(集成光电子学导论)第七章波分复用器
- 格式:ppt
- 大小:5.13 MB
- 文档页数:58
光波分复用器原理
“哎呀,这光到底是咋回事呢?”我正和小伙伴们在公园里玩耍,突然想到了一个问题。
咱先来说说光波分复用器是啥玩意儿吧。
这就好比一个神奇的大盒子,里面有好多关键部件呢。
有能把不同颜色光分开的小镜子,就像咱们分糖果一样,把各种颜色的光分得清清楚楚。
还有一些小管道,让光在里面乖乖地跑。
这些部件可厉害啦!小镜子能准确地把不同波长的光送到不同的地方,就像快递员叔叔把包裹送到正确的地址一样。
那小管道呢,就像小火车的轨道,光在里面跑得可顺溜啦!
那它的工作原理是啥呢?嘿,你想想看,不同颜色的光就像不同的小伙伴,它们都有自己的特点。
光波分复用器呢,就能认出这些不同的光小伙伴,然后把它们安排到不同的道路上去。
比如说红色光走这条路,蓝色光走那条路。
这可太神奇啦!就好像我们在玩游戏的时候,给每个小伙伴都分配了不同的任务。
那光波分复用器在生活中有啥用呢?有一次,我和爸爸妈妈一起看电视。
我就想啊,这电视信号是咋传过来的呢?原来啊,光波分复用器在这中间可起了大作用呢。
它能把好多不同的信号,像电视信号、电话信号、网络信号啥的,都放在一束光里传过来。
这就像一个超级大卡车,能把好
多不同的货物一起运过来。
要是没有它,那我们的生活可就没这么方便啦!说不定电视会卡顿,电话也打不通呢。
所以说啊,光波分复用器可真是个神奇的东西。
它让我们的生活变得更加丰富多彩,就像一个魔法盒子,给我们带来了好多惊喜。
我觉得它超级厉害,以后我也要好好学习,了解更多关于它的知识。
光波导芯片波分复用解释说明1. 引言1.1 概述光通信作为一种高速、大容量的数据传输技术,已成为现代信息社会中不可或缺的基础设施。
然而,在面对日益增长的带宽需求和传输距离要求时,传统的电路板和金属导线等传输介质已经显得力不从心。
因此,光波导芯片作为一种新型的光学器件应运而生。
1.2 文章结构本文将首先介绍光波导芯片的定义、原理、结构和特点。
随后,我们将重点讨论波分复用技术,并详细解释其原理、基础概念以及相关设备和组成要素。
然后,我们将探讨光波导芯片在波分复用中的应用,包括其在光传输中的作用机制解析、在波分复用系统中关键功能的介绍,以及一些实际应用中的效果与案例分享。
最后,我们将总结主要观点和发现,并展望光波导芯片和波分复用技术未来发展方向。
1.3 目的本文旨在通过对光波导芯片和波分复用技术进行详细说明,帮助读者深入了解光通信领域中的重要概念和技术。
同时,通过介绍光波导芯片在波分复用中的应用,使读者对该技术在实际场景中的应用效果有更全面的认识。
最后,我们将展望未来光波导芯片和波分复用技术的发展方向,为相关研究和工程领域提供参考和启示。
2. 光波导芯片:2.1 定义和原理:光波导芯片是一种集成光学器件,其通过特殊的材料结构和工艺制作而成。
它利用高折射率的核心层将光信号引导在其表面附近传输,形成一条或多条光波导路径。
这些路径类似于管道,可以将光信号有效地控制、传播和分配。
光波导芯片原理基于总反射和电磁波的耦合效应。
当光线传入具有高折射率的核心层时,由于介质折射率的差异,部分能量会被全内反射并沿着波导路径传输。
在光波导芯片中,可以通过调整核心层和包围层之间的折射率差异来改变传播模式、控制波导路径和操纵光信号。
2.2 结构和特点:通常情况下,光波导芯片由三个主要组成部分构成:核心层、包围层和衬底。
核心层是最重要的部分,用于引导光信号;包围层则用于限制光信号的传播区域,并保持其在核心层内传输;衬底则为光波导芯片提供支撑和稳定性。
波分复用技术(WDM)介绍--------密集波分复用(DWDM)和稀疏波分复用(CWDM)波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。
这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
WDM本质上是光域上的频分复用FDM技术。
每个波长通路通过频域的分割实现,每个波长通路占用一段光纤的带宽。
WDM系统采用的波长都是不同的,也就是特定标准波长,为了区别于SDH系统普通波长,有时又称为彩色光接口,而称普通光系统的光接口为“白色光口”或“白光口”。
通信系统的设计不同,每个波长之间的间隔宽度也有不同。
按照通道间隔的不同,WDM 可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。
CWDM的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。
1 DWDM技术简介WDM和DWDM是在不同发展时期对WDM系统的称呼。
在20世纪80年代初,人们想到并首先采用的是在光纤的两个低损耗窗口1310nm窗口和1550nm窗口各传送1路光波长信号,也就是1310nm、1550nm两波分的WDM系统。
随着1550nm窗口EDFA的商用化,WDM系统的相邻波长间隔变得很窄(一般小于1.6nm),且工作在一个窗口内,共享EDFA光放大器。
为了区别于传统的WDM系统,人们称这种波长间隔更紧密的WDM系统为密集波分复用系统。
所谓密集,是指相邻波长间隔而言,过去WDM系统是几十纳米的波长间隔,现在的波长间隔只有0.4~2nm。
密集波分复用技术其实是波分复用的一种具体表现形式。
波分复用技术的工作原理波分复用技术(Wavelength Division Multiplexing,WDM)是一种基于光的通信技术,利用不同波长的光信号在同一光纤上进行传输。
由于不同波长的光信号在光纤中的传播不会相互干扰,可以通过复用技术将多个光通信信号传输在同一根光纤上,从而大大增加了通信容量。
WDM技术可以分为两种类型:密集波分复用技术(DWDM)和正常波分复用技术(CWDM),它们区别在于波长通道间隔的大小和可用的波长数量。
DWDM通道间隔比CWDM小,可以在同一段光纤上增加更多的波长,从而大幅提高传输容量。
下面将从波分复用技术的原理、优势、缺陷和应用领域等方面介绍这一技术。
一、波分复用技术的原理波分复用技术的原理可以类比于广播电台。
广播电台可以同时播出多个不同频率的电台节目,收听者可以通过调整收音机来选择不同的频率来收听不同的电台节目。
同理,WDM技术可以在同一根光纤上传输多个不同波长的光信号,接收者通过选择不同波长的接收器来分离不同的光信号。
具体来说,WDM系统主要由光发射器、光纤、光放大器和光探测器组成。
光发射器将多个不同波长的光信号合并在一起后,通过光纤进行传输。
光信号在光纤中传播时不会相互干扰,因为不同波长的光信号会在光纤中以不同的角度传送。
光放大器可以放大光信号的功率,使光信号能够达到较远的传输距离。
光探测器用于将不同波长的光信号分离,并将其转换成电信号。
WDM系统的传输容量由两个因素决定:波长间隔和可用波长数量。
DWDM系统通常使用0.8 纳米到 0.1 纳米的波长间隔,可用的波长数量从几十个到数百个不等,从而可以实现传输容量的大幅提升。
二、波分复用技术的优势1. 高通信容量WDM技术可以将多个光信号传输在同一根光纤上,从而大大提高了通信容量。
一个DWDM系统可以支持数百个不同的波长,因此可以实现高达几百兆比特每秒到数千兆比特每秒的数据传输速率。
2. 长传输距离WDM系统利用光放大器放大光信号的功率,在光纤中传输的距离可以高达几千公里,远比传统的电信技术更为出色。
波分复用就是光的频分复用1、什么是光波分复用?光波分复用是指在传输光纤网络中,将少量信息流(也称为流),通过位型复用技术,在一根单模或者多模光纤上传输,各流之间空间隔离,实现了可靠的多路复用,使多路传输时受干扰的影响减至最低,大大提高数据传输的可靠性和容错性;同时还可以减少传输带宽,提高数据的传输速度和传输率,发挥光缆的最大容量,大大节约了网络成本。
2、光波分复用的工作原理光波分复用的工作原理是,将多个信号拆分成多个独立的连续波段,然后分别编码,将多个编码信号转换为光信号,并将其复用到一根光纤上,然后在光纤传输路由的终端处实现识别和重组,最终实现原信号的传输。
光波分复用技术的实现主要分为三个步骤:有线信号转换到光信号,将光信号复用到一条光纤上,以及有限信号光信号重构成原有线信号。
3、光波分复用的优势(1)提高了网络传输带宽,并且保障了网络流量的可靠性和容错性;(2)能够有效地利用宽带网络和光纤网络资源;(3)降低网络成本,可以把多个信号复用到一根光纤上,从而大大节约网络搭设的成本;(4)可以有效利用光纤的最大传输带宽,使数据传输的速率更高;(5)能够传输传统无线信号,如话音、视频、数据和图像等,同时可以支持多种应用,弥补传统光源和光复用技术中的不足。
4、光波分复用的应用(1)广播与电视传输:光波分复用技术可以提供的高质量的磁场防离辐射能力,无航空限制,更小的回绕时延,简单的布线,使用低成本的光纤,可以实现大距离的传输,满足广播和电视业的传输要求。
(2)数据传输:光波分复用技术可以250多个终端在一根光纤使用,极大地提高了传输带宽,延长了距离,减少了传输耗散带宽,改善了光信号传输质量。
(3)语音传输:光波分复用技术在语音传输中有着广泛的应用,可以满足不同的语音传输服务需求,提高了语音传输的可靠性,延长了传输路径。
5、光波分复用的结构光波分复用技术的结构主要有光放大器、选择器和终端路由器等,根据传输要求,选择不同的光放大器和选择器,使其能够具有良好的信号输出效果,终端路由器可以识别和重组复用后的信号,并按其原来的信号格式重构,最终实现原有信号的传输。
WDM波分复用技术是多路复用技术的一种。
多路复用技术包括:时分复用( TDM)、频分复用( FDM)、码分复用( CDMA)、波分复用( WDM)。
WDM又叫波分复用技术是新一代的超高速的光缆技术,所谓波分复用技术,它充分利用单模光纤的低损耗区的巨大带宽资源,将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或去复用器)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。
这种在同一根光纤中同时传输两个或众多不同波长光信号的技术称为波分复用。
波分复用原理图WDM本质上是光域上的频分复用FDM技术。
每个波长通路通过频域的分割实现,每个波长通路占用一段光纤的带宽。
与电频分复用(SDH)不同,波分复用(WDM)是把基带带宽不同的多个信息通道,调制到不同的光载波上,然后通过波分复用器将这些光信号合成一个光信号,经光纤信道传输。
波分复用解调,采用光纤法布里—珀罗滤波器或者采用相干检测技术,首先把各个光载波分离和重现出来,然后用带通滤波器和各信道的频率选择器把基带信号分离和重现出来。
当通信信道间距变得和比特率接近时(密集的FDM),就必须使用相干检测技术,而信道间间距较大时(>100GHz),可以采用直接检测技术。
通信系统的设计不同,每个波长之间的间隔宽度也有不同。
按照通道间隔的不同,WDM可以细分为CWDM和DWDM。
CWDM的信道间隔为20nm,而DWDM 的信道间隔从0.2nm 到1.2nm。
波分复用技术,通常有3种复用方式,即1 310 nm和1 550 nm波长的波分复用、稀疏波分复用(CWDM)和密集波分复用(DWDM)。
石英光纤有两个低损耗窗口,即1310 nm与1550 nm,但由于目前尚无工作于1310 nm窗口的实用化放大器,所以WDM系统的工作波长区为1530~1565 nm。
一、波分复用系统的基本原理所谓波分复用(WDM),就是采用波分复用器(合波器)在发送端将规定波长的信号光载波合并起来,并送入一根光纤中传输;在接收侧,在由另一个波分复用器(分波器)将这些不同信号的光载波分开。
由于不同波长的光载波信号可以看作相互独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。
不同类型的光波分复用器,可以复用的波长数也不同,目前商用化的一般是8个波长、16个波长和32个波长的系统。
波分复用系统的原理如图1-1所示。
图1-1 波分复用系统原理在80年代初光纤通信兴起时,首先被采用的是1310nm/1550nm的两个波长复用系统(即在光纤的两个低损耗窗口1310nm和1550nm各传送一路光波长信号),也叫粗波分复用系统。
这种系统比较简单,一般采用熔融的波分复用器,插入损耗小,在每个中继站,两个波长都进行解复用和光/电/光再生中继。
随着1550nm窗口EDFA的商用化,光传输工程可以利用EDFA对传送的光信号进行放大,实现超长距离无电再生中继传输,在1550nm窗口传送多个波长信号,这些信号相邻波长间隔较窄,且工作在一个共享的EDFA工作带宽内,这种波长间隔紧密的WDM系统称为密集型波分复用系统(DWDM)。
其频谱分布如图1-2所示。
ITU-T G.692建议,DWDM系统的绝对参考频率为193.1THz(对应波长1552.52nm),不同波长的频率间隔为100GHz的整数倍(对应波长间隔约为0.8.nm的整数倍)。
由于密集波分复用系统的波长间隔较小,必须采用高分辨率的波分复用器件,熔融的波分复用器一达不到要求。
不加特别说明,波分复用系统通常指DWDM系统。
λ1λ2λ3λ4 λ5λ6λ7λ8 波长图1-2 DWDM系统的频谱分布(一)DWDM的工作方式双纤单向传输:一根光纤只完成一个方向信号的传输,反向光信号的传输由另一根光纤来完成,统一波长在两个方向上可以重复利用(如图1-3所示)。
第7章光波分复用系统采用时分复用方式是传统数字通信提高传输效率、降低传输成本的有效措施。
无论是PDH系列的34Mbit/s、140Mbit/s、565Mbit/s系统的还是SDH系列的155Mbit/s、622Mbit/s、2488Gbit/s、9952Mbit/s系统都是按照这一原则进行。
但是随着现代电信网对传输容量要求的急剧提高,利用时分复用方式已经日益接近硅和砷化镓半导体技术的极限。
并且传输设备的价格也很高。
随着传输频率的提高,光纤色散的影响也越加严重。
而另一方面光纤的光谱范围尚未得到充分开发。
因而系统进一步扩容的唯一出路就是把电时分复用转到光波分复用上来,即从光域上用波分复用方式来提高传输速率。
本章主要介绍光波分复用技术的基本原理。
7.1 光波分复用的基本概念7.1.1光波分复用的基本概念光波分复用(WDM,Wavelength Division Multiplexing)技术是在一根光纤上能同时传送多波长光信号的一项技术。
它是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将组合波长的光信号分开(解复用)并作进一步处理,恢复出原信号送入不同的终端。
因此,此项技术称为光波长分割复用,简称光波分复用(WDM)技术。
要能在一根光纤上同时传输多个波长信号,那么光纤必须要由足够的带宽资源。
目前单模光纤的适用工作区有两个,即1310nm和1550nm波长段两个低损耗区域。
单模光纤的带宽资源如图7.1所示。
由图可见,1310nm波长段,其低损耗区大约从1260~1360nm,共100nm。
1550nm波长段,其低损耗区从1480nm~1580nm,共100nm。
因此,两个工作波长段一共约有200nm 低损耗区可用,这相当于30000GHz的频带宽度。
但在目前的实际光纤通信系统中由于光纤色散和调制速率的限制,其通信速率被限制在10Gbit/s或以下,所以单模光纤尚有绝大部分的带宽资源有待开发。
简述波分复用器的工作原理
波分复用器(Wavelength Division Multiplexer,WDM)是一种光学器件,能够将不同波长的光信号通过同一光纤传输。
工作原理如下:
1.光源:传输信号的光波长通过单模光纤连接到波分复用器。
2.合并:波分复用器将多个纤芯中的信号合并,通过一个纤芯输出信号。
3.分离:下一级设备将派生的信号分离物理通道上的每个波长信号分离出来。
4.放大:适量放大每个波长的光信号,确保光信号准确地传输到目标设备。
WDM的优点是不仅提高了传输效率,还节省了光纤资源。
同时,在保持光纤宽带的同时提高了信号质量,在长距离传输方面非常有优势。