(集成光电子学导论)第十章硅光子学
- 格式:ppt
- 大小:16.97 MB
- 文档页数:3
会“发光”的芯片——混合硅激光技术解析光的速度让我们叹为观止,你是否想过有一天,计算机的速度就像光那样快?或许你认为这是天方夜谭,但科学家正不遗余力地把这一想法变成现实。
2006年9月18日,来自英特尔公司和美国加州大学圣芭芭拉分校的研究人员成功研发了世界首个采用标准硅工艺制造的混合硅激光器(Hybrid Silicon Laser),这项技术的突破有望把计算机带入光速时代。
光是如何与硅芯片擦出“爱”的火花呢?人们为何垂青硅激光芯片?硅激光芯片就是可以让激光通过的硅芯片,同今天我们熟悉的电子计算机不一样,它是以激光作为数据传输的载体。
当硅激光芯片广泛应用于计算机内部时,陪伴我们多年的电子计算机就要开始改名换姓了,它将被全新的名称——“光计算机”所代替。
以激光作为计算机数据的传输载体,其优势早就为科学家们所熟知。
其一,数据传输带宽将达到令人难以相信的程度。
我们知道,光的传播速度高达每秒30万公里,而电子的传播速度仅为每秒593公里,两相比较,电子的运动速度慢得就像蜗牛在爬。
光的极速特性决定了它在传输带宽上的提升潜力,今天我们在为传输带宽的提升而绞尽脑汁,明天只需几条光束就可以达到同样甚至几倍的水平,这就是光计算机的魅力!其二,并行运算处理将变得更加容易。
在当前的服务器领域,AMD的HyperTransport总线备受欢迎,一个重要的原因就是它可以让并行运算更加高效。
不过在光计算机的眼里,HyperTransport的这点功夫根本不值一提。
电子是沿固定线路流动的,我们无法随意改变它流动的方向,而光就不一样了,我们可以利用反射镜、棱镜、分光镜等光学设备,随意控制和改变光的方向,这样一来,数据就能轻而易举地流动到不同的处理核心,核心之间的数据交换将变得更加高效,多处理器的并行运算将迎来一个崭新的时代。
其三,有助于芯片体积进一步缩小。
电子计算机利用电子传输信息,容易受磁场影响,而光计算机利用光子传输信息,不会受磁场影响,而且光线相交时也不会互相干扰。
《硅光子设计:从器件到系统》阅读记录目录一、基础篇 (3)1.1 光子学基础知识 (4)1.1.1 光子的本质与特性 (4)1.1.2 光子的传播与相互作用 (5)1.2 硅光子学概述 (6)1.2.1 硅光子的定义与发展历程 (7)1.2.2 硅光子学的应用领域 (9)二、器件篇 (10)2.1 硅光子器件原理 (11)2.2 硅光子器件设计 (13)2.2.1 器件的结构设计 (14)2.2.2 器件的工艺流程 (15)2.3 硅光子器件的性能优化 (16)2.3.1 集成电路设计 (17)2.3.2 封装技术 (18)三、系统篇 (20)3.1 硅光子系统架构 (21)3.1.1 系统的整体结构 (22)3.1.2 系统的通信机制 (23)3.2 硅光子系统设计 (25)3.2.1 设计流程与方法 (26)3.2.2 设计实例分析 (27)3.3 硅光子系统的测试与验证 (29)3.3.1 测试平台搭建 (30)3.3.2 性能评估标准 (31)四、应用篇 (31)4.1 硅光子技术在通信领域的应用 (33)4.1.1 光纤通信系统 (34)4.1.2 量子通信系统 (35)4.2 硅光子技术在计算领域的应用 (36)4.2.1 软件定义光计算 (37)4.2.2 光子计算系统 (38)4.3 硅光子技术在传感领域的应用 (39)4.3.1 光学传感器 (40)4.3.2 生物传感与检测 (41)五、未来展望 (42)5.1 硅光子技术的发展趋势 (43)5.1.1 技术创新与突破 (44)5.1.2 应用领域的拓展 (45)5.2 硅光子技术的挑战与机遇 (47)5.2.1 人才培养与引进 (48)5.2.2 政策支持与产业环境 (49)一、基础篇《硅光子设计:从器件到系统》是一本深入探讨硅光子技术设计与应用的专著,涵盖了从基础理论到系统应用的全面知识。
在阅读这本书的基础篇时,我们可以对硅光子设计的核心概念有一个初步的了解。
双微环硅光谐振器结构-概述说明以及解释1.引言1.1 概述概述部分的内容可以从双微环硅光谐振器结构的背景和意义入手。
可以参考以下内容进行编写:双微环硅光谐振器结构是一种光学器件,通过将光束封闭在环形波导中,利用光的干涉效应来实现光的传输和处理。
相比传统的波导结构,双微环硅光谐振器以其独特的性能特点和应用潜力备受关注。
首先,在现代通信和信息技术领域,光通信已经成为一种重要的载体,而硅材料由于其兼具光学和电子特性,在光通信中得到了广泛应用。
双微环硅光谐振器结构作为硅光子学中的一种重要设备,具有很高的集成度、可调谐性和低损耗等优势,被广泛应用于光通信、光电子集成电路、光传感等领域。
其次,双微环硅光谐振器结构基于光的干涉原理,利用微环的高品质因子来实现强烈的光场增强效应。
在双微环硅光谐振器中,光的能量可以在环形波导之间来回传输多次,从而增强了光与器件中的物质相互作用效应,使得光子器件具有非常高的灵敏度和调控能力。
这使得双微环硅光谐振器结构成为实现高度集成光电子芯片的重要组成部分。
值得注意的是,双微环硅光谐振器结构的实现面临着一些挑战。
例如,光波在器件传输过程中可能会受到损耗、色散和非线性等因素的影响,这对器件的性能和稳定性提出了一定的要求。
因此,提高双微环硅光谐振器的质量因子、减小波导损耗、提高波导耦合效率等问题成为学术界和工业界关注的焦点。
综上所述,双微环硅光谐振器结构在光通信和光子集成电路中具有广阔的应用前景。
本文将从双微环硅光谐振器结构的原理和性能特点两个方面展开阐述,为读者提供深入了解该结构的理论基础和应用价值。
1.2 文章结构文章结构部分的内容主要是介绍本文的组织结构和各个章节的内容概述。
通过明确的文章结构,读者可以更好地理解文章整体架构和各个章节之间的逻辑关系。
文章结构部分可以按照以下内容编辑:文章结构:本文共分为引言、正文和结论三个部分。
引言部分将首先对双微环硅光谐振器进行概述,介绍其基本原理和性能特点。
一、引言随着信息技术的飞速发展,硅光电子学在实现光电子集成领域的应用中崭露头角。
硅光电子学的发展对于未来高速通信、超级计算机和光通信等领域具有重要意义。
而铌酸锂薄膜技术则是硅光电子学领域中的重要技术之一,其在光器件中的应用越来越受到关注。
本文将对硅光异质集成铌酸锂薄膜技术的进展及其未来发展进行探讨。
二、硅光异质集成铌酸锂薄膜技术的概述1. 硅光电子学的发展硅光电子学指的是在硅基材料上实现光电子器件的技术和学科领域。
硅光电子学的发展受益于硅材料本身的成熟工艺和设备,可以利用现有的半导体工艺和设备技术,降低成本,提高生产效率,因此备受关注。
2. 铌酸锂薄膜技术的应用铌酸锂(LiNbO3)是一种优异的非线性光学材料,可以广泛应用于光调制器、光开关、光频率倍增等光器件中,具有较高的光电对称性和线性光学效应,因此被广泛用于光通信和光通信领域。
3. 硅光异质集成铌酸锂薄膜技术的原理在硅光电子学中,铌酸锂薄膜技术是一种将铌酸锂薄膜集成到硅基底上的技术,通过光子和电子的相互作用,实现光电子器件的功能。
硅光异质集成铌酸锂薄膜技术的出现,为硅光电子学领域的发展提供了新的机遇和挑战。
三、硅光异质集成铌酸锂薄膜技术的研究进展1. 硅光异质集成铌酸锂薄膜技术的关键技术硅光异质集成铌酸锂薄膜技术的关键技术包括铌酸锂薄膜的制备、硅基底上的铌酸锂薄膜的集成和器件制备等方面。
在这些关键技术方面,研究人员取得了显著的进展,为硅光异质集成铌酸锂薄膜技术的发展奠定了基础。
2. 硅光异质集成铌酸锂薄膜技术的研究应用硅光异质集成铌酸锂薄膜技术已经在光通信、超级计算机、生物医学成像等领域得到了广泛应用,并取得了良好的效果。
研究人员还在不断探索新的应用领域,预计硅光异质集成铌酸锂薄膜技术将迎来更广阔的发展空间。
3. 硅光异质集成铌酸锂薄膜技术的研究热点目前,硅光异质集成铌酸锂薄膜技术的研究热点主要集中在新型铌酸锂薄膜制备技术、高性能光电器件制备技术、器件结构优化等方面。
《半导体器件导论》第10章双极型晶体管例10.1 确定npn双极型晶体管基区的过剩少子电子浓度。
Τ=300Κ时,硅双极型晶体管的各区均匀掺杂,掺杂浓度分别为N E=1018cm−3,N B=1016cm−3,B-E结正偏电压V BE=0.610V。
假设中性基区宽度x B=1μm,少子扩散长度L B=10μm,试确定x=x B2⁄处的实际少子浓度[参见式(10.15a)]与理想情况的线性少子分布[参见式(10.15b)]之比。
【解】由半导体物理知识,可得n BO=n i2N B =(1.5×1010)21016=2.25×104cm−3对实际分布,有δn B(x=x B2)=2.25×104sin h(110)×{[exp(0.6100.0259)−1]sin h(1−0.510)−sin h(0.510)}或δn B(x=x B2)=1.9018×1014cm−3对线性近似,有δn B(x=x B2)=2.25×10410−4×{[exp(0.6100.0259)−1](0.5×10−4)−(0.5×10−4)}或δn B(x=x B2)=1.9042×1014cm−3取实际浓度与线性近似之比,可得R=1.9018×10141.9042×1014=0.9987【说明】当x B=1μm,L B=10μm时,我们可以看到,基区内实际的过剩少子浓度与线性近似的少子浓度非常接近。
例10.2 确定晶体管发射区的过剩少子浓度,并与基区过剩少子浓度进行比较。
若硅双极型晶体管的参数与例10.1完全相同,试确定δp E(x′=0)δn B(x=0)⁄【解】由式(10.20a),可得δp E(0)=p EO[exp(eV BEkT)−1]由式(10.13a ),可得δn B (0)=n BO [exp (eV BEkT)−1]因此δp E (0)δn B (0)=p EO n BO =n i 2N E ⁄n i 2N B ⁄=N B N E =10161018即δp E (0)δn B (0)=0.01 【说明】随着对双极型晶体管分析的深入,我们将看到对于性能良好的晶体管,这个比需求相当小。
《半导体集成电路》课程教学大纲(包括《集成电路制造基础》和《集成电路原理及设计》两门课程)集成电路制造基础课程教学大纲课程名称:集成电路制造基础英文名称:The Foundation of Intergrate Circuit Fabrication课程类别:专业必修课总学时:32 学分:2适应对象:电子科学与技术本科学生一、课程性质、目的与任务:本课程为高等学校电子科学与技术专业本科生必修的一门工程技术专业课。
半导体科学是一门近几十年迅猛发展起来的重要新兴学科,是计算机、雷达、通讯、电子技术、自动化技术等信息科学的基础,而半导体工艺主要讨论集成电路的制造、加工技术以及制造中涉及的原材料的制备,是现今超大规模集成电路得以实现的技术基础,与现代信息科学有着密切的联系。
本课程的目的和任务:通过半导体工艺的学习,使学生掌握半导体集成电路制造技术的基本理论、基本知识、基本方法和技能,对半导体器件和半导体集成电路制造工艺及原理有一个较为完整和系统的概念,了解集成电路制造相关领域的新技术、新设备、新工艺,使学生具有一定工艺分析和设计以及解决工艺问题和提高产品质量的能力。
并为后续相关课程奠定必要的理论基础,为学生今后从事半导体集成电路的生产、制造和设计打下坚实基础。
二、教学基本要求:1、掌握硅的晶体结构特点,了解缺陷和非掺杂杂质的概念及对衬底材料的影响;了解晶体生长技术(直拉法、区熔法),在芯片加工环节中,对环境、水、气体、试剂等方面的要求;掌握硅圆片制备及规格,晶体缺陷,晶体定向、晶体研磨、抛光的概念、原理和方法及控制技术。
2、掌握SiO2结构及性质,硅的热氧化,影响氧化速率的因素,氧化缺陷,掩蔽扩散所需最小SiO2层厚度的估算;了解SiO2薄膜厚度的测量方法。
3、掌握杂质扩散机理,扩散系数和扩散方程,扩散杂质分布;了解常用扩散工艺及系统设备。
4、掌握离子注入原理、特点及应用;了解离子注入系统组成,浓度分布,注入损伤和退火。