注 也可以用反证法.15.求下列多项式的公共根:32432()221;()22 1.f x x x x g x x x x x =+++=++++提示 用辗转相除法求出2((),()) 1.f x g x x x =++于是得两多项式的公共根为1.2-± 16.判别下列多项式有无重因式: 1)5432()57248f x x x x x x =-+-+-; 2)42()443f x x x x =+--1)解 由于432'()5202144f x x x x x =-+-+,用辗转相除法可求得2((),'())(2)f x f x x =-,故()f x 有重因式,且2x -是它的一个 3 重因式.2)解 由于3'()484f x x x =+-,用辗转相除法可求得((),'())1f x f x =,故()f x 无重因式.17.求t 值使32()31f x x x tx =-+-有重根. 解2'()36f x x x t =-+.先用'()f x 除()f x 得余式 1263()33t t r x x --=+.当3t =时,1()0r x =.此时'()()f x f x ,所以21((),'())'()(1)3f x f x f x x ==-,所以1是()f x 的3重根.当3t ≠时,1()0r x ≠.再用1()r x 除'()f x 得余式215()4r x t =+.故当154t =-时,2()0r x =.此时,121((),'())()92f x f x r x x =-=+,所以12-是()f x 的2重根.当3t ≠且154t ≠-时,2()0r x ≠,则((),'())1f x f x =,此时()f x 无重根.综上,当3t =时,()f x 有3重根1;当154t =-时,()f x 有2重根12-.18.求多项式3x px q ++有重根的条件. 解 略.19.如果242(1)1x Ax Bx -++ ,求,A B .解法一 设42()1f x Ax Bx =++,则3'()42f x Ax Bx =+.因为242(1)1x Ax Bx -++,所以1是()f x 的重根,从而1也是'()f x 的根.于是(1)0f =且'(1)0f =,即10;420.A B A B ++=⎧⎨+=⎩解得1,2A B ==-.解法二 用2(1)x -除421Ax Bx ++得余式为(42)(31)A B x A B ++--+,因为242(1)1x Ax Bx -++,所以(42)(31)0A B x A B ++--+=,故420;310.A B A B +=⎧⎨--+=⎩ 解得1,2A B ==-.20.证明:212!!nx x x n ++++没有重根.证法一 设2()12!!n x x f x x n =++++ ,则21'()12!(1)!n x x f x x n -=++++-. 因为()'()!nx f x f x n -=,所以((),'())((),)1!nx f x f x f x n ==.于是212!!nx x x n ++++没有重根. 证法二 设2()12!!n x x f x x n =++++ ,则21'()12!(1)!n x x f x x n -=++++-. 假设()f x 有重根α,则()0f α=且'()0f α=,从而0!nn α=,得0α=,但0α=不是()f x 的根,矛盾.所以212!!nx x x n ++++没有重根. 21.略. 22.证明:x 是()f x 的k 重根的充分必要条件是(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠.证明 (必要性)设0x 是()f x 的k 重根,从而0x 是'()f x 的1k -重根,是''()f x 的2k -重根,…,是(1)()k f x -的单根,不是()()k f x 的根,于是(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠.(充分性)设(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠,则0x 是(1)()k f x -的单根,是(2)()k f x -的2重根,…,是()f x 的k 重根.23.举例说明断语“如果α是'()f x 的m 重根,那么α是()f x 的m +1重根”是不对的.解 取1()()1m f x x α+=-+,则()'()1()m f x m x α=+-.α是'()f x 的m 重根,但α不是()f x 的m +1重根.注:也可以取具体的,如0,1m α==.24.证明:如果(1)()n x f x -,那么(1)()n n x f x -. 证明 略.25.证明:如果23312(1)()()x x f x xf x +++,那么12(1)(),(1)()x f x x f x --.证明2121()()x x x x ωω++=--,其中12ωω==.由于23312(1)()()x x f x xf x +++,故存在多项式()h x 使得33212()()(1)()f x xf x x x h x +=++,因此112122(1)(1)0;(1)(1)0.f f f f ωω+=⎧⎨+=⎩ 解得12(1)(1)0f f ==,从而12(1)(),(1)()x f x x f x --.26.求多项式1n x -在复数范围内和实数范围内的因式分解. 解 多项式1n x -的n 个复根为 22cossin ,0,1,2,,1kk k i k n n nππω=+=-,所以1n x -在复数范围内的分解式为1211(1)()()()n n x x x x x ωωω--=----.在实数范围内,当n 为奇数时:222112211221(1)[()1][()1][()1]n n n n n x x x x x x x x ωωωωωω---+-=--++-++-++,当n 为偶数时:222112222221(1)(1)[()1][()1][()1]n n n n n x x x x x x x x x ωωωωωω---+-=-+-++-++-++.27.求下列多项式的有理根: 1)3261514x x x -+-; 2)424751x x x ---;3)5432614113x x x x x +----.1)解 多项式可能的有理根是1,2,7,14±±±±. (1)40f =-≠,(1)360f -=-≠.由于44444,,,,1(2)171(7)1141(14)-------------都不是整数,所以多项式可能的有理根只有2.用综合除法判别:2 1 -6 15 -14 + 2 -8 14 2 1 -4 7 0 + 2 -4 1 -2 3≠0 所以2是多项式的有理根(单根).注:一般要求指出有理根的重数.计算量较小的话,也可以直接计算,如本题可直接算得(2)0f =,说明2是()f x 的有理根,再由'(2)0f ≠知.2是单根.用综合除法一般比较简单.2)答12-(2重根).3)答 1-(4重根),3(单根). 28.下列多项式在有理数域上是否可约? 1)21x -;2)4328122x x x -++; 3)631x x ++;4)1p x px ++,p 为奇素数; 5)441x kx ++,k 为整数. 1)解21x -可能的有理根是1±,直接检验知,都不是它的根,故21x -不可约.2)解 用艾森斯坦判别法,取2p =. 3)解 令1x y =+,则原多项式变为6365432(1)(1)1615211893y y y y y y y y ++++=++++++,取3p =,则由艾森斯坦判别法知多项式65432615211893y y y y y y ++++++不可约,从而多项式631x x ++也不可约.4)提示:令1x y =-,取素数p . 5)提示:令1x y =+,取2p =.。
第一章 多项式习题解答1.用)(x g 除)(x f ,求商)(x q 与余式)(x r .1)123)(,13)(223+-=---=x x x g x x x x f9731929269791437134373132131232223232----+----+----+-x x x x x x x x x x x x x x 92926)(,9731)(--=-=x x r x x q . 2)2)(,52)(24+-=+-=x x x g x x x f17525422225200222223232342342-++--+-+--+---+-+-+++-x x x x x x x xx x x x x x x x x x x x x x75)(,1)(2+-=-+=x x r x x x q .2.q p m ,,适合什么条件时,有1)q px x mx x ++-+32|1m x m q x p m mx m x m qx p mx x mx x q px x x mx x --++++--+++--++++-+)()1()1(01222223232 当且仅当m q p m ==++,012时q px x mx x ++-+32|1.本题也可用待定系数法求解.当q px x mx x ++-+32|1时,用12-+mx x 去除q px x ++3,余式为零,比较首项系数及常数项可得其商为q x -.于是有q x mq x q m x mx x q x q px x ++--+=-+-=++)1()()1)((2323.因此有m q p m ==++,012.2)q px x mx x ++++242|1由带余除法可得)1()2()1)(1(2222224m p q x m p m m p mx x mx x q px x --++--++-+-++=++ 当且仅当0)1()2()(22=--++--=m p q x m p m x r 时q px x mx x ++++242|1.即⎩⎨⎧=--+=--010)2(22m p q m p m ,即⎩⎨⎧=+=,1,0p q m 或⎩⎨⎧==+.1,22q m p 本题也可用待定系数法求解.当q px x mx x ++++242|1时,用12++mx x 去除q px x ++24,余式为零,比较首项系数及常数项可得其商可设为q ax x ++2.于是有)1)((2224++++=++mx x q ax x q px x.)()1()(234q x mq a x q ma x a m x ++++++++=比较系数可得.0,1,0=+=++=+mq a p q ma a m 消去a 可得⎩⎨⎧=+=,1,0p q m 或⎩⎨⎧==+.1,22q m p 3.求)(x g 除)(x f 的商)(x q 与余式)(x r .1);3)(,852)(35+=--=x x g x x x x f解:运用综合除法可得327109391362327117083918605023---------商为109391362)(234+-+-=x x x x x q ,余式为.327)(-=x r2)i x x g x x x x f 21)(,)(23+-=--=.解:运用综合除法得:ii ii i i i 892521892421011121+----+-------商为)25(22i ix x +--,余式为i 89+-. 4.把)(x f 表成0x x -的方幂和,即表示成 +-+-+202010)()(x x c x x c c 的形式.1)1,)(05==x x x f ;2);2,32)(024-=+-=x x x x f3).1,73)1(2)(0234-=++-+-+=x i x x i ix x x f分析:假设)(x f 为n 次多项式,令])()()[()()()()(10021000202010--++-+-+=-++-+-+=n n nn x x c x x c c x x c x x c x x c x x c c x f0c 即为0x x -除)(x f 所得的余式,商为10021)()()(--++-+=n n x x c x x c c x q .类似可得1c 为0x x -除商)(x q 所得的余式,依次继续即可求得展开式的各项系数.解:1)解法一:应用综合除法得.5110141110416311563143211143211111111111100000115)(x x f =1)1(5)1(10)1(10)1(5)1(2345+-+-+-+-+-=x x x x x .解法二:把x 表示成1)1(+-x ,然后用二项式展开1)1(5)1(10)1(10)1(5)1(]1)1[(234555+-+-+-+-+-=+-=x x x x x x x2)仿上可得812226122412210412112082422128442302012-----------------432)2()2(8)2(22)2(2411)(+++-+++-=x x x x x f . 3)因为i iii i i i i i i i i i ii ii i i 2111510157104141173121-----------+-------+---- .)()(2))(1()(5)57(73)1(2)(432234i x i x i i x i i x i ix x i ix x x f +++-++-+-+=++-+-+=5.求)(x f 与)(x g 的最大公因式1)1)(,143)(23234--+=---+=x x x x g x x x x x f解法一:利用因式分解),13)(1(143)(3234--+=---+=x x x x x x x x f).1()1(1)(223-+=--+=x x x x x x g因此最大公因式为1+x .解法二:运用辗转相除法得)(3438)(01122132)(1434343)(41432112321212314121)(3122123423422223232x q x x q x x x x x x x x r x x x x x x x x x x r x x x x x x x x x x x x q =+=---------=--+---+--=------++--++-= 因此最大公因式为1+x .2)13)(,14)(2334+-=+-=x x x g x x x f .解:运用辗转相除法得(注意缺项系数补零)2564411627)(125627)(2565391649216491633323)(10310031004911916)(920910310132310323110391031)(13221232323423422223232--=--=+-+-+-+--=-++-+-+-++-+++--=+--++--+++-+-=x x q x x r x x x x x x x r x x x x x x x x x x x x x x x x r x x x x x x x x x x x x q .1))(),((=x g x f3).124624)(,110)(23424+++-=+-=x x x x x g x x x f)()()22(24)()(123x r x f x x x x f x g +=---=,),()22)((241)122()22)(22()(21223x r x x r x x x x x x x f ++-=---+--= ,)()122(22)(24122231x x r x x x x x x x r -=--=--=- 因此.122))(),((2--=x x x g x f6.求)(),(x v x u 使:))(),(()()()()(x g x f x g x v x f x u =+1);22)(,242)(234234---+=---+=x x x x x g x x x x x f解:运用辗转相除法得:)()(1022)(222422)(222221)(3133123423422323242342x q x x q x x xx x r x x x x x x x x x x r xx x x x x x x x x x x x q ==--=---+---+-=--+----++= 因此2)())(),((22-==x x r x g x f .且有 )()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=)()]()(1[)()(212x g x q x q x f x q ++-=..2)()(1)(,1)()(212+=+=--=-=x x q x q x v x x q x u2);452)(,951624)(23234+--=++--=x x x x g x x x x x f解:运用辗转相除法得:)(96)(20999966936)(810249516241)(32422324523131)(3122123423422223232x q x x q x x x xx x x x r xx x x x x x x x x r x x x x x x x x x x x x q =+=+-+-+-+--=+--++--+-=+--+---++--+-= 因此1)())(),((2-=-=x x r x g x f .且有)()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=)()]()(1[)()(212x g x q x q x f x q ++-=..13232)3131(21)()(1)(,3131)()(2212--=+---=--=+-==x x x x x q x q x v x x q x u 3).1)(,144)(2234--=++--=x x x g x x x x x f解:运用辗转相除法得:)(32)(3331431441)(21211)(121222342342222x q x x x r x x x x x x x x x x x x r x x xx x x x x q =--=++-++---++--=-----+= 因此.1)())(),((2==x r x g x f 且有)()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=)()]()(1[)()(212x g x q x q x f x q ++-=..23)1)(3(1)()(1)(,1)()(232212--+=+-+=+=--=-=x x x x x x q x q x v x x q x u7.设u tx x x g u x x t x x f ++=++++=323)(,22)1()(的最大公因式是一个二次多项式,求u t ,的值.解:运用带余除法有),()()2()1(1)(22)1()(12323x r x g u x t x t u tx x u x x t x x f +=+--++⋅++=++++= 由题意可得,)(1x r 即为)(),(x g x f 的最大公因式.因此有01≠+t .进一步),(])1(211)[()(221x r t t x t x r x g ++-++= ])1(21[)1()2()1()1()(22222t t u x t t t u t t x r +--++-++-+=. 要使)(1x r 为)(),(x g x f 的最大公因式的充要条件是.0)(2=x r 即⎩⎨⎧=--+=-++-+,0)]2()1[(,0)2()1()1(222t t u t t u t t 解得⎪⎩⎪⎨⎧--=+-=⎪⎩⎪⎨⎧+-=--=⎪⎩⎪⎨⎧±==⎩⎨⎧-==.2111,117;2111,117;231,0;4,0i t i u i t i u i t u t u 8.证明:如果),(|)(),(|)(x g x d x f x d 且)(x d 为)(x f 与)(x g 的一个组合,那么)(x d 是)(x f 与)(x g 的一个最大公因式.证明:由)(|)(),(|)(x g x d x f x d 可知)(x d 是)(x f 与)(x g 的一个公因式.下证)(x f 与)(x g 的任意一个公因式是)(x d 的因式.由)(x d 为)(x f 与)(x g 的一个组合可知,存在多项式)(),(x v x u ,使得)()()()()(x g x v x f x u x d +=.设)(x ϕ是)(x f 与)(x g 的任意一个公因式,则)(|)(),(|)(x g x x f x ϕϕ.故)()()()(|)(x g x v x f x u x +ϕ即).(|)(x d x ϕ因此)(x d 是)(x f 与)(x g 的一个最大公因式.9.证明:)()(())(),(())()(),()((x h x h x g x f x h x g x h x f =的首项系数为1). 证明:存在多项式)(),(x v x u ,使得)()()()())(),((x g x v x f x u x g x f +=.所以有)()()()()()()())(),((x h x g x v x h x f x u x h x g x f +=.即)())(),((x h x g x f 是 )()(x h x f 与)()(x h x g 的一个组合.显然有)(|))(),((),(|))(),((x g x g x f x f x g x f .从而)()(|)())(),((),()(|)())(),((x h x g x h x g x f x h x f x h x g x f .由第8题结果)())(),((x h x g x f 是)()(x h x f 与)()(x h x g 的一个最大公因式.又)(x h 是首项系数为1的,因此).())(),(())()(),()((x h x g x f x h x g x h x f =10.如果)(x f ,)(x g 不全为零,证明1))(),(()(,)(),(()((=x g x f x g x g x f x f . 证明:由)(x f ,)(x g 不全为零可得其最大公因式不为零多项式,即.0))(),((≠x g x f 又存在多项式)(),(x v x u ,使得)()()()())(),((x g x v x f x u x g x f +=.于是))(),(()()())(),(()()(1x g x f x g x v x g x f x f x u +=. 因此1))(),(()(,)(),(()((=x g x f x g x g x f x f . 11.如果)(x f ,)(x g 不全为零,且))(),(()()()()(x g x f x g x v x f x u =+,那么1))(),((=x v x u .证明:由)(x f ,)(x g 不全为零可得.0))(),((≠x g x f 由))(),(()()()()(x g x f x g x v x f x u =+有.1))(),(()()())(),(()()(=+x g x f x g x v x g x f x f x u 于是1))(),((=x v x u .12.证明:如果,1))(),((,1))(),((==x h x f x g x f 那么.1))()(),((=x h x g x f 证法一、由条件1))(),((,1))(),((==x h x f x g x f 可得存在多项式)(),(11x v x u ; )(),(22x v x u 使得1)()()()(11=+x g x v x f x u ,1)()()()(22=+x h x v x f x u .两式相乘得1)()()()()()]()()()()()()()()([21211221=+++x h x g x v x v x f x h x v x u x g x v x u x f x u x u . 因此有.1))()(),((=x h x g x f证法二、反证法证明.显然.0))()(),((≠x h x g x f 若,1))()(),((≠x h x g x f 则存在不可约多项式)(x p ,使得)(x p 为)(x f 与)()(x h x g 的公因式.因此有)(|)(x f x p 且)()(|)(x h x g x p .由)(x p 的不可约性有)(|)(x g x p 或)(|)(x h x p .若)(|)(x g x p ,则)(x p 为)(x f 与)(x g 的一个公因式,与1))(),((=x g x f 相矛盾.若)(|)(x h x p ,则)(x p 为)(x f 与)(x h 的一个公因式,与1))(),((=x h x f 相矛盾.因此1))()(),((≠x h x g x f 不成立,即有.1))()(),((=x h x g x f13.设)(),(),(),(,),(),(2121x g x g x g x f x f x f n m 都是多项式,而且).,,2,1;,,2,1(,1))(),((n j m i x g x f j i ===求证:1))()()(),()()((2121=x g x g x g x f x f x f n m .证明:由),,2,1(1))(),((1n j x g x f j ==,反复利用第12题结果可得1))()()(),((211=x g x g x g x f n .类似可得.,,2,1))()()(),((21m i x g x g x g x f n i ==再反复利用12题结果可得1))()()(),()()((2121=x g x g x g x f x f x f n m .14.证明:如果,1))(),((=x g x f 那么.1))()(),()((=+x g x f x g x f 证明:方法一.由,1))(),((=x g x f 存在多项式)(),(x v x u 使得1)()()()(=+x g x v x f x u .从而有,1)())()(())()()((,1))()()(()())()((111111=+-++=++-x g x v x u x g x f x u x g x f x v x f x v x u 因此有.1))()(),((,1))()(),((=+=+x g x f x g x g x f x f 由12题结果结论成立.方法二:用反证法.若.1))()(),()((≠+x g x f x g x f 则存在不可约多项式)(x p ,使得)(x p 为)()(x g x f 与)()(x g x f +的公因式.即)()(|)(x g x f x p 且)()(|)(x g x f x p +.由)(x p 的不可约性及)()(|)(x g x f x p ,有)(|)(x f x p 或)(|)(x g x p .若)(|)(x f x p ,又)()(|)(x g x f x p +,因此有)]())()([(|)(x f x g x f x p -+,即)(|)(x g x p ,也即)(x p 为)(x f 与)(x g 的一个公因式,与1))(),((=x g x f 相矛盾.类似可得当)(|)(x g x p 时也与已知1))(),((=x g x f 矛盾.所以.1))()(),()((=+x g x f x g x f15.求下列多项式的公共根:.12)(;122)(23423++++=+++=x x x x x g x x x x f解法一:利用因式分解可得);1)(1(122)(223+++=+++=x x x x x x x f ).1)(1(12)(22234+++=++++=x x x x x x x x g因此1))(),((2++=x x x g x f .)(x f 与)(x g 的公共根为.2321i ±- 解法二:运用辗转相除法求出)(x f 与)(x g 的最大公因式,最大公因式的根即为所求的公共根.),1(2)1)(()(2++--=x x x x f x g ).1)(1()(2+++=x x x x f因此1))(),((2++=x x x g x f .)(x f 与)(x g 的公共根为.2321i ±- 16.判别下列多项式有无重因式: 1);84275)(2345-+-+-=x x x x x x f 解:,4421205)('234+-+-=x x x x x f运用辗转相除法可得.)2(44))('),((22-=+-=x x x x f x f 因此2-x 为)(x f 的三重因式.解法二:试根可得2为)(x f 的根)1()2()2()2()43)(2()(23232234++-=----=++--=x x x x x x x x x x x x f .因此2-x 为)(x f 的三重因式. 2).344)(24--+=x x x x f解:).12(4484)('33-+=-+=x x x x x f 1))('),((=x f x f .故)(x f 无重因式. 17.求t 值使13)(23-+-=tx x x x f 有重根.解法一:要使)(x f 有重根,则1))('),((≠x f x f ..63)('2t x x x f +-=),12(33)(')3131(13)(23+-+-=-+-=x t x f x tx x x x f .415)41523)(12(63)('2++-+=+-=t x x t x x x f当,033=-t 即3=t 时),(|)(',)1(3363)('22x f x f x x x x f -=+-=2)1())('),((-=x x f x f ,因此1为)(x f 的三重根. 当0415=+t ,即415-=t 时,21))('),((+=x x f x f ,21-为)(x f 的二重根.解法二:设b a x ab a x b a x b x a x x f 22232)2()2()()()(-+++-=--=. 因此有⎪⎩⎪⎨⎧==+=+.1,2,3222b a t ab a b a 由第一个方程有a b 26-=,代人第三个方程有,0132,1)23(232=+-=-a a a a 即0)12()1(2=+-a a .因此有⎪⎩⎪⎨⎧===,3,1,1t b a 或⎪⎪⎩⎪⎪⎨⎧-==-=.415,4,21t b a即当3=t 时1为)(x f 的三重根;当415-=t 时,21-为)(x f 的二重根.18.求多项式q px x ++3有重根的条件.解:令q px x x f ++=3)(.显然当0==q p 时,0为)(x f 的三重根.当0≠p 时, p x x f +=23)(',q x px xf q px x x f ++=++=32)('31)(3,)427()42729)(32()('222p q p p q x p q x p x f ++-+=. 要使)(x f 有重根,则1))('),((≠x f x f .即,042722=+pq p 即.027423=+q p 显然 0==q p 也满足.027423=+q p 因此)(x f 有重根的条件是.027423=+q p19.如果,1|)1(242++-Bx Ax x 求.,B A解法一:利用整除判定方法,1|)1(242++-Bx Ax x 的充要条件是用2)1(-x 除124++Bx Ax ,余式为零.)31()42()32()1(12224B A x A B A B Ax Ax x Bx Ax --++++++-=++.因此有0)31()42(=--++B A x A B ,即⎩⎨⎧-==⎩⎨⎧=--=+.2,1.031,042B A B A A B 解法二:要使1|)1(242++-Bx Ax x 成立,则1至少是124++Bx Ax 的二重根.因此1既是124++Bx Ax 的根,也是其导数的根.而Bx Ax Bx Ax 24)'1(324+=++.故有⎩⎨⎧-==⎩⎨⎧=+=++.2,1.024,01B A B A B A 解法三:利用待定系数法.令Dx D C x D C A x A C Ax D Cx Ax x Bx Ax +-++-+-+=++-=++)2()2()2()()1(12342224因此有⎪⎪⎩⎪⎪⎨⎧==-=+-=-.1,02,2,02D D C B D C A A C 解得⎪⎪⎩⎪⎪⎨⎧==-==.1,2,2,1D C B A 20.证明:!!212n x x x n++++ 不能有重根.证明:令,!!21)(2n x x x x f n++++= 则,)!1(!21)('12-++++=-n x x x x f n因此有,!)(')(n x x f x f n +=从而有)!),('())('),((n x x f x f x f n =.!n x n因式只有)0(≠c c 及)1,0(n k c cx k ≤≤≠.而)1,0(n k c cx k ≤≤≠显然不是)('x f 的因式.因此有1)!),('())('),((==n x x f x f x f n.所以)(x f 没有重根.21.如果a 是)('''x f 的一个k 重根,证明a 是)()()](')('[2)(a f x f a f x f ax x g +-+-=的一个3+k 重根. 证明:)],(')('[21)(''2)(')(''2)](')('[21)('a f x f x f a x x f x f a x a f x f x g ---=--++=).('''2)(''21)('''2)(''21)(''x f ax x f x f a x x f x g -=--+=显然有0)(")(')(===a g a g a g .由a 是)('''x f 的一个k 重根可得a 是)(''x g 的一个1+k 重根,设a 是)(x g 的s 重根,则3,12+=+=-k s k s .本题常见错误证法.错误证法一:由a 是)('''x f 的一个k 重根就得出a 是)(''x f 的一个1+k 重根,a 是)('x f 的一个2+k 重根,a 是)(x f 的一个3+k 重根,于是)(2)()()()](')('[2)(3x h a x a f x f a f x f a x x g k +-=+-+-=从而a 是)(x g 的3+k 重根.事实上,由a 是)('''x f 的一个k 重根推不出a 是)(''x f 的一个1+k 重根,a 是)('x f 的一个2+k 重根,a 是)(x f 的一个3+k 重根. 如3)()()()(23+-+-+-=+a x a x a x x f k ,则1)(2))(3()('2+-+-+=+a x a x k x f k ,2))(2)(3()(''1+-++=+k a x k k x f .a 既不是)(x f 的根,也不是)('x f 与)(''x f 的根.错误证法二:由)],(')('[21)(''2)(')(''2)](')('[21)('a f x f x f a x x f x f a x a f x f x g ---=--++=)('''2)(''21)('''2)(''21)(''x f ax x f x f a x x f x g -=--+=得出a 是)(''x g 的1+k 重根,直接得出a 是)(x g 的3+k 重根,缺了a 是)(x g 与)('x g 的根验证.22.证明:0x 是)(x f 的k 重根的充分必要条件是,0)()(')(0)1(00====-x f x f x f k 而.0)(0)(≠x f k证明:必要性.设0x 是)(x f 的k 重根,从而0x x -是)(x f 的k 重因式,从而是)('x f 的1-k 重因式,是)(''x f 的2-k 重因式,...,是)()1(x f k -的单因式,而不是)()(x f k 的因式.因此0x 是)(x f ,)('x f ,)(''x f ,...,)()1(x f k -的根,而不是)()(x f k 的根.故有,0)()(')(0)1(00====-x f x f x f k 而.0)(0)(≠x f k充分性.由,0)()(')(0)1(00====-x f x f x f k 而0)(0)(≠x f k 可知0x 是)(x f ,)('x f ,)(''x f ,...,)()1(x f k -的根,而不是)()(x f k 的根.因此0x 是)()1(x f k -的单根,是)()2(x f k -二重根,依此类推,是)(x f 的k 重根.23.举例说明断语“如果α是)('x f 的m 重根,那么α是)(x f 的1+m 重根”是不对的.解:例如2)()(1+-=+m x x f α,m x m x f ))(1()('α-+=.α是)('x f 的m 重根,但α不是)(x f 的根.24.证明:如果),(|)1(n x f x -那么)(|)1(n n x f x -.证明:由)(|)1(n x f x -可得)()1()(x g x x f n -=.从而.0)1(=f 因此有),()1()(x h x x f -=从而有).()1()(n n n x h x x f -=即)(|)1(n n x f x -.证法二:要证)(|)1(n n x f x -,只要证1-n x 在复数域上的各个根都是)(n x f 的根.1-n x 的根为.1,,2,1,0,2sin 2cos-=+=n k nk i n k x k ππ由)(|)1(n x f x -可得)()1()(x g x x f n -=.从而.0)1(=f 从而0)1()(==f x f nk .即,2sin 2cos nk i n k x k ππ+=1,,2,1,0-=n k 都是)(n x f 的根.因此有)(|)1(n n x f x -.25.证明:如果)()(|)1(32312x xf x f x x +++,那么).(|)1(),(|)1(21x f x x f x --证明:要证)(|)1(),(|)1(21x f x x f x --成立,只要证1是)(1x f 和)(2x f 的根.12++x x 的两个根为231,23121ii --=+-=εε.由)()(|)1(32312x xf x f x x +++可得)()1()()(23231x g x x x xf x f ++=+.于是,0)()1()()(,0)()1()()(2223222321112312131121=++=+=++=+εεεεεεεεεεεεg f f g f f即0)1(231)1(,0)1(231)1(2121=+-=--f if f i f .故有.0)1()1(21==f f 所以 )(|)1(),(|)1(21x f x x f x --.26.求多项式1-n x 在复数范围内和在实数范围内的因式分解. 解:1-n x 的根为.1,,2,1,0,2sin 2cos -=+=n k nk i n k k ππε故在复数范围内的分解式为)())()(1(112-----=-n n x x x x x εεε .在实数范围内,因k n k -=εε,)0(n k <<.当n 为奇数时,1-n x 的根中一个为实根,其余为虚根,其分解式为]1)([]1)(][1)()[1(12121222212++-++-++--=-+---x x x x x x x x n n n n nεεεεεε .当n 为偶数时,1-n x 的根中二个为实根,即,1±其余为虚根,其分解式为].1)([]1)(][1)()[1)(1(11212222212++-++-++-+-=-+---x x x x x x x x x n n n n nεεεεεε27.求下列多项式的有理根. 1);1415623-+-x x x解:多项式可能的有理根为.14,7,2,1±±±±由系数取值可知,x 取负数时,多项式的值均为负的,故该多项式没有负根.检验得2为其根,进一步运用综合除法可得074114821415612-----即)74)(2(14156223+--=-+-x x x x x x ,显然742+-x x 没有有理根.因此1415623-+-x x x 仅有一个有理根2,且为单根.2);157424---x x x解:多项式可能的有理根为.41,21,1±±±444222026242113121570421------------因此有)1()12()444()21(1574222224--+=--+=---x x x x x x x x x ,显然12--x x 没有有理根.因此21-为157424---x x x 的二重根.3).3111462345----+x x x x x解:多项式可能的有理根为.3,1±±检验得1-为其根,进一步运用综合除法可得1213630351133511038601138601311146111--------------故)3()1()12)(3()1(3111464222345-+=++-+=----+x x x x x x x x x x x .即1-为其四重跟,3为单根.28.下列多项式在有理数域上是否可约? 1);12+x解:显然12+x 无有理根,又为二次的,故在有理数域上不可约. 2);2128234++-x x x解:取素数2=p ,满足艾森斯坦判别法的条件,因此在有理数域上不可约. 3);136++x x 解:令,1+=y x).(3918211561)1()1(1)(234563636y g y y y y y y y y x x x f =++++++=++++=++=取素数,3=p )(y g 满足艾森斯坦判别法条件,因此在有理数域上不可约,从而)(x f 在有理数域上不可约.4)p px x p ,1++为奇素数;解:令1-=y x ,由p 为奇数可得1)1()1(1)(+-+-=++=y p y px x x f p p).()(1222211y g p y p C y C y C yC y p p p p p p p p p =-++--+-=---- 由组合数定义)11(-≤≤p k C kp 均为整数,且12)1()1()1(⋅-+--= k k k p p p C k p,分子中有因子p ,分母个各数均小于p ,又p 为素数,因此约分时p 不会被约去,因此有kpC p |,取素数为p ,)(y g 满足艾森斯坦判别式条件,因此)(y g 在有理数域上不可约,从而)(x f 在有理数域上不可约. 5)k kx x ,144++为整数. 解:令,1+=y x 则有).(2)1(4641)1(4)1(1423444y g y k y y y y k y kx x =+++++=++++=++取素数,2=p )(y g 满足艾森斯坦判别法条件,因此在有理数域上不可约,从而)(x f 在有理数域上不可约.。
第一章多项式一、习题及参考解答1 .用g(x)除了(x),求商g(x)与余式r(x):1 ) f (x) = x3 - 3x2 - x -1, g(x) = 3x2 - 2x +1;2 ) f(x) = x4 -2x + 5,g(x) = x2 - x + 2。
解1)由带余除法,可得q(x) =L-Z,“x) =-竺x-2 ;2)同理可得g(x) = / +x-l,r(x) = -5x + 7。
2. 〃?,PM适合什么条件时,有1 ) X2 +/?1¥-1 I X3 + px + c/ 92) x2 + nix + 11 x4 + px2 +q。
解1 )由假设,所得余式为0,即(〃 + l + 〃?2)x + (q-〃?) = O,所以当 1 + 。
时有 /+〃a-11 X* + px +g 0q _ in = 0 .2)类似可得= 于是当〃? = 0时,代入(2)可得〃=夕+ 1;q + 1 —〃一" = 0而当2- 〃 -J = 0时,代入(2)可得4 = 1 04 = ] _, 时,皆有 / + + 1 I X,+ px2 + 9。
综上所诉,当p + nr = 23 .求g(x)除f(x)的商q(x)与余式:1 ) /(x) = 2«?-5x3-8x,g(x) = x + 3 ;2) f(x) = x3-x2 - xg(x) = x-l + 2i o解[)q(x) = 2x4 - 6x3 +13x2 - 39A+ 109 ,r(x) = -327 '2)= x2 -2LV-(5+2/)r(x) = -9 + 8/ °4 .把/1(X)表示成x-%的方幕和,即表成c()+ G(X —“0)+。
2(X — X。
)~ + …+ C n(X — X。
)” + …的形式:1)/(x) = x',x()= 1 ;2) /(X)= X4-2X2+3,X0 =-2 ;3) f (x) = x4 + 2汉3 -(1 + i)x2 -3x + 7 + i,x0 =-i o解 1 ) 由综合除法,可得f(x) = l + 5(x-l) + 10(x-l)2 + 10(x-1)3+5(X-1)4 + (x-1)5 ;2 ) 由综合除法,可得X4-2X2+3=11-24(X + 2) + 22* + 2)2 -8(.r + 2)3 + (x + 2),;3)由综合除法,可得『+2立3_(1 +82_3工+ (7 +,)= (7 + 5i)-5(x + i) + (-l-i)(x + i)2 -2i(x + i)3 + (x + i),。
若()()()x m x l x h +=,且()()x m x p |,()()x l x p |/,则()()x h x p |/。
证法1: 由()()x m x p |/有 ()()()x p x m x m 1=。
由()()x l x p |/有()()()()()0,1≠+=x r x r x p x l x l 。
于是 ()()()()()()()()x r x p x l x m x m x l x h ++=+=11。
因()0≠x r ,故()()x h x p |/。
证明2:用反证法。
若()()x h x p |,即()()()()x m x l x p +|, 又()()x m x p |,故()()()()()x m x m x l x p -+|,即()()x l x p |,矛盾。
问:若()()()()x g x h x f x h |,|//, 则()()()()x g x f x h +|成立吗?试举例说明。
答:不一定。
例如 ()()()1,1,+=-==x x g x x f x x h ,则()()()()x g x h x f x h |,|//,但()()()()x g x f x h +|。
例如 ()()()2,1,+=-==x x g x x f x x h , 则()()()()x g x h x f x h |,|//,且()()()()x g x f x h +/|。
例 求m l ,, 使()2523+++=x lx x x f 能被()12++=mx x x g 整除。
解法1:因()()3=∂x f ,()()2=∂x g ,故商()x q 满足()()1=∂x q ,且设()p x x q +=,则由 ()()()x g x q x f =,可得()()p x pm x p m x x lx x +++++=+++1252323,l m p pm p =+=+=,51,2,从而 4,2,2===l m p 。
解法2:用带余除法()()()()ml x lm x lm mm l x m l m x m lx x m lx m x x x lx x m x x -+-++-+-+-+-++-+++++++242425122223232于是()()()()l m x lm m m l x x g x f -++-++-+=242,因()()x f x g |,则02,042=-+=-+l m lm m ,从而 2,4==m l 。
定义:如果()()()x f x f x f m ,,,21 中任意两个都是互素的,即()()()m j i j i x f x f ji,,2,1,,,1, =≠=,则称()()()x f x f x f m,,,21两两互素。
两两互素的多项式一定是互素的,但互素的多项式不一定两两互素。
例:()()()1,1,12321-=+=-=x x g x x g x x g 互素,即()()()()1,,321=x g x g x g ,但()()()()()()()()1,,1,232131+==-==x x g x g x g x x g x g x g ,故()()()x g x g x g 321,,,不是两两互素的。
求()x f 重因式的方法: 1. 求()x f ';2. 求()()()()x d x f x f =',。
当()1=x d ,则无重因式。
当()1≠x d ,则有重因式,且()x d 即为一些重因式的乘积,据此,也可考察()x f 有无重根。
例 求t 值使()1323-+-=tx x x x f 有重根(习题17)解: 设0x 为()0=x f 的一个k 重根,2≥k ,则()()x f x x k |0-,()()x f x x k '--|10,而()t x x x f +-='632。
由带余除法有 ()()()()()121311311312323131+⎪⎭⎫⎝⎛-+'-=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+'⎪⎭⎫ ⎝⎛-=x t x f x t x t x f x x f且()()()()()⎪⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛-'='12131,,x t x f x f x f当3=t 时,()()()()()1131,2≠-='='x x f x f x f ,且()()31-=x x f 。
当3≠t 时,则()()()()⎪⎪⎩⎪⎪⎨⎧-≠-=+=⎪⎭⎫ ⎝⎛++-=++-=' t t x x t x x x t x x x f x f ,415,1,415,2121,3212,63,22当当且()()4212-⎪⎭⎫⎝⎛+=x x x f 。
故当415,3-=t 时,()x f 有重根。
有理系数多项式应用§5节因式分解及唯一性定理到有理数域Q ,有结论9.1 每个次数1≥的有理系数多项式都能唯一地分解成不可约得有理系数多项式的乘积。
我们已知:实系数多项式:仅一次因式及二次不可约因式是不可约的,当次数3≥时,肯定可约。
复系数多项式:仅一次多项式不可约,即次数2≥的多项式可约。
有理系数多项式:不可约性不易判定。
把一个多项式具体表为初等对称多项式的步骤:步1:提出()n x x f ,,1 的首项0,2121≠a x x ax nl n l l ;步2:作对称多项式nnn l n l l n l l l l a σσσσϕ-----=132211211 ;步3:求()()()n n n x x f x x f σσϕ,,,,,,11111 -=;步4:提出()n x x f ,,11 的首项0,2121≠b x x bx nk n k k ;步5:作对称多项式nnn k n k k n k k k k b σσσσϕ-----=132211212 ;步6:求()2112,,ϕ-=f x x f n ;如此反复进行,直到()1,0,,1≥=m x x f n m 。
于是,我们可得∑==+++==++=+=mi im m f f f f 1112211ϕϕϕϕϕϕ综合除法:适用于一次因式除()x f1.综合除法的数学基础:本质上就是带余除法 设()∑==ni i i x a x f 0,现用k x -来除()x f ,则()()()()x r k x x g x f +-=,而()()()1=-∂<∂k x x r ,故()()k f c x r ==0(常数) 设()∑-=+=101n j j j x c x g ,则有()01110111011110110c k c x c x k c c c x k c x c c x k c xcx a n n j nj j j j n j j jn j j j n j j j n j j i n j i +-+-=+-=+-=∑∑∑∑∑∑=+-=+=-=++-=+-=于是k c c a k c c a c a j j j n n 1100,,+-=-==, 即n n j j j a c n k k c a c =-=+=+,1,,1,0,1 。
对比从何除法的过程12101210121c c c c c b b b b a a a a a n n nn n n n n ------.1,,1,0,,1,,1,0,,11-=+=+=-===++n j kc a b a c n j kc b a c j j j j j j j n n两者一致。
于是()()()()x r k x x g x f +-=()()∑-=+==1001,n n j j c x r x c x g 。
例: 用综合除法1.求3-x 除()x f 的商()x q 与余式()x r 。
2.将()x f 表成3-x 的??幂和 这里()5224-+=x x x f 。
解:1.应用综合除法有(也可用带余除法)39433113199339350201- 于是()()94,3311323=+++=x r x x x x q ,使()()()()x r x x q x f +-=32要将()x f 表成()()()()43223143333a x a x a x a x +-+-+-+-。
应用综合除法321356912731202961871839433113199339350201-于是得94,120,56,124321====a a a a ,即()()()()()()()()()[]()()33113394123563123394112035631232323234+++-=++-+-+--=+-+-+-+-=x x x x x x x x x x x x x f多项式求根的一些问题:1)设()0111a x a x a x a x f n n n n ++++=-- 是一个整系数多项式,sr为它的一有理根,其中s r ,互素,则有0|,|a r a s n ,且若1=n a ,则有理根为整根,且为0a 的因子。
因此,求有理根只需给出0,a a n 的所有因式,,并写出所有可能的既约分数sr(s 为n a 的因子,r 为0a 的因子),然后验证0=⎪⎭⎫ ⎝⎛s r f ?或()x f s r x ⎪⎭⎫ ⎝⎛-?(用综合除法)。
2)当有理系数多项式()x f 在有理数域上不可约,且()()1≥∂x f 时,()x f 无有理根。
这里()()1>∂x f 是必须的,如()23+=x x f 有有理根32-,但()()1=∂x f 且()x f 不可约。
3)“有理系数多项式()x f 无有理根,则()x f 在有理数域上不可约。
”这一命题当()()32≤∂≤x f 时是成立的,但当()()4≥∂x f 时,命题不再成立,如()()221+=x x f 无有理根,但它在有理数域上可约。
4)当()()x f x f ',不互素时,()x f 有重根,此时可通过计算()()()()x f x f x f ',得到()x f 的所有不可约因式,再利用综合除法确定根的重数,也可直接将()()()x f x f ',因式分解,从而得知()x f 的重根重数。
()∑==ni i i x a x f 0对()n x f =∂,展开成0x x -的幂:()()()()()()()()()()().10120121021001,,,-----+-=+-=+-=+-=n n n n n n c x x c x q c x x x q x q c x x x q x q c x x x q x f 有()()()()0111010c x x c x x c x x c x f n n n n +-++-+-=-- ,且n n a c =,利用此式来判断0x 是否为()0=x f 的根,如果是,可判断它为n 重根。