不等式的性质和基本不等式
- 格式:docx
- 大小:42.61 KB
- 文档页数:7
不等式的基本性质、解不等式【基础知识】一、不等式的概念及基本性质注意:①不等式的基本性质,没有减法和除法。
如果遇到减法和除法,可以转化乘加法 和乘法,如:求a b -的范围可以转化成求()a b +-的范围,求a b 的范围可以转化成求1a b⨯的范围。
②方程和不等式的两边不能随便乘除,必须先研究这个数的性质,再乘除。
三、分式不等式和高次不等式 1、分式不等式的解法 把分式不等式通过移项、通分、因式分解等化成()0()f xg x ≥的形式→化成不等式组()0()()0g x f x g x ≠⎧⎨≥⎩→解不等式组得解集。
温馨提示:解分式不等式一定要考虑定义域。
2、高次整式不等式的解法(序轴标根法)先把高次不等式分解因式化成123()()()()0n x a x a x a x a ---->的形式(x 的系数必须为正)→标记方程的实根(注意空心和实心之分)→穿针引线,从右往左,从上往下穿(奇穿偶不穿)→写出不等式的解集。
实际上,序轴标根法适用于所有的整式不等式,根据它可以很快地写出整式不等式的解集。
四、绝对值不等式 1、解绝对值不等式 方法一:公式法 解只含有一个绝对值形如()ax b c +><的不等式,一般直接用公式x a x a x a >⇔><-或 x a a x a <⇔-<<,注意集合的关系和集合的运算,集合的运算主要利用数轴。
方法二:零点讨论法 解含有两个绝对值形如()x a x b c +++><的不等式,常用零点讨论法和数形结合法。
注意小分类求交大综合求并。
方法三:平方法 如果绝对值的不等式的两边都是非负数,如:3x >,可以用平方法。
2、绝对值三角不等式a b a b a b -≤±≤+绝对值三角不等式的运用主要体现在直接利用绝对值三角不等式证明不等式和求函数的最值。
【例题精讲】例1 已知不等式 的解集为 ,求 、 的值。
不等式的基本性质与解法不等式是数学中常见的一种数学关系,它描述了两个数之间的大小关系。
在解决实际问题中,经常需要研究不等式的基本性质和解法。
本文将介绍不等式的基本性质以及解决不等式的方法,并且给出一些例子来说明。
一、不等式的基本性质1. 加减性性质:对于两个不等式,如果它们的左右两边分别相加或相减,那么它们的不等关系不变。
例如:对于不等式 2x < 6 和 3x > 9,我们可以将两个不等式的左右两边分别相加得到 2x + 3x < 6 + 9,即 5x < 15。
不等式的不等关系保持不变。
2. 乘除性性质:对于不等式,如果两边都乘以一个正数,则不等关系保持不变;如果两边都乘以一个负数,则不等关系发生改变。
例如:对于不等式 2x < 6,如果两边同时乘以一个正数 3,我们得到 3 * 2x < 3 * 6,即 6x < 18,不等关系保持不变。
但如果两边同时乘以一个负数 -3,我们得到 -3 * 2x > -3 * 6,即 -6x > -18,不等关系发生改变。
3. 反号性质:对于不等式,如果两边同时取负号,不等关系发生改变。
例如:对于不等式 2x < 6,如果两边同时取负号,我们得到 -2x > -6,不等关系发生改变。
4. 绝对值性质:对于不等式,如果绝对值符号"|" 出现在不等式中,我们需要分别讨论绝对值大于零和绝对值小于零的情况。
例如:对于不等式|2x - 4| < 6,我们可以将其分为两个部分来讨论。
当 2x - 4 > 0 时,不等式简化为 2x - 4 < 6,解得 x < 5;当 2x - 4 < 0 时,不等式简化为 -(2x - 4) < 6,解得 x > -1。
二、不等式的解法1. 图像法:对于一些简单的一元不等式,我们可以使用图像法来解决。
将不等式转化为图像表示,通过观察图像来确定不等式的解集。
不等式的基本性质、基本不等式;不等式的解法教学目的:1、巩固不等式的基本性质、拓展基本不等式相关知识;2、掌握一元一次不等式、一元二次不等式及绝对值不等式的解法三. 教学重点、难点基本不等式的知识拓展;绝对值不等式的解法KCB齿轮泵四. 知识分析【不等式的基本性质】2CY系列齿轮泵1、不等式的基本性质:对于任意的实数a,b,有,这三条基本性质是差值比较法的理论依据.KCB不锈钢齿轮泵2、不等式的性质包括“单向性”和“双向性”两个方面.【单向性】(1)(2)LYB系列立式液下齿轮泵(3)(4)(5)KCB-T铜齿轮泵(6)【双向性】(1)GZYB高精度齿轮泵(2)(3)KCB系列大流量齿轮泵单向性主要用于证明不等式;双向性是解不等式的基础(当然也可用于证明不等式),由于单向性(3)、(4)的逆命题都成立,所以它们也可用于解不等式,在应用单向性(6)解无理不等式和形如的高次不等式时,若n为偶数时要注意讨论.KCB齿轮泵安装尺寸3、要注意不等式性质成立的条件.例如,在应用“”这一性质时,有些同学要么是弱化了条件,得,要么是强化了条件,而得2CY齿轮泵安装尺寸【基本不等式】定理1 设,则,当且仅当时,等号成立。
定理2 如果a,b为正数,则,当且仅当时,等号成立。
定理3 如果a,b,c为正数,高压齿轮泵则,当且仅当时,等号成立。
定理4 (一般形式的算术—几何平均值不等式)如果,,…,为n个正数,则,并且当且仅当时,等号成立。
说明:在公式及的学KCB-300齿轮泵习中,应注意几点:(1)和成立的条件是不同的,前者只要求a,b都是实数,而后者要求a,b都为正数。
例如,成立,而不成立。
KCG高温齿轮泵(2)关于不等式及的含义。
或表示严格的不等式;KCB-300齿轮泵碳钢或表示非严格的不等式。
不等式“”读作c大于或等于d,其含义是“或者,或者”,等价于“c不小于d”,即KCB可调齿轮泵若或有一个正确,则正确。
不等式“”读作c小于或等于d,其含义是“,或者”,等价于“c不大于d”,即若或c=d中有ZYB渣油泵一个正确,则正确。
不等式基本概念与性质不等式是数学中重要的概念之一,用于表示两个数的大小关系。
与等式相比,不等式描述的是不等关系,由此引出了不等式的基本概念与性质。
本文将从不等式的定义、不等式的解集、不等式性质等方面进行论述,旨在让读者更全面地了解不等式的基本概念与性质。
一、不等式的定义不等式是表示两个数的大小关系的数学式子,用不等号(>、<、≥、≤)进行表示。
其中,>表示“大于”,<表示“小于”,≥表示“大于等于”,≤表示“小于等于”。
二、不等式的解集不等式的解集由使不等式成立的所有实数组成。
解集的表示方法有两种:用区间表示和用集合表示。
(1)用区间表示解集当不等式中含有“>”、“<”时,解集用开区间表示。
例如,不等式x > 3的解集表示为(3, +∞),表示所有大于3的实数。
当不等式中含有“≥”、“≤”时,解集用闭区间表示。
例如,不等式x≤ 5的解集表示为(-∞, 5],表示所有小于等于5的实数。
(2)用集合表示解集当解集中的元素不连续时,用集合表示解集。
例如,不等式2 < x < 5的解集表示为{x ∈ R | 2 < x < 5},表示所有大于2且小于5的实数。
三、不等式的性质不等式具有一些基本的性质,这些性质对于解不等式方程非常有帮助。
(1)加减性质若a > b,则a + c > b + c,a - c > b - c,其中c为任意实数。
(2)乘除性质若a > b 且 c > 0,则ac > bc;若a > b 且 c < 0,则ac < bc。
(3)倒数性质若a > b 且 c > 0,则1/a < 1/b;若a > b 且 c < 0,则1/a > 1/b。
这些性质可以用来化简不等式的形式,使得求解不等式更加简单。
四、不等式的图示为了更直观地理解不等式的解集,我们可以将不等式的解集用数轴表示出来。
不等式的性质与证明方法总结在数学中,不等式是一种非常重要的数学工具,用于描述数值之间的大小关系。
不等式可以帮助我们解决各种实际问题,同时也是数学推理和证明的基础。
本文将总结一些常见的不等式性质和证明方法,帮助读者更好地理解和应用不等式。
一、基本不等式性质1. 传递性:如果a < b,b < c,则有a < c。
这个性质是不等式推理的基础,可以用于简化证明过程。
2. 加法性:如果a < b,则a + c < b + c。
这个性质表示在不等式两边同时加上一个相同的数,不等式的大小关系不变。
3. 乘法性:如果a < b,c > 0,则ac < bc;如果a < b,c < 0,则ac > bc。
这个性质表示在不等式两边同时乘以一个正数或负数,不等式的大小关系会发生改变。
4. 对称性:如果a < b,则-b < -a。
这个性质表示如果不等式两边同时取相反数,不等式的大小关系会发生改变。
二、常见不等式1. 平均不等式:对于任意非负实数a1, a2, ..., an,有以下不等式成立:(a1 + a2 + ... + an) / n >= (a1 * a2 * ... * an)^(1/n)平均不等式可以用于证明其他不等式,如均值不等式、柯西不等式等。
2. 均值不等式:对于任意非负实数a1, a2, ..., an,有以下不等式成立:(a1 + a2 + ... + an) / n >= (a1^p + a2^p + ... + an^p)^(1/p)其中p为大于0的实数。
均值不等式可以用于证明其他不等式,如柯西不等式、夹逼定理等。
3. 柯西不等式:对于任意实数a1, a2, ..., an和b1, b2, ..., bn,有以下不等式成立:(a1b1 + a2b2 + ... + anbn)^2 <= (a1^2 + a2^2 + ... + an^2)(b1^2 + b2^2 + ... +bn^2)柯西不等式可以用于证明向量内积的性质,以及其他不等式的推导。
不等式的性质与基本不等式1教学目标(a)知识与技能:掌握实数的运算性质与大小顺序间关系,进一步了解数形结合思想;掌握求差法比较两实数或代数式大小.理解两个实数的平方和不小于它们之积的2倍的不等式的证明;理解两个正数的算术平均数不小于它们的几何平均数的证明以及它的几何解释(b)情感与价值:培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力教学重点、难点教学重点:基本不等式的应用教学难点:理解“当且仅当a=b 时取等号”的数学内涵教学过程:(一)复习:两实数的大小关系。
我们知道,实数与数轴上的点是一一对应的,在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大.例如,在图6一1中,点A 表示实数a ,点B 表示实数b ,点A 在点B 右边,那么a b >.我们再看图6一1,a b >表示a 减去b 所得的差是一个大于0的数即正数.一般地:若a b >,则a b -是正数;逆命题也正确.类似地,若a b <,则a b -是负数;若a b =,则0a b -=;它们的逆命题都正确.这就是说:0a b a b >⇔->; 0a b a b =⇔-=; 0a b a b <⇔-<. 由此可见,要比较两个实数的大小,只要考察它们的差就可以了.(二)新课讲解:1.比较两实数大小的方法——求差比较法:比较两个实数a 与b 的大小,归结为判断它们的差a b -的符号;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差的符号.例题分析:例1.比较(3)(5)a a +-与(2)(4)a a +-的大小.分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负,并根据实数运算的符号法则来得出两个代数式的大小.解:)4)(2()5)(3(-+--+a a a a 22(215)(28)70a a a a =-----=-<∴(3)(5)(2)(4)a a a a +-<+-.2.不等式的性质⑴(对称性或反身性)a b b a >⇔<;⑵(传递性)a b b c a c >>⇒>,;⑶(可加性)a b a c b c >+>+⇒,此法则又称为移项法则;(同向可相加)a b c d a c b d ⇒>>+>+,⑷(可乘性)0a b c ac bc ⇒>>>,; 0a b c ac bc ⇒><<,.(正数同向可相乘)00a b c d ac bd ⇒>>>>>, ⑸(乘方法则)00n n a b n N a b >>∈⇔>>() ⑹(开方法则)0,20a b n N n >>∈⇔>>(≥)A B b a ∙ ∙ 图6—1掌握不等式的性质,应注意:条件与结论间的对应关系,是“⇒”符号还是“⇔”符号;运用不等式性质的关键是不等号方向,条件与不等号方向是紧密相连的。
不等式的基本性质和解法不等式在数学中具有重要的地位,它描述了数值之间的大小关系。
不等式的研究可以帮助我们解决许多实际问题,如经济学、物理学、工程学等领域中的优化问题。
本文将介绍不等式的基本性质和解法,帮助读者更好地理解和运用不等式。
一、不等式的基本性质1. 不等式的传递性:如果a > b,b > c,则a > c。
这是不等式的传递性质,我们可以通过这个性质建立一系列的大小关系。
2. 不等式的加法性:如果a > b,则a + c > b + c。
两边同时加上相同的数,不等式的大小关系不变。
3. 不等式的乘法性:如果a > b,c > 0,则ac > bc。
两边同时乘以正数,不等式的大小关系不变。
但如果c < 0,则ac < bc。
两边同时乘以负数,不等式的大小关系会颠倒。
4. 不等式的倒置性:如果a > b,则-b > -a。
不等式两边同时取相反数,不等式的大小关系颠倒。
以上是不等式的基本性质,我们在解决不等式问题时需要运用这些性质来推导和转化不等式的形式。
二、不等式的解法1. 一元一次不等式的解法:对于形如ax + b > 0的一元一次不等式,我们可以按照以下步骤进行求解:a) 将不等式转化为等式,得到ax + b = 0;b) 求解得到x = -b/a;c) 根据x的位置和a的正负确定不等式的解集。
2. 一元二次不等式的解法:对于形如ax^2 + bx + c > 0的一元二次不等式,我们可以按照以下步骤进行求解:a) 求解关于x的二次方程ax^2 + bx + c = 0,得到两个解x1和x2;b) 根据a的正负以及x1和x2的位置确定不等式的解集。
3. 绝对值不等式的解法:对于形如|ax + b| > c的绝对值不等式,我们可以按照以下步骤进行求解:a) 将不等式分为两种情况,即ax + b > c和ax + b < -c;b) 求解这两个一元一次不等式,得到两组解集;c) 将两组解集合并,即得到绝对值不等式的解集。
基本不等式知识点1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)kk k <- 211,(1)k k k>+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z = 22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。
(1)一元一次不等式:只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式。
(2)一元一次不等式的解法:求接方法与解一元一次方程类似,根据不等式性质将不等式变形,从而等到解集.(3)一般步骤:一、去分母;二、去括号;三、移项;四、合并,化成b ax >或b ax <的形式(其中0≠a );五、两边都除以未知数的系数,得到不等式的解集。
热身练习1、判断下列各题是否正确?正确的打“√”,错误的打“×”。
(1) 不等式两边同时乘以一个整数,不等号方向不变.( × ) (2) 如果a >b ,那么3-2a >3-2b.( × ) (3) 如果a <b ,那么a 2<b 2.( × ) (4) 如果a 为有理数,则a >-a.( × ) (5) 如果a >b ,那么ac 2>bc 2.( × ) (6) 如果-x >8,那么x >-8.( × ) (7) 若a <b ,则a +c <b +c.( √ )2、若x >y,则ax >ay ,那么a 一定为( A )。
[来源A 、a >0B 、a<0C 、a≥0D 、a ≤03、有理数b 满足︱b ︱<3,并且有理数a 使得a <b 恒成立,则a 得取值范围是( C )。
A 、小于或等于3的有理数 B 、小于3的有理数 C 、小于或等于-3的有理数 D 、小于-3的有理数4、若b a <,则下列各式中一定成立的是( B ) A 、0>-b a B 、0<-b a C 、0>ab D 、0<ab5、如果t>0,那么a+t 与a 的大小关系是 ( A ).A 、a+t>aB 、a+t<aC 、a+t ≥aD 、不能确定 6、同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 ( B ). A 、1,2,3 B 、0,1,2,3 C 、1,2,3,4 D 、0,1,2,3,47、若三个连续正奇数的和不大于27,则这样的奇数组有( B )A .3组B .4组C .5组D .6组 8、若a <0,则-2b a +__<__-2b[来源:学.科.网] 11.设a <b ,用“>”或“<”填空:[来源:Z*xx*ka -1__<__b -1, a +3__<__b +3, -2a__>__-2b ,3a __<__3b12.实数a ,b 在数轴上的位置如图所示,用“>”或“<”填空:a -b__<__0, a +b__<__0,ab __>__0,a 2__>__b 2,a 1__>__b1,︱a ︱__>__︱b ︱ 13.若a <b <0,则21(b -a )_>___0 14、不等式2(x + 1) - 12732-≤-x x 的解集为_____1314≥x ________。
不等式的性质是什么?不等式的性质是什么?不等式的性质有对称性,传递性,加法单调性,即同向不等式可加性;乘法单调性;同向正值不等式可乘性;正值不等式可乘方;正值不等式可开方;倒数法则。
一、不等式的基本性质1.如果x>y,那么y<X;如果Yy;(对称性)2.如果x>y,y>z;那么x>z;(传递性)3.如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变;4.如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;5.如果x>y,z<0,那么xz<YZ, p 即不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变;<>6.如果x>y,m>n,那么x+m>y+n;7.如果x>y>0,m>n>0,那么xm>yn;8.如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<Y的N 次幂(N为负数)。
< p>二、不等式的基本性质的另一种表达方式有1.对称性;2.传递性;3.加法单调性,即同向不等式可加性;4.乘法单调性;5.同向正值不等式可乘性;6.正值不等式可乘方;7.正值不等式可开方;8.倒数法则。
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。
三、不等式的特殊性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。
总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。
不等式的基本概念与性质不等式是数学中一种重要的关系表达式,描述了两个或多个数之间的大小关系。
不等式与等式不同,它表示两个数之间的大小关系,可以是大于、小于、大于等于、小于等于等。
一、不等式的基本概念1. 不等式符号不等式符号是表示数之间大小关系的符号,常见的不等式符号有以下几种:- 小于号:<,表示小于的关系,如a < b表示a小于b。
- 大于号:>,表示大于的关系,如a > b表示a大于b。
- 小于等于号:≤,表示小于等于的关系,如a ≤ b表示a小于等于b。
- 大于等于号:≥,表示大于等于的关系,如a ≥ b表示a大于等于b。
- 不等号:≠,表示不等的关系,如a ≠ b表示a不等于b。
2. 不等式的解集不等式的解集是满足不等式条件的数值范围。
解集可以表示为一个区间或多个不等式的交集或并集。
例如,不等式x > 3的解集可以表示为(3, +∞),表示 x 的取值范围大于3,不包括3本身。
3. 不等式的性质- 不等式的传递性:如果 a < b 且 b < c,那么有 a < c,这是不等式的传递性质。
例如,如果 x < y 且 y < z,则可以推断出 x < z。
- 不等式的加法性:如果 a < b,那么有 a + c < b + c,其中 c 是任意实数。
例如,如果 x < y,则可以推断出 x + 1 < y + 1。
- 不等式的乘法性:如果 a < b 且 c > 0,那么有 ac < bc,其中 c 是正实数;如果 a < b 且 c < 0,那么有 ac > bc,其中 c 是负实数。
例如,如果 x < y 且 z > 0,则可以推断出 xz < yz。
- 不等式的取反性:如果 a < b,则有 -a > -b。
例如,如果 x < y,则可以推断出 -x > -y。
不等式的基本性质与基本不等式郭浴琼目标: 掌握不等式的基本性质及常用的不等式性质,如自反性、传递性、可加性、可乘性等,并能证明这些基本性质;掌握两个基本不等式,并能用于解决一些简单问题.重难点:不等式的可加性、可乘性;基本不等式的应用及其证明. 一、 知识要点1、 比较两数大小的基本方法(1)作差法 0a b a b ->⇔>;0a b a b -<⇔<;0a b a b -=⇔=(2)作商法 若0,0a b >>,则1a a b b >⇔>;1a a b b <⇔<;1a a b b=⇔= 2、 不等式的基本性质性质1:a b b a >⇔<(对称性)性质2:若,a b b c >>,则a c >(传递性)性质3:若a b >,则a c b c +>+性质4:若,0a b c >>,则ac bc >;若,0a b c ><,则ac bc <结论1:若,a b c d >>,则a c b d +>+结论2:若0a b >>,则n n a b >()*n N ∈ 结论3:若0a b >>,则()*,1n n a b n N n >∈> 3、 基本不等式(均值不等式)对任意,a b R ∈,222a b ab +≥,当且仅当a =b 时取等号均值不等式:若a 、b 为正数,则2a b ab +≥,当且仅当a b =时取等号 变式:222()22a b a b ab ++≥≥ 二、 例题精讲例1、有三个条件:(1)22ac bc >;(2)c a >cb ;(3)22a b >,其中能成为a b >的充分条件的个数有几个,是哪几个?例2、已知三个不等式:①0ab > ②bc ad > ③a c >bd ,以其中两个作为条件,余下一个作为结论,则可以组成多少个正确的命题?并写出这些命题.例3、实数a 、b 满足条件ab <0,那么( ) A. a b -<b a + B. a b +>b a - C. a b +<b a - D. a b -<b a -例4、某收购站分两个等级收购棉花,一级棉花a 元/kg ,二级棉花b 元/kg ()b a <,现有一级棉花x kg ,二级棉花y kg ()x y >,若以两种价格平均数收购,对棉农公平吗?其理由可用不等式表示为 .例5、若12a b -<<<,则3a b -的取值范围是 .例6、已知实数,a b 判断下列不等式中哪些一定是正确的?(1)ab b a ≥+2; (2)ab b a 222-≥+; (3)ab b a ≥+22; (4)2≥+b a a b (5)21≥+a a ; (6) 2≥+ab b a (7)222)(2b a b a +≥+)(例7、(1)若a R b ∈,,且221a b +=,则a b +的最大值是 ,最小值是(2)设0,0,x y >>且21x y +=,则11x y+的最小值为 (3)若01,x <<则491y x x=+-的最小值为 (4)若+∈R x ,则x x 212+有最 值,且值为 (5)若13,3a a a >+-有最 值,是 ,此时a = (6)若1x <,则2231x x x -+-有最 值,值为例8、(1)若a ,b R +∈,且2222a b +=,则21a b +的最大值是(2)设1a >,1b >,且()1ab a b -+=,那么( )A 、a b +有最小值)12(2+B 、a b +有最大值2)12(+C 、ab 有最大值12+D 、ab 有最小值)12(2+例9、一批救灾物资随26辆汽车从某市以/v km h 的速度直达灾区,已知两地公路长400km ,为了安全起见,两车的间距不得小于220v km ⎛⎫ ⎪⎝⎭,求这批物资全部运到灾区至少要多少小时?(不计车身长度)三、 课堂练习1、,x y R ∈,且112,144x y -<-<,则x y的取值范围是 . 2、若()2f x a x c =-,且()()411,125f f -≤≤--≤≤,则()3f 的取值范围是 . 3、若22221,1,a b c d a b c d R +=+=∈、、、,则abcd 的最大值是 .4、函数()()log 310,1a y x a a =+->≠的图像恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为 . 5、设x R ∈,[]x 表示不大于x 的最大整数,如[]3π=,[]1.22-=-,102⎡⎤=⎢⎥⎣⎦,则使213x ⎡⎤-=⎣⎦成立的x 的取值范围是 . 四、课后作业一、填空题1、已知,22ππαπβπ<<<<,则αβ-的取值范围是 ,2βα-的取值范围是 .2、已知三个不等式:①0ab >;②c d a b-<-;③bc ad >,以其中两个作条件,余下一个作结论,则可以组成 个正确命题.3、已知,x y R +∈,2312x y +=,则lg lg x y +的最大值为 .4、已知0a b >>,2c a b=+且1ab =,若log ,log ,log c c c l a m d n ab ===,则将l m n 、、按从小到大的顺序用不等号连接可得 .5、已知222sin sin sin 1αβγ++=(,,αβγ均为锐角),那么cos cos cos αβγ的最大值等于 .6、三个同学对问题“关于x 的不等式232255x x x ax ++-≥在[]1,12上恒成立,求实数a的取值范围”提出各自的解题思路.甲说:“只需不等式左边的最小值不小于右边的最大值”;乙说:“把不等式变形为左边含变量x ,右边仅含常数,求函数的最值”;丙说:“把不等式两边看成关于x 的函数,作出函数图像”.参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是 .二、选择题7、已知不等式()19a x y x y ⎛⎫++≥⎪⎝⎭对任意正实数,x y 恒成立,则正实数a 的最小值为( )A 、2B 、4C 、6D 、8 8、若正数,a b 满足3ab a b =++,则a b +的取值范围是( )A 、[)9,+∞B 、[)6,+∞C 、(]0,9D 、()0,69、已知,a b 为非零实数,且a b <,则下列命题成立的是( )A 、22a b <B 、22a b ab <C 、2211ab a b <D 、b a a b< 三、解答题10、当1x >-时,求2311x x y x -+=+的最小值; 11、(1)设集合()(){}()11,|0,,|M a b ab a b N a b a b ⎧⎫=->=<⎨⎬⎩⎭,试讨论M 与N 的关系;(2)求实数a 的取值范围,使不等式()22lg lg lg lg xy x y a ≤+⋅对一切满足1,1x y >>的实数恒成立.12、某商场预计全年分批购入每台价值为2000元的电视机共3600台,每批都购入x台(x 是正整数),且每批均需付运费400元.储存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运费和保管费用43600元.现在全年只有24000元资金可以用于支付这笔费用,请问能否恰当安排每批进货的数量,使资金够用?写出你的结论,并说明理由.。
不等式基本概念与性质不等式是数学中重要的概念之一,用于描述数值关系的符号不等于号(≠),不等式(<、≤、>、≥)用于表示两个数之间的大小关系。
在学习不等式的过程中,我们需要了解不等式的基本概念与性质,以及如何利用它们解决实际问题。
本文将介绍不等式的基本概念与性质,并举例说明其应用。
一、不等式的基本概念1. 不等式的定义:不等式是数的比较关系的代数表达式,其形式为x>y或x<y,其中x和y为实数。
2. 不等式的解集:不等式的解集是满足给定不等式的实数的集合。
解集可以是有限集、无限集或空集。
3. 不等式的等价变形:通过对不等式进行等价变形可以得到与原不等式等价的不等式。
常用的等价变形包括加减法、乘除法、平方等。
二、不等式的性质1. 不等性质的传递性:对于任意实数a、b和c,如果a>b且b>c,则有a>c。
2. 加法性质:对于任意实数a、b和c,如果a>b,则a+c>b+c。
3. 减法性质:对于任意实数a、b和c,如果a>b,则a-c>b-c。
4. 乘法性质:对于任意实数a、b和c,如果a>b,c>0,则ac>bc;如果a>b,c<0,则ac<bc。
5. 除法性质:对于任意实数a、b和c,如果a>b,c>0,则a/c>b/c;如果a>b,c<0,则a/c<b/c。
三、不等式的应用1. 不等式的解集:通过对不等式进行等价变形,可以确定不等式的解集。
解集的求解可以通过图像法、试数法或推理法等多种方法。
2. 推论的应用:通过对不等式的性质进行推导,可以解决实际问题。
例如,利用不等式性质可以证明两个物体的质量或长度的关系,解决优化问题等。
例题一:已知不等式3x+2>7,求解x的范围。
解:将不等式进行等价变形,得到3x>7-2,即3x>5。
再将不等式两边都除以3,得到x>5/3。
不等式的性质和基本不等式
[优质专题]
1.不等式的基本性质
2.两个实数比较大小的方法
(1)作差法⎩⎨⎧
a -
b >0⇔a >b
a -
b =0⇔a =b
a -
b <0⇔a <b
(a ,b ∈R )
(2)作商法⎩⎪⎨⎪⎧
a
b >1⇔a >b
a
b =1⇔a =b
a b <1⇔a <b
(a ∈R ,b >0)
3.基本(均值)不等式ab ≤
a +b
2
(1)基本(均值)不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 4.几个重要的不等式
(1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +a
b ≥2(a ,b 同号). (3)ab ≤⎝
⎛⎭⎪⎫a +b 22
(a ,b ∈R ).(4)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ). 5.算术平均数与几何平均数
设a >0,b >0,则a ,b 的算术平均数为a +b
2,几何平均数为ab ,基本(均值)不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 6.利用基本(均值)不等式求最值问题 已知x >0,y >0,则:
(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)
(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 2
4.(简记:和定积最大)
[优质试题]
题型一 不等式的性质应用
例1 (1)给出下列命题:
①若ab >0,a >b ,则1a <1
b ; ②若a >b ,
c >
d ,则a -c >b -d ;
③对于正数a ,b ,m ,若a <b ,则a b <a +m
b +m .其中真命题的序号是________.
(2)已知a ,b ,c 为不全相等的实数,P =a 2+b 2+c 2+3,Q =2(a +b +c ),那么P 与Q 的大小关系是( )
A .P >Q
B .P ≥Q
C .P <Q
D .P ≤Q
(3)已知12<a <60,15<b <36.求a -b 和a
b 的取值范围.
【玩转跟踪】
1.下列命题中一定正确的是( ) A .若a >b ,且1a >1
b ,则a >0,b <0 B .若a >b ,b ≠0,则a
b >1 C .若a >b ,且a +
c >b +
d ,则c >d D .若a >b ,且ac >bd ,则c >d
2.已知1≤a -b ≤2且2≤a +b ≤4,求4a -2b 的取值范围.
3.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( ) A .c ≥b >a
B .a >c ≥b
C .c >b >a
D .a >c >b
题型二 基本不等式求最值
角度一:通过配凑法利用基本(均值)不等式求最值
例2 (1)已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13 B.12 C.34 D.23 (2)若函数f (x )=x +
1
x -2
(x >2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+3 C .3 D .4 (3)①已知x <54,求f (x )=4x -2+1
4x -5的最大值;
②已知x 为正实数且x 2
+y 2
2=1,求x 1+y 2的最大值;
③求函数y =x -1
x +3+x -1的最大值.
角度二:通过常数代换法利用基本(均值)不等式求最值
例3 已知a >0,b >0,a +b =1,则1a +1
b 的最小值为________. [探究1] 本例的条件不变,则⎝ ⎛
⎭⎪⎫1+1a ⎝ ⎛⎭
⎪⎫1+1b 的最小值为________.
[探究2] 本例的条件和结论互换即:已知a >0,b >0,1a +1
b =4,则a +b 的最小值为________.
[探究3] 若将本例中的“a +b =1”换为“a +2b =3”,如何求解?
题型三 均值不等式实际应用
例4 某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x
8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A .60件 B .80件 C .100件 D .120件 [玩转跟踪]
1.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司年平均利润的最大值是________万元.
[玩转练习]
1.如果a <0,b >0,那么下列不等式中正确的是( ) A.1a <1b B.-a <b C .a 2<b 2
D .|a |>|b |
2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是( ) A .a +c ≥b -c B .ac >bc C.c 2a -b
>0 D .(a -b )c 2≥0
3.给出下列条件:
①ab >0;②ab <0;③a >0,b >0;④a <0,b <0. 其中可使b a +a
b ≥2成立的个数是( ) A .1 B .2 C .3 D .4
4.若a ,b ∈R 且ab >0,则下列不等式中恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2ab
D.b a +a b ≥2
5.设x >0,则3-3x -1
x 的最大值是( ) A .3 B .3-22 C .-1
D .3-23
6.已知x 2-x +1
x -1(x >1)在x =t 时取得最小值,则t 等于( )
A .1+ 2
B .2
C .3
D .4
7.已知正数a ,b 满足a +2b =2,则2a +1
b 的最小值为________.
8.已知a >0,b >0,2a +1b =1
6,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )
A .8
B .7
C .6
D .5
9.设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.
10.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.
11.若-1<a +b <3,2<a -b <4,求2a +3b 的取值范围.。