近红外基础知识全解 共73页
- 格式:ppt
- 大小:3.61 MB
- 文档页数:57
近红外光谱知识科普全文共四篇示例,供读者参考第一篇示例:近红外光谱是一种应用广泛的光谱学技术,它可以用来研究物质的结构和性质,同时也在很多领域发挥着重要作用。
本文将介绍近红外光谱的基本原理、应用领域以及未来发展方向,希望能够帮助读者更好地了解这一技术。
近红外光谱是一种利用近红外光(波长范围一般在700-2500纳米)与物质相互作用来获取信息的技术。
近红外光谱仪通常由光源、样品室、光学系统和检测器等部分组成。
在近红外光谱分析中,样品受到近红外光的照射后,会发生吸收、散射或反射,这些现象会导致光的强度或波长发生变化,通过检测这些变化可以获取样品的光谱信息。
近红外光谱在很多领域都有着广泛的应用。
在食品工业中,近红外光谱可以用来检测食品的成分、营养价值和品质,帮助生产商保证产品的质量。
在药物研发领域,近红外光谱可以用来分析药物的成分和结构,指导新药的设计和研发过程。
在环境监测和地质勘探领域,近红外光谱可以用来检测空气、水、土壤中的有害物质,帮助保护环境。
此外,近红外光谱还被广泛应用于农业、化工、医学等领域。
近红外光谱技术的发展一直在不断推进。
随着光谱仪器的不断改进和智能化技术的应用,近红外光谱分析的速度和精度得到了显著提高。
未来,近红外光谱技术有望在医疗诊断、生物医药领域得到更广泛的应用,为人类健康和生活质量的提升做出更大的贡献。
总结起来,近红外光谱是一种强大的光谱学技术,具有广泛的应用前景和发展潜力。
通过继续开展研究和技术创新,近红外光谱技术将在未来发挥更加重要的作用,为人类社会的发展带来更多的益处。
希望本文可以帮助读者更好地了解近红外光谱技术,促进其在不同领域的应用和发展。
【仅供参考】。
第二篇示例:近红外光谱(Near-Infrared Spectroscopy, NIR)是一种在近红外波段(波长约700-2500纳米)范围内进行光谱分析的技术方法。
近红外光谱技术广泛应用于农业、医药、食品工业、环境监测等领域,具有快速、准确、非破坏性、无需样品预处理等优点。
近红外光谱分析知识整理近红外光谱分析及其应用简介1、近红外光谱分析及其在国际、国内分析领域的定位近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。
近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。
近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC(American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia 美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。
在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。
发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。
我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。
近红外光谱分析的基本原理布鲁克光谱仪器公司上海代表处2004年9月§1 近红外光谱吸收机理近红外光谱是红外波谱段靠近可见光区的部分,也是红外光谱区光量子能量最高的波段。
为了弄清近红外漫反射光谱分析的基本原理,必须先了解红外及近红外光谱吸收产生的机理。
1.1分子与光谱分子具有不同类型的运动,它包括分子内各种电子的运动,分子作为整体的平动和转动,分子内各原子的振动,原子核的振动等。
按量子力学的观点,分子运动所具有的能量是量子化的,称为分子的能级。
分子不同类型的运动都有相应的能级,即电子能级、振动能级、转动能级与平动能级以及核能级等。
分子从外界吸收光量子的能量以后,就能引起分子能级的跃迁,即从较低的能级被激发到较高的能级。
原子或分子能级跃迁时吸收光量子的频率可用玻尔频率方程式来描述:∆E E E hv=-=终初光(1)式中∆E—能级差;h—planck常数,66231027.⨯-erg s⋅v光—光量子的频率;E终—终止态能级;E初—初始态能级;上式也适用于光量子发射的情形(从高能级向低能级跃迁)。
光量子所具有的能量E光和其频率成正比(即E hv光光=),因此式(1)说明,只有当光量子的能量恰好等于分子运动两能级之差时,这个光量子的能量才会被分子吸收。
分子运动类型相应的能级差各不相同,因此需要吸收不同频率光量子能量使它们跃迁,由此产生不同的波谱吸收。
分子各运动类型对应的能级差及波谱吸收参见表1。
平动能级差因为无穷小,可以认为是连续的,只需任意小的能量(热辐射)就能激发平动能级跃迁,所以实际上观测不到相当于平动动能的“能级”间跃迁的吸收光谱,故表中未列出。
表1 分子各运动类型对应的能级差及波谱吸收分子运动能级差的大小不仅决定了所吸收光量子的频率(或波长),也决定了大群分子在不同能级(不同能量状态)之间的分布。
当大群分子处于热平衡时,它们在各能量状态的分布服从Boltzmann统计规律:n nehlE K TB=-∆()(2)式中∆E为能级差,单位:erg(1ev=1601991012.⨯-erg);K B为Boltzmann常数,1.38⨯10-16erg K/;T为绝对温度,单位:K;nh 、nl分别代表处于高能级和低能级的微粒子数目。
红外谱图解析基本知识基团频率区中红外光谱区可分成4000 cm-1 ~1300(1800)cm-1和1800 (1300 )cm-1 ~ 600 cm-1两个区域。
最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1之间,这一区域称为基团频率区、官能团区或特征区。
区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。
在1800 cm-1(1300 cm-1)~600 cm-1区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。
这种振动基团频率和特征吸收峰与整个分子的结构有关。
当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。
这种情况就像人的指纹一样,因此称为指纹区。
指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。
基团频率区可分为三个区域(1) 4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。
O-H基的伸缩振动出现在3650 ~3200 cm-1范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。
当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。
当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1出现一个宽而强的吸收峰。
胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1,因此,可能会对O-H伸缩振动有干扰。
C-H的伸缩振动可分为饱和和不饱和的两种:饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1,取代基对它们影响很小。
如-CH3基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1和2850 cm-1附近;R3CH 基的吸收基出现在2890 cm-1附近,但强度很弱。
近红外技术培训资料一.近红外的发展概述1.什么是近红外?近红外(Near Infrared 简称NIR)是一种电磁波,按ASTM (美国实验和材料协会)定义是指波长在780nm~2526nm范围内的电磁波。
(1nm=1╳10-9m; 1um=1╳10-6m)近红外是红外光的一部分,红外光包括:近红外、中红外和远红外IR = NIR + MIR(2.5~15um) + FIR(15~200um) (波长范围:0.78~200um)近红外介于可见光(400~780nm)和中红外之间,是人们发现最早的非可见光区域,近红外谱区最初于1800年被Tomas Herschel发现,距今已有200多年的历史。
2.近红外在20世纪的发展状况◆ 20世纪初,人们采用摄谱的方法首次获得了有机化合物的近红外光谱,并对有关基团的近红外光谱特征进行了解释,预示着近红外光谱有可能作为分析技术的一种手段得到应用。
◆50年代以前,近红外光谱的研究只限于为数不多的几个实验室中,且没有得到实际的应用。
◆50年代中后期,随着简易近红外光谱仪器的出现及Norris等人在近红外光谱漫反射技术上所做的大量工作,掀起了近红外光谱应用的一个小高潮,近红外在测定农副产品的品质方面得到广泛应用。
由于这些都基于传统的光谱定量方法,测量结果往往产生较大的误差。
近红外光谱吸收较中红外光谱弱,谱带重叠多,受当时技术条件的限制,近红外光谱分析技术应用不多。
◆60年代中后期,随着中红外光谱技术的发展及其在化合物结构表征中所起的巨大作用,使人们淡漠了近红外光谱在分析测试中的应用。
在此后的约20年的时间里,除了农副产品领域的传统应用之外,近红外光谱技术几乎处于徘徊不前的状态,以至于被人们称为光谱技术中的沉睡者。
◆80年代后期,近红外光谱才真正为人们所注意,这在很大程度上应归功于化学计量学方法的应用,再加上过去中红外光谱技术积累的经验,使近红外光谱分析技术迅速得到推广,成为一门独立的分析技术,有关近红外光谱的研究和应用文献几乎呈指数增长。