向可加性等;
②作差法或作商法; ③函数的单调性.
(2)在直接利用不等式的性质证明不等式时,特别注意以下几点:
①是不是同向不等式; ②此性质是不是可以逆用.
题型一 题型二 题型三 题型四
易错辨析
易错点:由于多次应用同向不等式相加(乘)法则导致变量的取值
范围扩大.
【例4】 已知f(x)=mx2-n,且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值
对于④,当 a=1,b=0,c=-1,d=-2 时,ac>bd 不成立;
对于⑤,当 cd 不一定大于 0,故不正确.
答案:②
1.使用不等式的性质时要注意哪些问题?
剖析:(1)在应用传递性时,如果两个不等式中有一个带等号,而另
一个不带等号,那么等号是不能传递的.如a≤b,b<c⇒a<c.
(2)在乘(除)中,要特别注意乘(除)数的符号.
.
解析:(x2-x)-(x-2)=x2-2x+2=(x-1)2+1.
因为(x-1)2≥0,所以(x-1)2+1>0,
即(x2-x)-(x-2)>0.
所以x2-x>x-2.
答案:x2-x>x-2
【做一做1-2】 设x=a2b2+5,y=2ab-a2-4a,若x>y,则实数a,b应满足
的条件为
.
解析:∵x>y,
范围.
错解:依题意,有
-4 ≤ ������-������ ≤ -1, -1 ≤ 4������-������ ≤ 5,
加减消元,得0≤m≤3,1≤n≤7,
从而,得-7≤f(3)=9m-n≤26,即f(3)的取值范围是[-7,26].
题型一 题型二 题型三 题型四