不等式的基本性质(人教版选修-)
- 格式:ppt
- 大小:219.01 KB
- 文档页数:17
第34课 不等式的基本性质【考点指津】1.不等式的概念用不等号(>、<或≠)联结而成的式子叫做不等式.2.两个实数大小的比较设a 、b ∈R ,则a>b 0>-⇔b a ,0<-⇔<b a b a ,这是比较两个实数大小和运用比较法的根据.3.不等式的性质性质1 a b b a <⇔> (对称性)性质2 a>b ,c a c b >⇒> (传递性)性质3 a>b ,c b c a +⇒+性质4 a>b ,bc ac c >⇒>0,a>b ,bc ac c <⇒<0以上是不等式的基本性质,以下是不等式的运算性质.性质5 a>b ,d b c a d c +>+⇒> (加法法则)性质6 a>b>0,bd ac d c >⇒>>0 (乘法法则)性质7 a>b>0,n n b a N n >⇒∈* (乘方法则)性质8 a>b>0,n n b a N n >⇒∈* (开方法则)不等式性质在证明不等式和解不等式中有广泛的应用,它也是高考的热点,通常是以客观题形式考查某些性质,有时在证不等式或解不等式过程中间接考查不等式性质. 在复习中,对不等式性质的条件与结论,要彻底弄清,特别是对不等式两边平方、开方或同乘上某个数(或式子)时,要注意所得不等式与原不等式是否同向,否则在解题时往往因忽略了某些条件而造成错误. 从知识的联系上看,不等式的性质与函数的单调性是相互联系的,因此比较一些实数大小的问题,从不等式性质与函数性质结合的角度去认识是必要的.【知识在线】1.下列命题中,正确的命题是( )①若a>b ,c>b ,则a>c ; ②a>b ,则0lg >ba ; ③若a>b ,c>d ,则ac>bd ; ④若a>b>0,则b a 11<;⑤若db c a >,则ad>bc ; ⑥若a>b ,c>d ,则a-d>b-c . A . ①② B . ④⑥ C . ③⑥ D . ③④⑤2.下列命题中,正确的命题是( )A .a 3>b 3,ab>0ba 11>⇒ B . m>n>0,a>0a a n m >⇒ C .b ac b c a >⇒> D . a 2>b 2,ab>0ba 11<⇒ 3.下列命题中正确的是( )A .若|a|>b ,则a 2>b 2B . 若a>b>c ,则(a-b)c>(b-a)cC . 若a>b ,c>d ,则a-b>c-dD . 若a>b>0,c>d>0,即c bd a > 4.下列命题中,正确的命题是( )A . 若ac>bc ,则a>bB . 若a 2>b 2,则a>bC . 若ba 11>,则a<b D . 若b a <,则a<b 5.设命题甲:x 和y 满足⎩⎨⎧<<<+<3042xy y x 命题乙:x 和y 满足⎩⎨⎧<<<<3210y x ,那么( )A .甲是乙的充分条件,但不是乙的必要条件B .甲是乙的必要条件,但不是乙的充分条件C .甲是乙的充要条件D .甲是乙的充分条件,也不是乙的必要条件【讲练平台】例1(2000年全国卷) 若a>b>1,P=b a lg lg ⋅,)lg (lg 21b a Q +=,)2lg(b a R +=,则( ).A . R<P<QB . p<Q<RC . Q<P<RD . P<Q<R分析一 借助对数函数单调性用基本不等式求解.解法一 ∵ a>b>1,∴ lga>lgb>0. ∴2lg lg lg lg b a b a +<⋅,即P<Q .又∵2b a ab +<, ∴ 2lg lg b a ab +<. ∴ )2lg()lg (lg 21b a b a +<+,即Q<R . ∴ P<Q<R ,故选B .分析二 用特殊值法解解法二 取a=10000,b=100,则lga=4,lgb=2.∴ P=22,Q=3,R=lg5050.显然P<Q ,R=lg5050>lg1000=3=Q .∴可排除A 、C 、D . 故选B .点评 不等式性质的考查常与幂函数、指数函数和对数函数的性质的考查结合起来,一般多以选择题的形式出现. 此类题目要求考生有较好、较全面的基础知识,一般难度不大.例2 若函数f(x),g(x)的定义域和值域为R ,则f(x)>g(x)(x ∈R )成立的充要条件是( ).A . 有1个x ∈R ,使得f(x)>g(x)B . 有无穷多个x ∈R ,使得f(x)>g(x)C . 对R 中任意的x ,都有f(x)>g(x)+1D . R 中不存在x ,使得f(x)≤g(x)分析 4个命题的关系在证明问题过程中经常使用. 原命题:若A 成立,则B 成立,逆命题:若B 成立,则A 成立;否命题:若A 成立则B 成立;逆否命题:若B 成立,则A 成立. 其中A ⇒B 与A B ⇒互为充要条件.由于对任意x ∈R ,f(x)>g(x)成立的逆否命题为:在R 中不存在x ,使f(x)≤g(x)成立. 答 选D .点评 本题也可通过构造特殊函数,采用排除法解决. 值得强调的是:不等式的性质的考查方向将更加注重基础性、全面性. 题型灵活多变.例3 已知1≤a+b ≤5,-1≤a-b ≤3,求3a-2b 的取值范围.分析 本题应视a+b 与a-b 为两个整体.解 设a+b=u ,a-b=v ,则2v u a +=,2v u b -=. ∴v u b a 252123+=-. 由已知1≤u ≤5,-1≤v ≤3,易得-2≤3a-2b ≤10.点评 本题常见的错误解法是:由已知,得0≤a ≤4,-1≤b ≤3.进一步,得0≤3a ≤12,-6≤-2b ≤2.从而,得-6≤3a-2b ≤14.由解题过程知,u 与v 各自独立地在区间[1,5]与[-1,3]内取值,从而知v u 2521+可取[-2,10]内的一切值.在错误解法中,得到的0≤a ≤4,-1≤b ≤3已不表明a 与b 可各自独立地在区间[0,4]与[-1,3]内取值了. 如a=4,b=3,a+b=7已不满足1≤a+b ≤5. 得到的区间[0,4]与[-1,3]应这样理解:对于任意给定的p ∈[1,5]与q ∈[-1,3],存在a ∈[0,4],b ∈[-1,3],使得a+b=p ,a-b=q .不等式的性质与等式的性质不一样,一般不具有可逆性. 掌握不等式性质时要谨防与等式性质做简单类比而致错.【知能集成】1.对不等式性质,关键是正确理解和运用,要弄清每一性质的条件和结论、注意条件的放宽和加强,以及条件与结论之间的相互联系;不等式性质包括“单向性”和“双向性”两个方面. 单向性主要用于证明不等式,双向性是解不等式的基础. 因为解不等式要求的是同解变形.2.高考试题中,对不等式性质的考查主要是:(1) 根据给定的条件,利用不等式的性质、判断不等式或与之有关的结论是否成立.(2) 利用不等式的性质与实数的性质、函数性质的结合,进行数值大小的比较.(3) 判断不等式中条件与结论之间的关系,是充分条件或必要条件或充分必要条件.3.要注意不等式性质成立的条件,例如:在应用“a>b ,ab>0b a 11<⇒”这一性质时. 有些同学要么是弱化了条件得a>b b a b 1<⇒. 要么是强化了条件而得ba b a 110<⇒>>. 【训练反馈】1.(2001年上海春招卷)若a 、b 是实数,则a>b>0是a 2>b 2的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既非充分条件也非必要条件2.若a>b ,c>d ,则下列不等关系中不一定成立的是( )A . a-d>b-cB . a+d>b+cC . a-c>b-cD . a-c<a-d3.已知a 、b 、c ∈R ,则下面推理中正确的是( )A . a>b ⇒am 2>bm 2B .b ac b c a >⇒> C . a 3>b 3,ab>0b a 11<⇒ D . a 2>b 2,ab>0ba 11<⇒ 4.(1999年上海卷)若a<b<0,则下列结论中正确的是( )A .不等式b a 11>和||1||1b a >均不能成立 B .不等式a b a 11>-和||1||1b a >均不能成立 C .不等式a b a 11>-和22)1()1(ab b a +>+均不能成立 D .不等式||1||1b a >和22)1()1(a b b a +>+均不能成立 5.当0<a<b<1时,下列不等式中正确的是( )A . b b a a )1()1(1->-B . (1+a)a >(1+b)bC . a b a a )1()1(->-D . b a b a )1()1(->-6.(2001年北京春招卷)若实数a 、b 满足a+b=2,则3a +3b 的最小值是( )A . 18B . 6C . 32D . 4327.a 、b 为不等的正数,k ∈N*,则(ab k +a k b)-(a k+1+b k+1)的符号为( )A . 恒正B . 恒负C . 与a 、b 大小有关D . 与k 是奇数或偶数有关8.不等式2>+xy y x 成立的充要条件是( ) A . x>y B . x ≠y C . x ≠y 或xy>0 D . x ≠y 且xy>09.(2000年北京春招卷)已知函数f(x)=ax 3+bx 2+cx+d 的图象如图,则( )A . )0,(-∞∈bB . )1,0(∈bC . )2,1(∈bD . ),2(+∞∈b10.已知1≤a+b ≤4,-1≤a-b ≤2,则4a-2b 的取值范围为________.11.已知三个不等式:①ab>0,②bd a c ,③bc>ad . 以其中两个作为条件,余下一个作为结论,则可以组成________个正确的命题,请用序号写出它们. 即_______. (把所有正确的命题都填上)12.已知f(x)=ax 2-c ,且-4≤f(1)≤-1,-1≤f(2)≤5,试求f(3)的最大值与最小值.。
不等式的基本性质说课稿不等式的基本性质说课稿1我说课的内容是鲁教版义务教育课程标准实验教科书,七年级数学(下)第十一章第二节《不等式的基本性质》。
下面,我从以下几个方面对本节课的教学设计进行说明。
一、教材分析第十一章《一元一次不等式和一元一次不等式组》是在学习了数轴、等式性质、解一元一次方程、一次函数的基础上,从研究不等关系入手,展开对不等式的基本性质、不等式的解集、解一元一次不等式(组)、一元一次不等式与一次函数的研究学习。
本课题为第十一章第二节《不等式的基本性质》。
它在教材中起着承上启下的作用。
关于它的学习以等式的基本性质为基础,它是学生以后顺利学习一元一次不等式和一元一次不等式组的解法的重要理论依据,是学生后继学习的重要基础和必备技能。
二、教学目标知识目标:1、经历不等式基本性质的探索过程,初步体会不等式与等式的异同。
2、掌握不等式的基本性质,运用不等式的基本性质将不等式变形。
能力目标:1、培养学生类比、归纳、猜想、验证的数学研究方法。
2、发展学生的符号表达能力、代数变形能力。
3、培养学生自主探索与合作交流的能力。
情感目标:让学生感受生活中数学的存在,并且在自主探索、合作交流中感受学习的乐趣。
三、教学重点和难点重点:掌握不等式的基本性质并能正确运用将不等式变形难点:不等式基本性质3的运用四、教法分析活动是影响人发展的决定性因素,学生的学习只有通过自主活动并从中体验、感悟、建构自己的知识经验,培养积极的学习情感,才能得到自身的发展。
但学生主动参与学习活动的方向,活动过程的积极化离不开教师的“导”。
本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动。
在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
五、学法分析“教为不教,学为会学”,“授之以鱼”更要“授之以渔”。
高中数学 选修4--5知识点1、不等式的基本性质 ①(对称性)a b b a >⇔> ②(传递性),a b b c a c>>⇒> ③(可加性)a ba c b c >⇔+>+ (同向可加性)db c a d c b a +>+⇒>>, (异向可减性)db c a d c b a ->-⇒<>, ④(可积性)bcac cb a >⇒>>0,bcac c b a <⇒<>0, ⑤(同向正数可乘性)0,0a b c d a c b d>>>>⇒> (异向正数可除性)0,0a b a b c d c d>><<⇒>⑥(平方法则)0(,1)nna b ab n N n >>⇒>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>⇒>∈>且 ⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>> 2、几个重要不等式①()222a b a b a bR +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号).变形公式: 2a b a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)33a b c a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b ca b b c c a a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤3333(0,0,0)a b c a b c a b c ++≥>>> (当且仅当a b c ==时取到等号).⑥0,2b aa b a b >+≥若则(当仅当a=b 时取等号) 0,2b aa b a b<+≤-若则(当仅当a=b 时取等号)⑦b an b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小.⑧220;a x a x a xa x a >>⇔>⇔<->当时,或22.x a x a axa <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:2211222a b a ba b a b --++≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号). (即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b a b ++⎛⎫≤≤⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n na a a aa a n+++≥+++ ③二维形式的三角不等式:22222211221212()()x y x y x x y y +++≥-+-1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d a c b d a b c d R ++≥+∈当且仅当ad bc =时,等号成立. ⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++ ⑥一般形式的柯西不等式:2222221212(...)(...)n na a ab b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ 是两个向量,则,αβαβ⋅≤ 当且仅当β 是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n na a ab b b ≤≤≤≤≤≤为两组实数.12,,...,nc c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....nn a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小), 如211,(1)k k k <- 211,(1)k k k >+ 2212,21k k k k k k =⇒<++- *12(,1)1k Nk k k k >∈>++等.5、一元二次不等式的解法求一元二次不等式20(0)a xb xc ++><或 2(0,40)a b a c ≠∆=->解集的步骤: 一化:化二次项前的系数为正数.二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边. 6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f xg x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解 ⑴2()0()(0)()f x f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0()(0)()f x f x a a f x a ≥⎧<>⇔⎨<⎩ ⑶2()0()0()()()0()0()[()]f x f x f x gx gx gx f x gx >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或 ⑷2()0()()()0()[()]f xf xg x g x f x gx ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()()()0()()f xf xg x g xf xg x≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法:⑴当1a >时,()()()()f x g xa a fx g x >⇔> ⑵当01a <<时, ()()()()f xg xa a fx g x >⇔<规律:根据指数函数的性质转化. 10、对数不等式的解法⑴当1a >时, ()0l o g ()l o g ()()0()()a af xf xg x g x f x gx >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0l o g ()l o g ()()0.()()a a f x f x gx g x f x gx >⎧⎪>⇔>⎨⎪<⎩ 规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().fx g x f x g x ≤⇔≤ ⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a xa x a a ≥⇔≥≤-≥或③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥④()()()()()()(()0)f x g x f xg xf x g xg x ≥⇔≥≤-≥或 规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法解形如20a x b x c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小; ⑵讨论∆与0的大小; ⑶讨论两根的大小. 14、恒成立问题⑴不等式20a x b x c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩⑵不等式2a xb xc ++<的解集是全体实数(或恒成立)的条件是: ①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立m a x ();f x a ⇔< ()f x a ≤恒成立m a x ();f x a ⇔≤ ⑷()f x a >恒成立m i n ();f x a ⇔> ()f x a ≥恒成立m i n ().f x a ⇔≥15、线性规划问题⑴二元一次不等式所表示的平面区域的判断: 法一:取点定域法:由于直线0A x B y C ++=的同一侧的所有点的坐标代入A x B y C ++后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取一特殊点00(,)x y (如原点),由00A x B y C ++的正负即可判断出0A x B y C ++>或0)<表示直线哪一侧的平面区域. 即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据0A xB yC ++>或0)<,观察B 的符号与不等式开口的符号,若同号,0A xB yC ++>或0)<表示直线上方的区域;若异号,则表示直线上方的区域. 即:同号上方,异号下方.⑵二元一次不等式组所表示的平面区域:不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分. ⑶利用线性规划求目标函数z A x B y =+(,A B 为常数)的最值:法一:角点法: 如果目标函数z A x B y =+ (x y 、即为公共区域中点的横坐标和纵坐标)的最值存在,则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应z 值,最大的那个数为目标函数z 的最大值,最小的那个数为目标函数z 的最小值 法二:画——移——定——求: 第一步,在平面直角坐标系中画出可行域;第二步,作直线0:0l A x B y += ,平移直线(据可行域,将直线平行移动)确定最优解;第三步,求出最优解;第四步,将最优解代入目标函数z A x B y =+即可求出最大值或最小值 . 第二步中最优解的确定方法:利用z 的几何意义:A z y x B B =-+,B为直线的纵截距.①若0,B >则使目标函数z A x B y =+所表示直线的纵截距最大的角点处,z 取得最大值,使直线的纵截距最小的角点处,z 取得最小值;②若0,B <则使目标函数z A x B y =+所表示直线的纵截距最大的角点处,z 取得最小值,使直线的纵截距最小的角点处,z 取得最大值. ⑷常见的目标函数的类型: ①“截距”型:;z A x B y =+②“斜率”型:y z x=或;y b z x a -=-③“距离”型:22z x y =+或22;z x y =+22()()z x a y b =-+-或22()().z x a y b =-+- 在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.概念、方法、题型、易误点及应试技巧总结不等式一.不等式的性质:1.同向不等式可以相加;异向不等式可以相减:若,a bc d >>,则a c b d +>+(若,a bc d ><,则a c b d->-),但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则a c b d >(若0,0a b c d>><<,则a bc d >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >或n na b >;4.若0ab >,a b >,则11a b<;若0ab <,a b >,则11a b >。
1.不等式的基本性质1.实数大小的比较(1)数轴上的点与实数一一对应,可以利用数轴上点的左右位置关系来规定实数的大小.在数轴上,右边的数总比左边的数大.(2)如果a-b>0,则a>b;如果a-b=0,则a=b;如果a-b<0,则a<b.(3)比较两个实数a与b的大小,归结为判断它们的差与0的大小;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差与0的大小.2.不等式的基本性质由两数大小关系的基本事实,可以得到不等式的一些基本性质:(1)如果a>b,那么b<a;如果b<a,那么a>b.即a>b⇔b<a.(2)如果a>b,b>c,那么a>c.即a>b,b>c⇒a>c.(3)如果a>b,那么a+c>b+c.(4)如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc.(5)如果a>b>0,那么a n>b n(n∈N,n≥2).(6)如果a>b>0n∈N,n≥2).3.对上述不等式的理解使用不等式的性质时,一定要清楚它们成立的前提条件,不可强化或弱化它们成立的条件,盲目套用,例如:(1)等式两边同乘一个数仍为等式,但不等式两边同乘同一个数c(或代数式)结果有三种:①c>0时得同向不等式;②c=0时得等式;③c<0时得异向不等式.(2)a>b,c>d⇒a+c>b+d,即两个同向不等式可以相加,但不可以相减;而a>b>0,c>d>0⇒ac>bd,即已知的两个不等式同向且两边为正值时,可以相乘,但不可以相除.(3)性质(5)(6)成立的条件是已知不等式两边均为正值,并且n∈N,n≥2,否则结论不成立.而当n取正奇数时可放宽条件,a>b⇒a n>b n(n=2k+1,k∈N),a>b⇒na>nb(n=2k+1,k∈N*).已知x,y均为正数,设m=x +y,n=x+y,试比较m和n的大小.两式作差――→变形 转化为因式乘积形式――→与0比较判断正负,得出大小 m -n =1x +1y -4x +y =x +y xy -4x +y =+-4xy+=-+,∵x ,y 均为正数,∴x >0,y >0,xy >0,x +y >0,(x -y )2≥0. ∴m -n ≥0,即m ≥n (当x =y 时,等号成立).比较两个数(式子)的大小,一般用作差法,其步骤是:作差—变形—判断差的符号—结论,其中“变形”是关键,常用的方法是分解因式、配方等.1.已知a ,b ∈R ,比较a 4+b 4与a 3b +ab 3的大小. 解:因为(a 4+b 4)-(a 3b +ab 3) =a 3(a -b )+b 3(b -a ) =(a -b )(a 3-b 3) =(a -b )2(a 2+ab +b 2) =(a -b )2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +b 22+34b2≥0. 当且仅当a =b 时,等号成立, 所以a 4+b 4≥a 3b +ab 3.2.在数轴的正半轴上,A 点对应的实数为6a29+a4,B 点对应的实数为1,试判断A 点在B 点的左边,还是在B 点的右边?解:因为6a29+a4-1=--9+a4≤0,所以6a29+a4≤1. 当且仅当a =±3时,等号成立,所以当a ≠±3时,A 点在B 点左边,当a =±3时,A 点与B 点重合.已知a >b >0,c <d <0,e <0.求证:a -c >b -d .可以作差比较,也可用不等式的性质直接证明. 法一:e a -c -eb -d=-d -a +--=-a +c ---,∵a >b >0,c <d <0,∴b -a <0,c -d <0.∴b -a +c -d <0.又∵a >0,c <0,∴a -c >0.同理b -d >0, ∴(a -c )(b -d )>0. ∵e <0,∴-a +c --->0,即e a -c >eb -d . 法二:⎭⎪⎬⎪⎫c<d<0⇒-c>-d>0a>b>0⇒⎭⎪⎬⎪⎫a -c>b -d>0⇒1a -c <1b -d e<0⇒e a -c >e b -d.进行简单的不等式的证明,一定要建立在记准、记熟不等式性质的基础之上,如果不能直接由不等式的性质得到,可以先分析需要证明的不等式的结构,利用不等式的性质进行逆推,寻找使其成立的充分条件.3.已知x ≥1,y ≥1,求证:x 2y +xy 2+1≤x 2y 2+x +y . 证明:左边-右边=(y -y 2)x 2+(y 2-1)x -y +1 =(1-y )=(1-y )(xy -1)(x -1).因为x ≥1,y ≥1,所以1-y ≤0,xy -1≥0,x -1≥0. 所以x 2y +xy 2+1≤x 2y 2+x +y .4.已知a ,b ,x ,y 都是正数,且1a >1b ,x >y ,求证:x x +a >yy +b .证明:因为a ,b ,x ,y 都是正数,且1a >1b ,x >y ,所以x a >y b ,所以a x <by .故a x +1<b y +1,即x +a x <y +b y .所以x x +a >yy +b.(1)已知-π2≤α≤β≤2,求α-β的取值范围.(2)已知-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的取值范围. 求代数式的范围应充分利用不等式的基本性质. (1)∵-π2≤α≤β≤π2, ∴-π2≤α≤π2,-π2≤-β≤π2,且α≤β.∴-π≤α-β≤π且α-β≤0.∴-π≤α-β≤0.即α-β的取值范围为.(2)设a +3b =λ1(a +b )+λ2(a -2b )=(λ1+λ2)a +(λ1-2λ2)b .解得λ1=53,λ2=-23.∴-53≤53(a +b )≤53,-2≤-23(a -2b )≤-23.∴-113≤a +3b ≤1.即a +3b 的取值范围为⎣⎢⎡⎦⎥⎤-113,1.求代数式的取值范围是不等式性质应用的一个重要方面,严格依据不等式的性质和运算法则进行运算,是解答此类问题的基础,在使用不等式的性质中,如果是由两个变量的范围求其差的范围,一定不能直接作差,而要转化为同向不等式后作和.5.已知1≤α+β≤4,-2≤α-β≤-1,求2α-β的取值范围. 解:设2α-β=m (α+β)+n (α-β),∴⎩⎪⎨⎪⎧m +n =2,m -n =-1⇒⎩⎪⎨⎪⎧m =12,n =32.又∵1≤α+β≤4,-2≤α-β≤-1, ∴⎩⎪⎨⎪⎧12≤12α+β,-3≤32α-β-32⇒-52≤2α-β≤12.∴2α-β的取值范围为⎣⎢⎡⎦⎥⎤-52,12.6.三个正数a ,b ,c 满足a ≤b +c ≤2a ,b ≤a +c ≤2b ,求ba 的取值范围.解:两个不等式同时除以a ,得⎩⎪⎨⎪⎧1≤b a +ca≤2,①b a ≤1+c a ≤2·ba ,②将②×(-1),得⎩⎪⎨⎪⎧1≤b a +ca≤2,-2·b a ≤-1-c a ≤-ba,两式相加,得1-2b a ≤b a -1≤2-b a ,解得23≤b a ≤32.即b a 的取值范围是⎣⎢⎡⎦⎥⎤23,32. 课时跟踪检测(一)1.下列命题中不.正确的是( ) A .若3a>3b ,则a >b B .若a >b ,c >d ,则a -d >b -c C .若a >b >0,c >d >0,则a d >bcD .若a >b >0,ac >bd ,则c >d解析:选D 当a >b >0,ac >ad 时,c ,d 的大小关系不确定. 2.已知a >b >c ,则下列不等式正确的是( ) A .ac >bc B .ac 2>bc 2C .b (a -b )>c (a -b )D .|ac |>|bc |解析:选C a >b >c ⇒a -b >0⇒(a -b )b >(a -b )c . 3.如果a <b <0,那么下列不等式成立的是( ) A.1a <1b B .ab <b 2C .-ab <-a 2D .-1a <-1b解析:选D 对于A 项,由a <b <0,得b -a >0,ab >0,故1a -1b =b -a ab >0,1a >1b ,故A 项错误;对于B 项,由a <b <0,得b (a -b )>0,ab >b 2,故B 项错误;对于C 项,由a <b <0,得a (a -b )>0,a 2>ab ,即-ab >-a 2,故C 项错误;对于D 项,由a <b <0,得a -b <0,ab >0,故-1a -⎝ ⎛⎭⎪⎫-1b =a -b ab <0,-1a <-1b成立,故D 项正确.4.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a (d -c )>b (d-c )中,成立的个数是( )A .1B .2C .3D .4解析:选 C ∵a >0>b ,c <d <0,∴ad <0,bc >0,∴ad <bc ,故①不成立.∵a >0>b >-a ,∴a >-b >0,∵c <d <0,∴-c >-d >0,∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②成立.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ),a -c >b -d ,故③成立.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),故④成立.成立的个数为3.5.给出四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0. 能得出1a <1b成立的有________(填序号).解析:由1a <1b ,得1a -1b <0,b -a ab <0,故①②④可推得1a <1b成立.答案:①②④6.设a >b >1,c <0,给出下列三个结论:①c a >c b ;②a c <b c;③log b (a -c )>log a (b -c ).其中所有的正确结论的序号是________.解析:由a >b >1,c <0,得1a <1b ,c a >c b ;幂函数y =x c (c <0)是减函数,所以a c <b c;因为a -c >b -c ,所以log b (a -c )>log a (a -c )>log a (b -c ),①②③均正确.答案:①②③7.已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________. 解析:设z =2x -3y =m (x +y )+n (x -y ),即2x -3y =(m +n )x +(m -n )y .∴⎩⎪⎨⎪⎧m +n =2,m -n =-3.解得⎩⎪⎨⎪⎧m =-12,n =52.∴2x -3y =-12(x +y )+52(x -y ).∵-1<x +y <4,2<x -y <3,∴-2<-12(x +y )<12,5<52(x -y )<152.由不等式同向可加性,得3<-12(x +y )+52(x -y )<8,即3<z <8.答案:(3,8)8.若a >0,b >0,求证:b2a +a2b≥a +b . 证明:∵b2a +a2b -a -b =(a -b )⎝ ⎛⎭⎪⎫a b -b a =-+ab,(a -b )2≥0恒成立,且已知a >0,b >0, ∴a +b >0,ab >0.∴-+ab≥0.∴b2a +a2b≥a +b . 9.已知-6<a <8,2<b <3,分别求2a +b ,a -b ,ab 的取值范围.解:∵-6<a <8,∴-12<2a <16. 又2<b <3,∴-10<2a +b <19. ∵2<b <3,∴-3<-b <-2. 又∵-6<a <8,∴-9<a -b <6. ∵2<b <3,∴13<1b <12.①当0≤a <8时,0≤ab <4;②当-6<a <0时,-3<ab<0.综合①②得-3<ab<4.∴2a +b ,a -b ,ab的取值范围分别为(-10,19),(-9,6),(-3,4).10.已知a >0,a ≠1. (1)比较下列各式大小.①a 2+1与a +a ;②a 3+1与a 2+a ; ③a 5+1与a 3+a 2.(2)探讨在m ,n ∈N +条件下,am +n+1与a m +a n的大小关系,并加以证明.解:(1)由题意,知a >0,a ≠1,①a 2+1-(a +a )=a 2+1-2a =(a -1)2>0. ∴a 2+1>a +a .②a 3+1-(a 2+a )=a 2(a -1)-(a -1) =(a +1)(a -1)2>0,∴a 3+1>a 2+a , ③a 5+1-(a 3+a 2)=a 3(a 2-1)-(a 2-1)=(a 2-1)(a 3-1). 当a >1时,a 3>1,a 2>1,∴(a 2-1)(a 3-1)>0. 当0<a <1时,0<a 3<1,0<a 2<1, ∴(a 2-1)(a 3-1)>0,即a 5+1>a 3+a 2. (2)根据(1)可得am +n+1>a m +a n.证明如下:a m +n +1-(a m +a n )=a m (a n -1)+(1-a n )=(a m -1)(a n -1).当a >1时,a m>1,a n>1,∴(a m-1)(a n-1)>0. 当0<a <1时,0<a m<1,0<a n<1, ∴(a m-1)(a n-1)>0.综上可知(a m-1)(a n-1)>0,即a m +n+1>a m +a n.。
数学人教B 选修4-5第一章不等式的基本性质和证明的基本方法知识建构综合应用专题一 含绝对值不等式的解法1.公式法|f (x )|>g (x )f (x )>g (x )或f (x )<-g (x );|f (x )|<g (x )-g (x )<f (x )<g (x ).2.平方法|f (x )|>|g (x )|[f (x )]2>[g (x )]2.3.零点分段法含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间上的符号,转化为不含绝对值的不等式去解.应用1解下列关于x 的不等式:(1)|x -x 2-2|>x 2-3x -4;(2)|x -2|-|2x +5|>2x .提示:根据绝对值的意义,先去掉绝对值符号,再解不等式.应用2若f 1(x )=3|x -p 1|,f 2(x )=2·3|x -p 2|,x ∈R ,p 1,p 2为常数,且f (x )=⎩⎪⎨⎪⎧f 1(x ),f 1(x )≤f 2(x ),f 2(x ),f 1(x )>f 2(x ).求f (x )=f 1(x )对所有实数x 成立的充要条件(用p 1,p 2表示).专题二 基本不等式的应用利用基本不等式求最值问题一般有两种类型:(1)和为定值时,积有最大值;(2)积为定值时,和有最小值.在具体应用基本不等式解题时,一定要注意适用的范围和条件:“一正、二定、三相等”.应用1(1)已知0<x <2,求函数y =x (8-3x )的最大值.(2)已知x >1,求函数y =x 2-2x +22x -2的最小值. 提示:先通过恒等变形,使不等式具备“一正、二定、三相等”的条件,再应用基本不等式求最值.应用2已知a >b >0,求a 2+16b (a -b )的最小值. 提示:适当变形后,可多次应用基本不等式,但应注意验证等号是否成立. 专题三 恒成立问题对于恒成立不等式求参数范围问题,常见类型及其解法如下:(1)分离参数法运用“f (x )≤a f (x )max ≤a ,f (x )≥a f (x )min ≥a ”可解决恒成立中的参数范围问题.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维与抽象思维各自的优势,可直观地解决问题.应用1已知函数f (x )在定义域(-∞,1]上是减函数,问是否存在实数k ,使得f (k -sinx )≥f (k 2-sin 2x )对一切x ∈R 恒成立?并说明理由.提示:首先应根据函数的单调性去掉函数符号,转化为关于sin x 的不等式恒成立问题. 应用2设有关于x 的不等式lg(|x +3|+|x -7|)>a .(1)当a =1时,解此不等式;(2)当a 为何值时,此不等式的解集是R?提示:对于(1),根据对数函数的单调性转化为绝对值不等式求解.(2)可转化为函数最值问题求解.专题四 不等式的证明证明不等式的主要方法有作差比较法、作商比较法、平方差比较法、综合法、分析法.其次还有反证法、放缩法、换元法、判别式法、构造函数法等,但这些方法不是孤立的,它们相互渗透、相辅相成,有的题目可以有多种证法,而有的题目要同时用几种方法才能解决,因此我们在平时解题中要通过一题多解,一解多法的反复训练,加强对各种方法的区别与联系的认识,把握每种方法的优点和缺点,从而不断提高我们分析问题和解决问题的能力.应用1已知a ,b ,c ,d ∈R ,求证:ac +bd ≤(a 2+b 2)(c 2+d 2).提示:本题可用分析法、综合法、比较法、三角代换法、构造函数法等证明.应用2用反证法证明钝角三角形最大边上的中线小于该边长的一半.答案:综合应用专题一应用1:解:(1)解法一:原不等式等价于x -x 2-2>x 2-3x -4或x -x 2-2<-(x 2-3x -4),解得1-2<x <1+2或x >-3,∴原不等式的解集为{x |x >-3}.解法二:∵|x -x 2-2|=|x 2-x +2|=x 2-x +2,∴原不等式等价于x 2-x +2>x 2-3x -4x >-3.∴原不等式的解集为{x |x >-3}.(2)分段讨论:①当x <-52时,原不等式变形为 2-x +2x +5>2x ,解得x <7,∴原不等式的解集为{x |x <-52}. ②当-52≤x ≤2时,原不等式变形为2-x -2x -5>2x , 解得x <-35. ∴原不等式的解集为{x |-52≤x <-35}. ③当x >2时,原不等式变形为x -2-2x -5>2x ,解得x <-73,∴原不等式无解. 综上可得,原不等式的解集为{x |x <-35}. 应用2:解:f (x )=f 1(x )恒成立f 1(x )≤f 2(x )3|x -p 1|≤2·3|x -p 2|3|x -p 1|-|x -p 2|≤2|x -p 1|-|x -p 2|≤log 32.(*)若p 1=p 2,则(*)式0≤log 32,显然成立;若p 1≠p 2,记g (x )=|x -p 1|-|x -p 2|.当p 1>p 2时,g (x )=⎩⎪⎨⎪⎧p 1-p 2, x <p 2,-2x +p 1+p 2, p 2≤x ≤p 1,p 2-p 1, x >p 1, 所以g (x )max =p 1-p 2,故只需p 1-p 2≤log 32.当p 1<p 2时,g (x )=⎩⎪⎨⎪⎧ p 1-p 2, x <p 1,2x -p 1-p 2, p 1≤x ≤p 2,p 2-p 1, x >p 2,所以g (x )max =p 2-p 1,故只需p 2-p 1≤log 32.综上所述,f (x )=f 1(x )对所有实数x 成立的充要条件是|p 1-p 2|≤log 32.专题二应用1:解:(1)∵0<x <2,∴0<3x <6,∴8-3x >0,∴y =x (8-3x )=13·3x ·(8-3x ) ≤13⎝⎛⎭⎫3x +8-3x 22=163,当且仅当3x =8-3x ,即x =43时取等号, ∴当x =43时,y =x (8-3x )有最大值163. (2)∵x >1,∴y =x 2-2x +22x -2=(x -1)2+12(x -1)=12[(x -1)+1x -1] ≥12×2(x -1)·1x -1=1. 当且仅当x -1=1x -1,即x =2时取等号, 所以当x =2时,y =x 2-2x +22x -2有最小值1. 应用2:解:解法一:因为a >b >0,所以a -b >0,所以a 2+16b (a -b )≥a 2+16⎝⎛⎭⎫b +a -b 22=a 2+64a 2≥16, 当且仅当a =2b ,a 2=8,即a =22,b =2时,等号成立,所以a 2+16b (a -b )的最小值为16. 解法二:因为a >b >0,所以a -b >0,所以a 2+16b (a -b )=[(a -b )+b ]2+16(a -b )b≥(2(a -b )b )2+16(a -b )b=4(a -b )b +16(a -b )b≥24(a -b )b ·16(a -b )b=16, 当且仅当a =2b ,(a -b )b =2,即a =22,b =2时,等号成立,所以a 2+16b (a -b )的最小值为16. 专题三应用1:解:存在.理由:∵f (x )在(-∞,1]上是减函数,∴k -sin x ≤k 2-sin 2x ≤1.假设存在实数k 符合题意.∵k 2-sin 2x ≤1,即k 2-1≤sin 2x 对一切x ∈R 恒成立,且sin 2x ≥0,∴k 2-1≤0,∴-1≤k ≤1.①由k -sin x ≤k 2-sin 2x ,得(sin x -12)2≤k 2-k +14, ∴k 2-k +14≥(sin x -12)2对一切x ∈R 恒成立, 又(sin x -12)2的最大值为94, ∴k 2-k +14≥94,解得k ≤-1或k ≥2.② 由①②知k =-1.应用2:解:(1)当a =1时,lg(|x +3|+|x -7|)>1,|x +3|+|x -7|>10,⎩⎪⎨⎪⎧ x ≥7,2x -4>10,或⎩⎪⎨⎪⎧ -3<x <7,10>10,或⎩⎪⎨⎪⎧ x ≤-3,4-2x >10,x >7或x <-3.所以不等式的解集为{x |x <-3或x >7}.(2)设f (x )=|x +3|+|x -7|,有f (x )≥|(x +3)-(x -7)|=10,当且仅当(x +3)(x -7)≤0,即-3≤x ≤7时,f (x )取得最小值10,∴lg(|x +3|+|x -7|)≥1.要使lg(|x +3|+|x -7|)>a 的解集为R ,只要a <1.专题四应用1:证明:证法一:(1)当ac +bd ≤0时,显然成立.(2)当ac +bd >0时,欲证原不等式成立,只需证(ac +bd )2≤(a 2+b 2)(c 2+d 2). 即证a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2.即证2abcd ≤b 2c 2+a 2d 2.即证(bc -ad )2≥0.因为a ,b ,c ,d ∈R ,所以上式恒成立.故原不等式成立.综合(1)、(2)知,原不等式成立.证法二:(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=(a 2c 2+2abcd +b 2d 2)+(b 2c 2-2abcd +a 2d 2)=(ac +bd )2+(bc -ad )2≥(ac +bd )2.∴(a 2+b 2)(c 2+d 2)≥|ac +bd |≥ac +bd ,即原不等式成立.证法三:∵(a 2+b 2)(c 2+d 2)-(ac +bd )2=(bc -ad )2≥0,∴(a 2+b 2)(c 2+d 2)≥(ac +bd )2,∴(a 2+b 2)(c 2+d 2)≥|ac +bd |≥ac +bd ,即ac +bd ≤(a 2+b 2)(c 2+d 2).证法四:不妨设⎩⎪⎨⎪⎧ a =r 1cos α,b =r 1sin α,⎩⎪⎨⎪⎧c =r 2cos βd =r 2sin β, 则ac +bd =r 1r 2cos αcos β+r 1r 2sin αsin β=r 1r 2cos(α-β).又∵|r 1r 2|=|r 1|·|r 2|=a 2+b 2c 2+d 2=(a 2+b 2)(c 2+d 2),及r 1r 2cos(α-β)≤|r 1r 2|,∴ac +bd ≤(a 2+b 2)(c 2+d 2).证法五:构造函数f (x )=(a 2+b 2)x 2+2(ac +bd )x +(c 2+d 2)=(a 2x 2+2acx +c 2)+(b 2x 2+2bdx +d 2)=(ax +c )2+(bx +d )2.不论x 取任何实数,函数f (x )的值均为非负数,因此,(1)当a 2+b 2≠0时,方程f (x )=0的判别式Δ≤0,即[2(ac +bd )]2-4(a 2+b 2)(c 2+d 2)≤0.即(ac +bd )2≤(a 2+b 2)(c 2+d 2),∴ac +bd ≤|ac +bd |≤(a 2+b 2)(c 2+d 2).(2)当a 2+b 2=0时,原不等式显然成立.综合(1)(2),可知原不等式成立. 应用2:解:已知:如图,在△ABC 中,∠CAB >90°,D 是BC 的中点.求证:AD <12BC .证明:假设AD ≥12BC . (1)若AD =12BC ,由平面几何中的定理“若三角形一边上的中线等于该边长的一半,那么这条边所对的角为直角”,可知∠A =90°,与题设矛盾. 所以AD ≠12BC . (2)若AD >12BC ,因为BD =DC =12BC , 所以在△ABD 中,AD >BD .从而∠B >∠BAD .同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD ,即∠B +∠C >∠CAB .因为∠B +∠C =180CAB ︒-∠,所以180CAB ︒-∠>∠CAB .则∠CAB <90°,这与题设∠CAB >90°矛盾.所以AD >12BC 不成立. 由(1)(2)知,AD <12BC . 真题放送1.(2011·陕西高考)设0<a <b ,则下列不等式中正确的是( )A .a <b <ab <a +b 2B .a <ab <a +b 2<b C .a <ab <b <a +b 2 D .ab <a <a +b 2<b 2.(2011·山东高考)不等式|x -5|+|x +3|≥10的解集是( )A .[-5,7]B .[-4,6]C .(-∞,-5]∪[7,+∞)D .(-∞,-4]∪[6,+∞)3.(2011·广东高考)不等式|x +1|-|x -3|≥0的解集是____________.4.(2011·浙江高考)设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________.5.(2011·辽宁高考)已知函数f (x )=|x -2|-|x -5|.(1)证明:-3≤f (x )≤3;(2)求不等式f (x )≥x 2-8x +15的解集.6.(2011·安徽高考)(1)设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y+xy ; (2)设1<a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c .答案:1.B ∵0<a <b ,∴a ·a <ab ,∴a <ab . 由基本不等式,知ab <a +b 2(a ≠b ). 又∵0<a <b ,∴a +b <b +b ,∴a +b 2<b , ∴a <ab <a +b 2<b . 2.D 方法一:令y =|x -5|+|x +3|,此函数对应的图象如下图所示.令y =10,即|x -5|+|x +3|=10,解得x =-4或x =6.结合图象可知|x -5|+|x +3|≥10的解集为(-∞,-4]∪[6,+∞).方法二:将x =6代入可知适合已知不等式,故排除选项C ;将x =0代入可知不适合已知不等式,故排除选项A ,B.故选D.3.[1,+∞) 原不等式可化为⎩⎪⎨⎪⎧ x ≤-1,-(x +1)-(3-x )≥0,或⎩⎪⎨⎪⎧-1<x <3,x +1-(3-x )≥0,或⎩⎪⎨⎪⎧x ≥3,x +1-(x -3)≥0. 解得不等式的解集为[1,+∞).4.2105设2x +y =m ,则y =m -2x ,代入4x 2+y 2+xy =1, 得6x 2-3mx +m 2-1=0.由Δ=9m 2-24(m 2-1)≥0,得m 2≤85, 所以-2105≤m ≤2105,所以2x +y 的最大值为2105. 5.解:(1)证明:f (x )=|x -2|-|x -5|=⎩⎪⎨⎪⎧ -3, x ≤2,2x -7, 2<x <5,3, x ≥5.当2<x <5时,-3<2x -7<3.所以-3≤f (x )≤3.(2)由(1)可知,当x ≤2时,f (x )≥x 2-8x +15的解集为空集;当2<x <5时,f (x )≥x 2-8x +15的解集为{x |5-3≤x <5};当x ≥5时,f (x )≥x 2-8x +15的解集为{x |5≤x ≤6}.综上,不等式f (x )≥x 2-8x +15的解集为{x |5-3≤x ≤6}.6.证明:(1)由于x ≥1,y ≥1,所以x +y +1xy ≤1x +1y+xyxy (x +y )+1≤y +x +(xy )2.而[y +x +(xy )2]-[xy (x +y )+1]=[(xy )2-1]-[xy (x +y )-(x +y )]=(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1),又因为x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0.从而所要证明的不等式成立.(2)设log a b =x ,log b c =y ,由对数的换底公式,得log c a =1xy ,log b a =1x ,log c b =1y,log a c =xy .于是,所要证明的不等式即为x +y +1xy ≤1x +1y+xy ,其中x =log a b ≥1,y =log b c ≥1. 故由(1)可知所要证明的不等式成立.。