高考数学讲义空间向量与立体几何.知识框架
- 格式:doc
- 大小:775.50 KB
- 文档页数:5
y k iA(x,y,z)O jxz 空间向量与立体几何一、空间直角坐标系的建立及点的坐标表示空间直角坐标系中的坐标:如图给定空间直角坐标系和向量a ,设,,i j k(单位正交基底)为坐标向量,则存在唯一的有序实数组123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 叫作向量a在空间直角坐标系O xyz -中的坐标,记作123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.二、空间向量的直角坐标运算律(1)若123(,,)a a a a = ,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=--- ,123(,,)()a a a a R λλλλλ=∈,112233//,,()a b a b a b a b R λλλλ⇔===∈,(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(3)//a b b a λ⇔= 112233()b a b a R b aλλλλ=⎧⎪⇔=∈⎨⎪=⎩三、空间向量直角坐标的数量积1、设b a ,是空间两个非零向量,我们把数量><b a b a ,cos ||||叫作向量b a ,的数量积,记作b a ⋅,即b a ⋅=><b a b a ,cos |||| 规定:零向量与任一向量的数量积为0。
立体几何与空间向量知识梳理
立体几何与空间向量是数学中的两个重要分支,它们都涉及到三维空间的计算和处理。
下面是它们的知识梳理:
一、立体几何
1. 立体几何基本概念:点、线、面、立体、平行、垂直、角度、投影等。
2. 立体图形的性质:体积、表面积、对称性、切割等。
3. 立体几何基本公式:立方体、长方体、正方体、圆柱、圆锥、球等的体积和表面积公式。
4. 立体几何运用:解决物体体积和表面积的计算问题,如容器的容积、房间的面积等。
二、空间向量
1. 空间向量定义及表示:三维空间中的有向线段,可以用起点坐标和终点坐标表示。
2. 空间向量的运算:加、减、数乘、点乘、叉乘等。
3. 空间向量的性质:模长、模长计算公式、向量方向,空间向量的平行性、垂直性等。
4. 空间向量的应用:用向量来表示物理量,如力、速度、加速
度等。
总结
立体几何和空间向量是数学中两个重要的分支,它们在三维空间中进行计算和处理。
在应用方面,立体几何可以解决物体的体积和表面积计算问题,而空间向量则可以用来表示和处理物理量。
在学习过程中,要注意掌握基本概念和公式,熟练掌握基本运算和性质,逐渐深入到应用层面。
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
立体几何与空间向量一.空间几何体的体积与表面积:1.简单几何体的侧面积、体积及相关性质: 棱柱、棱锥、台体的表面积:柱体、椎体、台体的侧面积:h c S h c c S ch S '=''+==21,)(21,锥侧台侧柱侧(其中c c ',分 别为上下底面周长,h 为高,h '为斜高或母线长)圆柱的表面积 :222r rl S ππ+=; 圆锥的表面积:2r rl S ππ+=;圆台的表面积:22R Rl r rl S ππππ+++=(r,R 分别为上下底面圆的半径); 球的表面积:24R S π=; 扇形的面积:222121360r lr R n S απ===扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积:h S V ⨯=底;锥体的体积:h S V ⨯=底31; 台体的体积:h S S S S V ⨯+⋅+=)(31下下上上 ;球体的体积:334R V π=。
2.空间几何体直观图斜二测画法要领: 横相等,竖减半,倾斜45°,面积为原来的42,平行关系不变。
3.棱锥的平行截面的性质:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似 相似比等于顶点到截面的距离与顶点到底面的距离之比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;4.立体几何中常见模型的性质: 长方体:(1)长方体从一个顶点出发的三条棱长分别为a,b,c ,则体对角线长为222c b a ++,全面积为2ab+2abc+2ac ,体积V=abc 。
(2)已知长方体的体对角线与过同一顶点的三条棱所成的角分别为γβα,,,则有1cos cos cos 222=++γβα或2sin sin sin 222=++γβα。
(3)长方体外接球的直径是长方体的体对角线长222c b a ++。
2019 高考数学知识点总结之空间向量与立体几何一、考点纲要:1、空间向量及其运算(1)空间向量的基本知识:①定义:空间向量的定义和平面向量同样,那些拥有大小和方向的量叫做向量,而且仍用有向线段表示空间向量,且方向同样、长度相等的有向线段表示同样向量或相等的向量。
②空间向量基本定理:ⅰ定理:假如三个向量不共面,那么关于空间任一直量,存在独一的有序实数组 x、y、z,使。
且把叫做空间的一个基底,都叫基向量。
ⅱ正交基底:假如空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。
ⅲ 单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,往常用表示。
ⅳ空间四点共面:设 O、A、B、C 是不共面的四点,则对空间中任意一点 P,都存在独一的有序实数组 x、y、z,使。
③共线向量 (平行向量 ):ⅰ定义:假如表示空间向量的有向线段所在的直线相互平行或重合,则这些向量叫做共线向量或平行向量,记作。
ⅱ规定:零向量与任意愿量共线 ;ⅲ共线向量定理:对空间任意两个向量平行的充要条件是:存在实数,使。
④共面向量:ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量 ;空间的任意两个向量都是共面向量。
ⅱ向量与平面平行:假如直线 OA 平行于平面或在内,则说向量平行于平面,记作。
平行于同一平面的向量,也是共面向量。
ⅲ共面向量定理:假如两个向量、不共线,则向量与向量、共面的充要条件是:存在实数对 x、 y,使。
ⅳ空间的三个向量共面的条件:当、、都是非零向量时,共面向量定理本质上也是、、所在的三条直线共面的充要条件,但用于判准时,还需要证明此中一条直线上有一点在另两条直线所确立的平面内。
ⅴ共面向量定理的推论:空间一点P 在平面 MAB 内的充要条件是:存在有序实数对x、y,使得,或关于空间任意必定点O,有。
⑤空间两向量的夹角:已知两个非零向量、,在空间任取一点O,作, (两个向量的起点必定要同样),则叫做向量与的夹角,记作,且。
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a共线的单位向量为a ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何空间向量及其线性运算知识点一空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作AB,其模记为|a|或|AB|.4.几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为 -a共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a,都有0∥a相等向量方向相同且模相等的向量称为相等向量注意:空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量.知识点二空间向量的线性运算空间向量的线性运算加法a+b=OA+AB=OB减法a-b=OA-OC=CA数乘当λ>0时,λa=λOA=PQ;当λ<0时,λa=λOA=MN;当λ=0时,λa=0运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.共线向量与共面向量知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线l 的方向向量. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .推论:1.已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系AC y AB x OA OP ++=,则点P 与点A ,B ,C 共面。
空间向量与立体几何知方法总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作ba//。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中(4)与a 共线的单位向量为a±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP其中5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
立体几何空间向量知识点总结知识网络:知识点拨:1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广.2、当a 、b 为非零向量时.0a b a b ⋅=⇔⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题.3、公式cos ,a b a b a b⋅<>=⋅是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角但要注意两异面直线所成角与两向量的夹角在取值范围上的区别,再结合平面的法向量,可以求直线与平面所成的角和二面角等.4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题.5、用空间向量判断空间中的位置关系的常用方法 1线线平行证明两条直线平行,只需证明两条直线的方向向量是共线向量.2线线垂直证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ⋅=⇔⊥.3线面平行用向量证明线面平行的方法主要有:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线方向向量是共线向量;③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量.4线面垂直用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.5面面平行①证明两个平面的法向量平行即是共线向量; ②转化为线面平行、线线平行问题.6面面垂直①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 1求两异面直线所成角利用公式cos,a ba ba b⋅<>=⋅,但务必注意两异面直线所成角θ的范围是0,2π⎛⎤ ⎥⎝⎦,故实质上应有:cos cos,a bθ=<>.2求线面角求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|.3求二面角用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离.1点与点的距离点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模.2点与面的距离点面距离的求解步骤是:①求出该平面的一个法向量;②求出从该点出发的平面的任一条斜线段对应的向量;③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离.备考建议:1、空间向量的引入,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,应体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力.2、灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.3、在解决立体几何中有关平行、垂直、夹角、距离等问题时,直线的方向向量与平面的法向量有着举足轻重的地位和作用,它的特点是用代数方法解决立体几何问题,无需进行繁、难的几何作图和推理论证,起着从抽象到具体、化难为易的作用.因此,应熟练掌握平面法向量的求法和用法.4、加强运算能力的培养,提高运算的速度和准确性.第一讲空间向量及运算一、空间向量的有关概念1、空间向量的定义在空间中,既有大小又有方向的量叫做空间向量.注意空间向量和数量的区别.数量是只有大小而没有方向的量.2、空间向量的表示方法空间向量与平面向量一样,也可以用有向线段来表示,用有向线段的长度表示向量的大小,用有向线段的方向表示向量的方向.若向量a对应的有向线段的起点是A,终点是B,则向量a可以记为AB,其模长为a或AB.3、零向量长度为零的向量称为零向量,记为0.零向量的方向不确定,是任意的.由于零向量的这一特殊性,在解题中一定要看清题目中所指向量是“零向量”还是“非零向量”. 4、单位向量模长为1的向量叫做单位向量.单位向量是一种常用的、重要的空间向量,在以后的学习中还要经常用到. 5、相等向量长度相等且方向相同的空间向量叫做相等向量.若向量a 与向量b 相等,记为a =b .零向量与零向量相等,任意两个相等的非零向量都可以用空间中的同一条有向线段来表示,并且与有向线段的起点无关.6、相反向量长度相等但方向相反的两个向量叫做相反向量.a 的相反向量记为-a 二、共面向量 1、定义平行于同一平面的向量叫做共面向量. 2、共面向量定理若两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对x 、y,使得p =xa yb +;3、空间平面的表达式空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y 使MP xMA yMB =+或对空间任一定点O,有或OP xOA yOB zOM =++其中1x y z ++=这几个式子是M,A,B,P 四点共面的充要条件.三、空间向量基本定理 1、定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一的有序实数组x 、y 、z,使p =xa yb +zc +2、注意以下问题1空间任意三个不共面的向量都可以作为空间向量的一个基底.2由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是0;3一个基底是指一个向量组,一个基向量是指基底中的某一个向量,两者是相关联的不同概念.由空间向量的基本定理知,若三个向量a 、b 、c 不共面;那么所有空间向量所组成的集合就是{}|,,,p p xa yb zc x y z R =++∈,这个集合可看做是由向量a 、b 、c 生成的,所以我们把{},,a b c 称为空间的一个基底;a 、b 、c 叫做基向量,空间任意三个不共面的向量都可构成空间的一个基底. 3、向量的坐标表示 1单位正交基底如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用{},,i j k 表示.2空间直角坐标系在空间选定一点O 和一个单位正交基底{},,i j k 以点O 为原点,分别以i 、j 、k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.则建立了一个空间直角坐标系O -xyz,点O 叫原点,向量i 、j 、k 都叫坐标向量. 3空间向量的坐标给定一个空间直角坐标系和向量a ,且设i 、j 、k 为坐标向量,存在唯一有序数组x,y,z 使a xi y j zk =++,有序数组x,y,z 叫做a 在空间直角坐标系O -xyz 中的坐标,记为a =(),,x y z ;对坐标系中任一点A,对应一个向量OA ,则OA =a xi y j zk =++;在单位正交基底i 、j 、k 中与向量OA 对应的有序实数组x,y,z,叫做点A 在此空间直角坐标系中的坐标,记为Ax,y,z. 四、空间向量的运算 1、空间向量的加法三角形法则注意首尾相连、平行四边形法则, 加法的运算律:交换律 a b b a +=+ 结合律()()a b c a b c ++=++2、空间向量的减法及几何作法几何作法:在平面内任取一点O,作,OA a OB b ==,则BA a b =-,即从b 的终点指向a 的终点的向量,这就是向量减法的几何意义. 3、空间向量的数乘运算 1定义实数λ与a 的积是一个向量,记为a λ,它的模与方向规定如下: ①a aλλ=⋅② 当0λ>时,a λ与a 同向;当0λ<时,a λ与a 异向;当0λ=时.0a λ=注意:① 关于实数与空间向量的积a λ的理解:我们可以把a 的模扩大当λ>1时,也可以缩小λ< 1 时,同时,我们可以不改变向量a 的方向当0λ>时,也可以改变向量a 的方向当0λ<时; .② 注意实数与向量的积的特殊情况,当0λ=时,0a λ=;当0λ≠,若0a =时,有0a λ=;③ 注意实数与向量可以求积,但是不能进行加减运算.比如a λ+,a λ-无法运算; 2实数与空间向量的积满足的运算律 设λ、μ是实数,则有()()a aλμλμ= 结合律()a a a λμλμ+=+ 第一分配律()a b a bλλλ+=+ 第二分配律实数与向量的积也叫数乘向量.4、共线向量 1共线向量定义若表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量,也叫做平行向量;若a 与b 是共线向量,则记为a b a b b 0a b a b a =+OP OA ta a AB a=(),(1)OP OA t AB OP OA t OB OA t OA tOB=+∴=+-=-+12t =1122OP OA OB =+AB λ111OP OA OB λλλ=+++11112222(,,),(,,)P x y z P x y z 12PP =222z y x |OP |++=→→→→><b a b ,a 与为性质若→→b a 、是非零向量,→e 是与→b 方向相同的单位向量,θ是→→e a 与的夹角,则 1θcos |a |e a a e →→→→→=⋅=⋅ 20b a b a =⋅⇔⊥→→→→3若→→b a 与同向,则|b ||a |b a →→→→⋅=⋅; 若→→b a 与反向,则|b ||a |b a →→→→⋅-=⋅;特别地:→→→→→→⋅==⋅a a |a ||a |a a 2或4若θ为|b ||a |ba cosb a →→→→→→⋅⋅=θ的夹角,则、5|b ||a ||b a |→→→→≤⋅2. 运算律 1结合律)b a (b )a (→→→→⋅=⋅λλ 2交换律→→→→⋅=⋅a b b a3分配律→→→→→→→⋅+⋅=+⋅c a b a )c b (a不满足消去律和结合律即:典型例题例1. 已知P 是平面四边形ABCD 所在平面外一点,连结PA 、PB 、PC 、PD,点E 、F 、G 、H 分别为△PAB 、△PBC 、△PCD 、△PDA 的重心;求证:E 、F 、G 、H 四点共面; 证明:分别延长PE 、PF 、PG 、PH 交对边于M 、N 、Q 、R ∵E 、F 、G 、H 分别是所在三角形的重心∴M 、N 、Q 、R 为所在边的中点,顺次连结MNQR 所得四边形为平行四边形,且有 ∵MNQR 为平行四边形,则∴由共面向量定理得E 、F 、G 、H 四点共面;例2. 如图所示,在平行六面体'D 'C 'B 'A ABCD -中,→=→a AB ,→=→b AD ,→=→c AA ,P 是CA'的中点,M 是CD'的中点,N 是C'D'的中点,点Q 是CA'上的点,且CQ :QA'=4:1,用基底}c b a {→→→,,表示以下向量: 1→AP ;2→AM ;3→AN ;4→AQ ;解:连结AC 、AD'1)c b a (21)'AA AD AB (21)'AA AC (21AP →+→+→=→+→+→=→+→=→;2→+→+→=→+→+→=→+→=→c21b a 21)'AA AD 2AB (21)AD AC (21AM ;3)'AD AC (21AN →+→=→4)AC 'AA (54AC CQ AC AQ →-→+→=→+→=→点评:本例是空间向量基本定理的推论的应用.此推论意在用分解定理确定点的位置,它对于以后用向量方法解几何问题很有用,选定空间不共面的三个向量作基向量.并用它们表示出指定的向量,是用向量解决几何问题的一项基本功.例3. 已知空间四边形OABC 中,∠AOB=∠BOC=∠AOC,且OA=OB=OC;M 、N 分别是OA 、BC 的中点,G 是MN 的中点;求证:OG ⊥BC;证明:连结ON,设∠AOB=∠BOC=∠AOC=θ又设→=→a OA ,→=→b OB ,→=→c OC ,则|c ||b ||a |→=→=→;又)ON OM (21OG →+→=→∴)b c ()c b a (41BC OG →-→⋅→+→+→=→⋅→∴OG ⊥BC例4. 已知空间三点A0,2,3,B -2,1,6,C1,-1,5; 1求以→→AC AB 和为邻边的平行四边形面积;2若3|a |=→,且→→→AC AB a 、分别与垂直,求向量→a 的坐标;解:1由题中条件可知∴23AC AB sin >=→→<, ∴以→→AC AB 、为邻边的平行四边形面积:2设),,(z y x a =→由题意得解得⎪⎩⎪⎨⎧-=-=-=⎪⎩⎪⎨⎧===1z 1y 1x 1z 1y 1x 或∴),,=()或,,(111a 111a ---→=→第二讲 直线的方向向量、平面的法向量及其应用一、直线的方向向量及其应用 1、直线的方向向量直线的方向向量就是指和这条直线所对应向量平行或共线的向量,显然一条直线的方向向量可以有无数个.2、直线方向向量的应用利用直线的方向向量,可以确定空间中的直线和平面.1若有直线l , 点A 是直线l 上一点,向量a 是l 的方向向量,在直线l 上取AB a =,则对于直线l 上任意一点P,一定存在实数t,使得AP t AB =,这样,点A 和向量a 不仅可以确定l 的位置,还可具体表示出l 上的任意点.2空间中平面α的位置可以由α上两条相交直线确定,若设这两条直线交于点O,它们的方向向量分别是a 和b ,P 为平面α上任意一点,由平面向量基本定理可知,存在有序实数对x ,y ,使得OP =xa yb +,这样,点O 与方向向量a 、b 不仅可以确定平面α的位置,还可以具体表示出α上的任意点.二、平面的法向量1、所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量也有无数个,它们是共线向量.2、在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一确定的. 三、直线方向向量与平面法向量在确定直线、平面位置关系中的应用 1、若两直线l 1、l 2的方向向量分别是1u 、2u ,则有l 1⇔1u 2u ⇔1u 2u 1v 2v ⇔1v 2v ⇔1v 2v u v ⇔u v ⇔u v (,,)n x y z =111222(,,),(,,)a a b c b a b c ==00n a n b ⎧⋅=⎪⎨⋅=⎪⎩a b a b ()a kbk R =∈a αn //l α⊥a n 0⋅=a n2根据线面平行的判定定理:“如果直线平面外与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.3根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可. 3、面面平行1由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可. 2若能求出平面α、β的法向量u 、v ,则要证明αu v a b a b 0a b ⋅=a u a u ////,//a a b b /a /b02πθ<≤a b ϕcos |cos |a b a bθϕ⋅==⋅02πθ≤≤a u a u ϕsin |cos |cos sin a u a uθϕθϕ⋅===⋅或[0,]πl αβ--AB CD 1n 2n l αβ--1n 2n BO BA =cos cos BA BO ABOABO BO⋅⋅∠∠=nAB n BO n⋅=n n n=0d AB n =⋅nCD n d AB n⋅==设→→b a 、分别是直线l 1、l 2的方向向量,根据下列条件判断l 1与l 2的位置关系; 1→a =2,3,-1,→b =-6,-9,3; 2→a =5,0,2,→b =0,4,0;3→a =-2,1,4,→b =6,3,3解:1∵),,(132a -=→,→b =-6,-9,3∴→→-=b31a ,∴→→b //a ,∴l 1→a →b 0b a =⋅→→→→⊥b a =→a →b →→b a 与设→→v u 、分别是平面α、β的法向量,根据下列条件判断α、β的位置关系:1→u =1,-1,2,→v =3,2,21-;2→u =0,3,0,→v =0,-5,0;3→u =2,-3,4,→v =4,-2,1;解:1∵→u =1,-1,2,→v =3,2,21-∴0v u =⋅→→ →→⊥∴v u∴α⊥β2∵→u =0,3,0,→v =0,-5,0∴βα//v//u v53u ∴∴-=→→→→3∵→u =2,-3,4,→v =4,-2,1∴→→v u 与既不共线、也不垂直,∴α与β相交点评:应熟练掌握利用向量共线、垂直的条件;例3. 已知点A3,0,0,B0,4,0,C0,0,5,求平面ABC 的一个单位法向量; 解:由于A3,0,0,B0,4,0,C0,0,5,∴→AB =-3,4,0,→AC =-3,0,5设平面ABC 的法向量为→n x,y,z则有0AC n 0AB n =→⋅→=→⋅→且即⎩⎨⎧=+-=+-0z 5x 30y 4x 3 取z=1,得35x =,45y =于是→n =14535,,,又12769|n |=→∴平面α的单位法向量是)769127691576920(n ,,=→例4. 若直线l 的方向向量是→a =1,2,2,平面α的法向量是→n =-1,3,0,试求直线l 与平面α所成角的余弦值;分析:如图所示,直线l 与平面α所成的角就是直线l 与它在平面内的射影所成的角,即∠ABO,而在Rt △ABO 中,∠ABO=-2π∠BAO,又∠BAO 可以看作是直线l 与平面α的垂线所成的锐角,这样∠BAO 就与直线l 的方向向量a 与平面α的法向量n 的夹角建立了联系,故可借助向量的运算求出∠BAO,从而求出∠ABO,得到直线与平面所成的角; 解:∵→a =1,2,2,,→n =-1,3,0∴3|a |=→,10|n |=→,5n a =⋅→→∴610|n ||a |na n ,a cos =⋅⋅>=<→→→→→→若设直线l 与平面α所成的角是θ则有><=→→n ,a sin cos θ∵610n ,a cos >=<→→ ∴626n ,a sin >=<→→因此626cos =θ,即直线l 与平面α所成角的余弦值等于626;例5. 如图a 所示,在正方体1111D C B A ABCD -中,M 、N 分别是C C 1、11C B 的中点;求证:1MN BD A 1C D B //BD A 111平面1DD 21211A →MN 2121BD A 1→n 0DB n 0DA n 1=⋅=⋅→→→→且⎩⎨⎧=+=+0y x 0z x 1y -=1z -=→∴n →→⋅n MN 2121→⊥→n MN BDA 1→=→-→=→-→=→-→=→111111111DA 21)D D A D (21C C 21B C 21M C N C MN →→1DA //MN BD A //MN 1平面→-→=→M C N C MN 11→-→=D D 21A D 21111→→→DB DA MN 1与可用→→→DB DA MN 1、与→MN BD A 1→n →m→→n //m 如图,在正方体1111D C B A ABCD -中,O 为AC 与BD 的交点,G 为CC 1的中点;求证:A 1O ⊥平面GBD;证明:设→=→→=→→=→c A A b D A a B A 11111,,,则 而)b a (21c )AD AB (21A A AO A A O A 111→+→+→=→+→+→=→+→=→∴)a b ()b 21a 21c (BD O A 1→-→⋅→+→+→=→⋅→同理0OG O A 1=→⋅→∴BD O A 1⊥,OG O A 1⊥又O OG BD = ,∴⊥O A 1面GBD; 例7. 2004年天津如图a 所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD,PD=DC,E 是PC 的中点;1证明:PA 2a 2a 2a 2a →PA →EG 2a 2a -→=→EG 2PA ⊂⊄2a →FE 2a →FB 2a →DC 0FB FE =→⋅→0DC FE =→⋅→55a 252a |FB ||FE |==→→=55正方体1111D C B A ABCD -中,E 、F 分别是11D A 、11C A 的中点,求:1异面直线AE 与CF 所成角的余弦值;2二面角C —AE —F 的余弦值的大小; 解:不妨设正方体棱长为2,分别取DA 、DC 、1DD 所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则A2,0,0,C0,2,0,E1,0,2,F1,1,21由→AE =-1,0,2,→CF =1,-1,2,得5|AE |=→,6|CF |=→∴→⋅→CF AE =-1+0+4=3 又>→→<>=→→<⋅→⋅→=→⋅→CF ,AE cos 30CF ,AE cos |CF ||AE |CF AE∴1030CF ,AE cos >=→→<,∴所求值为10302∵→EF =0,1,0 ∴→⋅→EF AE =-1,0,2·0,1,0=0∴AE ⊥EF,过C 作CM ⊥AE 于M则二面角C —AE —F 的大小等于>→→<MC ,EF∵M 在AE 上,∴→=→AE m AM 设则→AM =-m,0,2m,→-→=→AM AC MC =-2,2,0--m,0,2m=m -2,2,-2m∵MC ⊥AE ∴→⋅→AE MC =m -2,2,-2m ·-1,0,2=0∴52m =,∴)54,2,58(MC --=→,556|MC |=→ ∴→⋅→MC EF =0,1,0·58-,2,54-=0+2+0=2又>→→<>=→→<⋅→⋅→=→⋅→MC ,EF cos 556MC ,EF cos |MC ||EF |MC EF∴35MC ,EF cos >=→→< ∴二面角C —AE —F 的余弦值的大小为35例9. 已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,H 是EF 与AC 的交点,CG ⊥面ABCD,且CG=2;求BD 到面EFG 的距离;分析:因BD//平面EFG,故O 到面EFG 与BD 到面EFG 距离相等,证明OM 垂直于面EFG 即可;解:如图所示,分别以CD 、CB 、CG 所在直线为x 、y 、z 轴建立空间直角坐标系; 易证BD//面EFG,设BD AC =O,EF ⊥面CGH,O 到面EFG 的距离等于BD 到面EFG 的距离,过O 作OM ⊥HG 于M,易证OM ⊥面EFG,可知OM 为所求距离;另易知H3,3,0,G0,0,2,O2,2,0;设→=→GH GM λ,→GH =3,3,-2则)22,23,23()2,2,2()2,3,3(GO GM OM +---=---=→-→=→λλλλ 又0GH OM =→⋅→,∴0)22(2)23(3)23(3=---+-λλλ∴118=λ,∴)116,112,112(OM =→ ∴11112)116()112(2|OM |22=+⨯=→即BD 到平面EFG 的距离等于11112励志故事习惯父子俩住山上,每天都要赶牛车下山卖柴;老父较有经验,坐镇驾车,山路崎岖,弯道特多,儿子眼神较好,总是在要转弯时提醒道:“爹,转弯啦”有一次父亲因病没有下山,儿子一人驾车;到了弯道,牛怎么也不肯转弯,儿子用尽各种方法,下车又推又拉,用青草诱之,牛一动不动;到底是怎么回事 儿子百思不得其解;最后只有一个办法了,他左右看看无人,贴近牛的耳朵大声叫道:“爹,转弯啦”牛应声而动;牛用条件反射的方式活着,而人则以习惯生活;一个成功的人晓得如何培养好的习惯来代替坏的习惯,当好的习惯积累多了,自然会有一个好的人生;。
备战高考数学复习考点知识与题型讲解第56讲空间向量与立体几何考向预测核心素养考查利用空间向量证明线面关系、求空间角及距离,主要以解答题的形式出现,难度较大.数学运算、数学抽象一、知识梳理1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为u1,u2l1∥l2u1∥u2⇔u1=λu2l1⊥l2u1⊥u2⇔u1·u2=0直线l的方向向量为u,平面α的法向量为n l∥αu⊥n⇔u·n=0 l⊥αu∥n⇔u=λn平面α,β的法向量分别为n1,n2α∥βn1∥n2⇔n1=λn2α⊥βn1⊥n2⇔n1·n2=03.空间距离(1)点到直线的距离:已知直线l 的单位方向向量为u ,设AP →=a ,则向量AP →在直线l 上的投影向量AQ →=(a ·u )u .在Rt △APQ 中,由勾股定理得PQ =|AP →|2-|AQ →|2=a 2-(a ·u )2.(2)点到平面的距离:设P 为平面α内的一点,n 为平面α的法向量,A 为平面α外一点,点A 到平面α的距离d =|PA →·n ||n |.4.空间角(1)两条异面直线所成的角的向量求法设异面直线l 1,l 2所成的角为θ,其方向向量分别为u ,v , 则cos θ=|cos 〈u ,v 〉|=⎪⎪⎪⎪⎪⎪u·v |u ||v |=|u·v||u ||v |.(2)直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的角叫做这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是90°;一条直线和平面平行或在平面内,则它们所成的角是0°;范围:⎣⎢⎡⎦⎥⎤0,π2.②向量求法:直线AB 与平面α相交于B ,设直线AB 与平面α所成的角为θ,直线AB 的方向向量为u ,平面α的法向量为n ,则sin θ=|cos 〈u ,n 〉|=⎪⎪⎪⎪⎪⎪u·n |u ||n |=|u·n||u ||n |.(3)两平面的夹角①定义:平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面 β的夹角.②计算:设平面α,β的法向量分别是n 1,n 2,平面α与平面β的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=|n 1·n 2||n 1||n 2|.常用结论 1.最小角定理如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2.2.线面距离、面面距离都可以转化为点到面的距离. 二、教材衍化1.(多选)(人A 选择性必修第一册P 35练习T 2改编)在棱长为1的正方体ABCD A 1B 1C 1D 1中,E 为线段DD 1的中点.F 为线段BB 1的中点.则直线FC 1到平面AB 1E 的距离等于( )A .点F 到平面AB 1E 的距离 B .点C 1到平面AB 1E 的距离 C .直线FC 1到直线AE 的距离D .点B 1到直线FC 1的距离 答案:AB2.(人A 必修第二册P 147例1改编)在长方体ABCD A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为________.解析:如图所示,连接BD 1交DB 1于点O ,取AB 的中点M ,连接DM ,OM ,易知O 为BD 1的中点,所以AD 1∥OM ,则∠MOD 为异面直线AD 1与DB 1所成角或其补角.因为在长方体ABCD A 1B 1C 1D 1中,AB =BC =1,AA 1=3,AD 1=AD 2+DD 21=2,DM =AD 2+⎝ ⎛⎭⎪⎫12AB 2=52,DB 1=AB 2+AD 2+DD 21=5,所以OM =12AD 1=1,OD =12DB 1=52,于是在△DMO 中,由余弦定理,得cos ∠MOD =OM 2+OD 2-DM 22×OM ×OD=12+⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫5222×1×52=55,即异面直线AD 1与DB 1所成角的余弦值为55.答案:553.(人A 选择性必修第一册P 41练习T 1改编)二面角α-l -β的棱上有A ,B 两点,线段AC ,BD 分别在这个二面角的两个平面内,且都垂直于棱l .已知AB =4,AC =6,BD =8,CD =217,则平面α与平面β的夹角为________.答案:60°一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)点A 到平面α的距离是点A 与α内任一点的线段的最小值.( ) (2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( ) (3)两个平面的法向量所成的角是这两个平面的夹角.( ) (4)利用|AB →|2=AB →·AB →可以求空间中有向线段的长度.( ) 答案:(1) √ (2)× (3)× (4)√ 二、易错纠偏1.(线面角概念理解不清致误)已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=32,则l 与α所成的角为( )A .30° B.60° C.120°D.150°解析:选B.由于cos 〈m ,n 〉=32,所以〈m ,n 〉=30°,所以直线l 与α所成的角为60°.2.(忽视二面角与向量的夹角的范围致误)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45° B.135° C.45°或135° D.90°答案:C3.(线面距离概念不清致误)在棱长为1的正方体ABCDA 1B 1C 1D 1中,E 为A 1B 1中点,F 为AB 的中点,则CF 到平面AEC 1的距离为________.答案:66考点一 空间距离(多维探究)复习指导:会用空间向量求解空间中点、线、面之间的距离问题. 角度1 点线距和线线距在棱长为1的正方体ABCD A 1B 1C 1D 1中,E ,F ,M ,N 分别是AB ,C 1D 1,AD ,DD 1的中点.则点A 1到直线EF 的距离为________;直线EF 到直线MN 的距离为________.【解析】建立如图所示的空间直角坐标系D xyz ,则A 1(1,0,1),D 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫0,12,1,M ⎝ ⎛⎭⎪⎫12,0,0,N ⎝⎛⎭⎪⎫0,0,12.(1)EA 1→=⎝ ⎛⎭⎪⎫0,-12,1,EF →=(-1,0,1),EF →的单位向量u =EF →|EF →|=⎝ ⎛⎭⎪⎫-22,0,22,所以点A 1到直线EF 的距离d =(EA 1→)2-(EA 1→·u )2=54-12=32.(2)因为MN ∥EF ,所以直线MN 到直线EF 的距离即为点M 到直线EF 的距离. 因为E ⎝ ⎛⎭⎪⎫1,12,0,M ⎝ ⎛⎭⎪⎫12,0,0,所以EM →=⎝ ⎛⎭⎪⎫-12,-12,0.又EF →的单位向量u =⎝ ⎛⎭⎪⎫-22,0,22,所以直线MN 到直线EF 的距离d =(EM →)2-(EM →·u )2=⎝ ⎛⎭⎪⎫14+14-18= 12-18=64. 【答案】3264角度2 点面距和线面距(链接常用结论2)(2022·日照实验高中月考)如图,在△ABC 中,AC =BC =1,∠ACB =120°,O 为△ABC 的外心,PO ⊥平面ABC ,且PO =62. (1)求证:BO ∥平面PAC ;(2)计算BO 与平面PAC 之间的距离. 【解】(1)证明:如图,连接OC ,因为O 为△ABC 的外心,所以OA =OB =OC ,又因为AC =BC =1, 所以△OAC ≌△OBC ,所以∠ACO =∠BCO =12∠ACB =60°,故△OAC 和△OBC 都为等边三角形,可得OA =AC =CB =BO =1, 即四边形OACB 为菱形,所以OB ∥AC ; 又AC ⊂平面PAC ,OB ⊄平面PAC , 所以BO ∥平面PAC . (2)因为BO ∥平面PAC ,所以BO 到平面PAC 的距离即为点O 到平面PAC 的距离,记为d , 由题意知PA =PC =PO 2+OA 2=64+1=102,AC =1, 所以S △PAC =12×1×⎝ ⎛⎭⎪⎫1022-⎝ ⎛⎭⎪⎫122=34,S △OAC =12×1×1×sin 60°=34,又因为V P OAC =V O PAC ,所以13×S △OAC ×PO =13×S △PAC ×d ,即13×34×62=13×34×d ,解得d =22, 所以BO 与平面PAC 之间的距离为22.空间距离求法(1)点线距的求解步骤:直线的方向向量a →所求点到直线上一点的向量PP ′→及其在直线的方向向量a 上的投影→代入公式.(2)点面距的求解步骤: ①求出该平面的一个法向量;②找出从该点出发的平面的任一条斜线段对应的向量;③求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.|跟踪训练|在棱长均为a 的正三棱柱ABC A 1B 1C 1中,D 是侧棱CC 1的中点,则点C 1到平面AB 1D 的距离为( )A.24a B.28a C.324aD.22a 解析:选A.以A 为空间直角坐标原点,以垂直于AC 的直线为x 轴,以AC 为y 轴,以AA 1为z 轴建立空间直角坐标系.由ABC A 1B 1C 1是棱长均为a 的正三棱柱,D 是侧棱CC 1的中点, 故A ()0,0,0,B 1⎝ ⎛⎭⎪⎫3a 2,a 2,a ,D ⎝ ⎛⎭⎪⎫0,a ,a 2,C 1(0,a ,a ),所以AB 1→=⎝ ⎛⎭⎪⎫3a 2,a 2,a ,DC 1→=⎝⎛⎭⎪⎫0,0,a 2,AD →=⎝ ⎛⎭⎪⎫0,a ,a 2 设平面AB 1D 的法向量是n =(x ,y ,z ), 所以⎩⎪⎨⎪⎧n ·AB 1→=3a 2x +a 2y +az =0,n ·AD →=ay +a2z =0,取n =(3,1,-2),故点C 1到平面AB 1D 距离d =|DC 1→·n ||n |=a 3+1+4=24a .考点二 空间角(多维探究)复习指导:了解线线角、线面角、面面角的概念并会利用空间向量进行求解. 角度1 用向量求异面直线所成的角(1)如图,在直三棱柱ABC A 1B 1C 1中,AB =AC =AA 1=2,BC =2,点D 为BC 的中点,则异面直线AD 与A 1C 所成的角为( )A.π2B.π3C.π4D.π6(2)如图所示,在棱长为2的正方体ABCD A 1B 1C 1D 1中,E 是棱CC 1的中点,AF →=λAD →,若异面直线D 1E 和A 1F 所成角的余弦值为3210,则λ的值为________. 【解析】 (1)以A 为原点,AB ,AC ,AA 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (2,0,0),C (0,2,0),所以D ⎝ ⎛⎭⎪⎫22,22,0,所以AD →=⎝ ⎛⎭⎪⎫22,22,0,A 1C →=(0,2,-2),所以cos 〈AD →,A 1C →〉=AD →·A 1C →|AD →||A 1C →|=12,所以〈AD →,A 1C →〉=π3.故选B.(2)以D 为原点,以DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系(图略).正方体的棱长为2,则A 1(2,0,2),D 1(0,0,2),E (0,2,1),A (2,0,0). 所以D 1E →=(0,2,-1),A 1F →=A 1A →+AF →=A 1A →+λAD →=(0,0,-2)+λ(-2,0,0)=(-2λ,0,-2).则cos 〈A 1F →,D 1E →〉=A 1F →·D 1E →|A 1F →|·|D 1E →|=22λ2+1·5,所以225·λ2+1=3210,解得λ=13(λ=-13舍去).【答案】 (1)B (2)13(1)利用向量法求异面直线所成角的一般步骤是:①选好基底或建立空间直角坐标系;②求出两直线的方向向量v 1,v 2;③代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.(2)两异面直线所成角的范围是θ∈⎝⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.角度2 线面角(2021·高考浙江卷)如图,在四棱锥P ABCD 中,底面ABCD 是平行四边形,∠ABC =120°,AB =1,BC =4,PA =15,M ,N 分别为BC ,PC 的中点,PD ⊥DC ,PM ⊥MD .(1)证明:AB ⊥PM ;(2)求直线AN与平面PDM所成角的正弦值.【解】(1)证明:因为底面ABCD是平行四边形,∠ABC=120°,BC=4,AB=1,且M为BC的中点,所以CM=2,CD=1,∠DCM=60°,易得CD⊥DM.又PD⊥DC,且PD∩DM=D,PD,DM⊂平面PDM,所以CD⊥平面PDM.因为AB∥CD,所以AB⊥平面PDM.又PM⊂平面PDM,所以AB⊥PM.(2)方法一:由(1)知AB⊥平面PDM,所以∠NAB为直线AN与平面PDM所成角的余角.连接AM,因为PM⊥MD,PM⊥DC,MD∩DC=D,所以PM⊥平面ABCD,所以PM⊥AM.因为∠ABC=120°,AB=1,BM=2,所以由余弦定理得AM=7,又PA=15,所以PM=22,所以PB=PC=23,连接BN,结合余弦定理得BN=11.连接AC,则由余弦定理得AC=21,在△PAC中,结合余弦定理得PA2+AC2=2AN2+2PN2,所以AN=15.所以在△ABN中,cos∠BAN=AB2+AN2-BN22AB·AN=1+15-11215=156.设直线AN与平面PDM所成的角为θ,则sin θ=cos∠BAN=15 6.方法二:因为PM⊥MD,PM⊥DC,所以PM⊥平面ABCD.连接AM,则PM⊥AM.因为∠ABC=120°,AB=1,BM=2,所以AM =7,又PA=15,所以PM=2 2.由(1)知CD⊥DM,过点M 作ME∥CD交AD于点E,则ME⊥MD.故可以以M为坐标原点,MD,ME,MP所在直线分别为x,y,z轴建立如图所示的空间直角坐标系,则A(-3,2,0),P(0,0,22),C(3,-1,0),N(32,-12,2),所以AN→=(332,-52,2).易知平面PDM的一个法向量为n=(0,1,0).设直线AN与平面PDM所成的角为θ,则sin θ=|cos〈AN→,n〉|=|AN→·n||AN→|·|n|=5215=156.故直线AN与平面PDM所成角的正弦值为156.求直线与平面所成角的主要方法(1)定义法:利用定义作出直线和平面所成的角,然后在三角形中利用几何方法求解.(2)向量法:求出直线的方向向量与平面的法向量,先求向量夹角进而求出直线和平面所成的角.角度3 利用空间向量求两个平面的夹角(2021·新高考卷Ⅱ改编)在四棱锥QABCD中,底面ABCD是正方形,若AD=2,QD=QA=5,QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求平面BDQ与平面QDA夹角的余弦值.【解】(1)证明:取AD的中点为O,连接QO,CO.因为QA=QD,OA=OD,则QO⊥AD,而AD=2,QA=5,故QO=5-1=2.在正方形ABCD中,因为AD=2,DO=1,故CO=5,因为QC=3,故QC2=QO2+OC2,故△QOC为直角三角形且QO⊥OC.因为OC∩AD=O,AD,OC⊂平面ABCD,故QO⊥平面ABCD,因为QO⊂平面QAD,故平面QAD⊥平面ABCD.(2)在平面ABCD内,过O作OT∥CD,交BC于T,则OT⊥AD,结合(1)中的QO⊥平面ABCD,故可建如图所示的空间直角坐标系.则D(0,1,0),Q(0,0,2),B(2,-1,0),故BQ→=(-2,1,2),BD→=(-2,2,0).设平面QBD的法向量为n=(x,y,z),则⎩⎪⎨⎪⎧n ·BQ →=0,n ·BD →=0,即⎩⎨⎧-2x +y +2z =0,-2x +2y =0,取x =1,则y =1,z =12,故n =⎝ ⎛⎭⎪⎫1,1,12.而平面QAD 的一个法向量为m =(1,0,0), 故cos 〈m ,n 〉=11×32=23.所以,所求平面BDQ 与平面QDA 夹角的余弦值为23.用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.|跟踪训练|(2022·安丘过程性测试)如图,在四棱锥P ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,∠ADC =90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,PA =PD =2,BC =12AD =1,CD = 3.(1)求证:平面MQB ⊥平面PAD ;(2)若平面MBQ 与平面BQC 的夹角为30°,求直线QM 与平面PAD 所成角的正弦值. 解:(1)证明:因为AD ∥BC ,BC =12AD ,Q 为AD 的中点,则QD ∥BC 且QD =BC ,所以四边形BCDQ 为平行四边形,所以CD ∥BQ , 因为∠ADC =90°,所以∠AQB =90°,即BQ ⊥AD .又因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BQ ⊂平面ABCD , 所以BQ ⊥平面PAD ,因为BQ ⊂平面MQB ,所以平面MQB ⊥平面PAD .(2)因为PA =PD ,Q 为AD 的中点,所以PQ ⊥AD .因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PQ ⊂平面PAD ,所以PQ ⊥平面ABCD ,又因为BQ ⊥AD ,所以以Q 为原点,以QA ,QB ,QP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系Q xyz ,则Q()0,0,0,A()1,0,0,P()0,0,3,B()0,3,0,C ()-1,3,0,设PM →=λPC →=λ()-1,3,-3=()-λ,3λ,-3λ,其中0≤λ≤1, 所以QM →=QP →+PM →=()0,0,3+(-λ,3λ,-3λ)=()-λ,3λ,3-3λ,又QB →=()0,3,0,设平面MBQ 的法向量为m =()x ,y ,z , 则⎩⎪⎨⎪⎧m ·QM →=0,m ·QB →=0,所以⎩⎪⎨⎪⎧-λx +3λy +3()1-λz =03y =0,取x =3(1-λ),得m =()3()1-λ,0,λ, 由题意知平面BQC 的一个法向量为n =()0,0,1,因为平面MBQ 与平面BQC 的夹角为30°,所以||cos 〈m ,n 〉=||m ·n ||m ·||n =λ4λ2-6λ+3=32, 因为0≤λ≤1,解得λ=34,所以QM →=⎝ ⎛⎭⎪⎫-34,334,34,易知平面PAD 的一个法向量为u =()0,1,0,sin θ=|cos 〈QM →,u 〉|=|QM →·u |||QM →·||u =334394=31313.所以QM 与平面PAD 所成角的正弦值为31313.[A 基础达标]1.(2022·江淮名校阶段检测)已知平面α的一个法向量是m =(-2,-1,2),点A (3,4,-1)是平面α内的一点,则点P (1,2,-1)到平面α的距离是( )A .1 B.322C.2D.2 2解析:选C.因点A (3,4,-1)是平面α内的一点,而P (1,2,-1),则AP →=(-2,-2,0),又平面α的一个法向量是m =(-2,-1,2),所以点P 到平面α的距离d =|m ·AP →|||m =|4+2|4+1+4=2.2.(2022·上海一模)如图,点A ,B ,C 分别在空间直角坐标系O xyz 的三条坐标轴上,OC →=(0,0,2),OA →=(1,0,0),OB →=(0,2,0),设平面CAB 与平面ABO 的夹角为θ,则cos θ=( )A.63B.66C.24D.34解析:选 B.因为OC →=(0,0,2),OA →=(1,0,0),OB →=(0,2,0),所以AB →=(-1,2,0),AC →=(-1,0,2),设平面ABC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧AC →·n =0,AB →·n =0即⎩⎨⎧-x +2z =0,-x +2y =0,取n =(2,1,1),又因为平面ABO 的法向量为OC →=(0,0,2), 所以cos θ=|OC →·n ||OC →|·|n |=22×6=66,故选B.3.(多选)如图,三棱锥P ABC 中,PA ⊥平面ABC ,AB =2,BC =23,AC =4,A 到平面PBC 的距离为455,则( ) A .PA =4B .三棱锥P ABC 的外接球的表面积为32π C .直线AB 与直线PC 所成角的余弦值为216D .AB 与平面PBC 所成角的正弦值为255解析:选ABD.因为AB =2,BC =23,AC =4, 所以AB 2+BC 2=AC 2,即AB ⊥BC , 又因为PA ⊥平面ABC ,所以PA ⊥AB ,PA ⊥BC ,设AP =a ,根据等体积法V P ABC =V A PBC ,即13×12×2×23×a =13×12×23×a 2+4×455,解得a =4,所以AP =a =4,故A 选项正确;所以三棱锥P ABC 的外接球的半径与以BC ,BA ,AP 为邻边的长方体的外接球的半径相等,所以三棱锥P ABC 的外接球的半径为22,所以三棱锥P ABC 的外接球的表面积为32π,故B 选项正确; 过点B 作PA 的平行线BD ,则BD ⊥平面ABC ,所以以点B 为坐标原点,BC ,BA ,BD 所在边分别为x ,y ,z 轴建立空间直角坐标系,则B (0,0,0),C (23,0,0),A (0,2,0),P (0,2,4), 所以AB →=(0,-2,0),PC →=(23,-2,-4), 所以cos 〈AB →,PC →〉=AB →·PC →|AB →||PC →|=42×42=24,所以直线AB 与直线PC 所成角的余弦值为24,故C 选项错误;因为BC →=(23,0,0),BP →=(0,2,4), 设平面PBC 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·BP →=0,m ·BC →=0,即⎩⎨⎧x =0,y =-2z ,令z =1,所以m =(0,-2,1),由于AB →=(0,-2,0), 故设AB 与平面PBC 所成角为θ, 则sin θ=||cos 〈m ,AB →〉=||AB →·m |m |·|AB →|=42×5=255, 所以AB 与平面PBC 所成角的正弦值为255,故D 选项正确.4.如图所示,在长方体ABCD A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为________.解析:如图,以D 为坐标原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系,则D 1(0,0,1),E (1,1,0),A (1,0,0),C (0,2,0). 则D 1E →=(1,1,-1),AC →=(-1,2,0),AD →1=(-1,0,1). 设平面ACD 1的法向量为n =(a ,b ,c ),则⎩⎪⎨⎪⎧n ·AC →=-a +2b =0,n ·AD →1=-a +c =0,取a =2,得n =(2,1,2),所以点E 到平面ACD 1的距离h =|D 1E →·n ||n |=|2+1-2|3=13.答案:135.如图,在三棱柱ABC A 1B 1C 1中,AA 1⊥平面ABC ,AA 1=AC =BC =2,∠ACB =90°,E 是CC 1的中点.(1)求直线BC 1与平面A 1BE 所成角的正弦值; (2)求点C 到平面A 1BE 的距离.解:(1)由AA 1⊥平面ABC ,则在三棱柱ABC A 1B 1C 1中CC 1⊥平面ABC , 由AC ,BC ⊂平面ABC ,故CC 1⊥AC ,CC 1⊥BC ,又∠ACB =90°,所以CC 1,AC ,BC 两两垂直,故可构建以C 为原点,CA →,CB →,CC 1→为x 、y 、z 轴正方向的空间直角坐标系(图略),所以B (0,2,0),E (0,0,1),A 1(2,0,2),C 1(0,0,2),则BC 1→=(0,-2,2),BE →=(0,-2,1),EA 1→=(2,0,1),若m =(x ,y ,z )是平面A 1BE 的一个法向量,则⎩⎨⎧-2y +z =0,2x +z =0,令z =2,有m =(-1,1,2),所以|cosBC →1,m|=⎪⎪⎪⎪⎪⎪⎪⎪BC 1→·m |BC 1→||m |=222×6=36,故直线BC 1与平面A 1BE 所成角的正弦值为36. (2)由V C A 1BE =V A 1BCE ,由(1)易知S △BCE =12CE ·BC =1,A 1到面BCE 的距离为A 1C 1=2,若C 到平面A 1BE 的距离为d ,又EA 1=BE =5,BA 1=23,则S △A 1BE =12×23×5-3=6,由13d ·S △A 1BE =13A 1C 1·S △BCE ,可得d =63. 所以点C 到平面A 1BE 的距离为63. 6.如图,在三棱锥P ABC 中,△PAC 是正三角形,AC ⊥BC ,AC =BC ,D 是AB 的中点.(1)求证:AC ⊥PD ;(2)若AC =BC =PD =2,求直线PC 与平面PAB 所成的角的正弦值.解:(1)证明:取AC 中点O ,连接OP ,OD ,因为OD ∥CB ,AC ⊥CB ,所以AC ⊥OD , △PAC 为正三角形,所以PO ⊥AC ,⎭⎬⎫AC ⊥ODAC ⊥PO PO ∩OD =O ⇒AC ⊥平面POD ,PD ⊂平面POD ,所以AC ⊥PD . (2)由(1)及PD 2=PO 2+OD 2,知OA ,OP ,OD 两两垂直,建立如图所示的空间直角坐标系:O (0,0,0),A (1,0,0),D (0,1,0),C (-1,0,0),P (0,0,3),PC →=(-1,0,-3),PA →=(1,0,-3),PD →=(0,1,-3),设平面PAB 法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PA →=0n ·PD =0⇒⎩⎪⎨⎪⎧x -3z =0,y -3z =0,令z =1, n =(3,3,1),所以sin θ=|cosPC →,n|=|PC →·n ||PC →|·|n |=|-3-3|2×7=217.即直线PC 与平面PAB 所成的角的正弦值为217. [B 综合应用]7.在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD, EF ∥AB ,∠BAF =90°,AD = 2,AB =AF =2EF =1,点P 在棱DF 上.(1)若P 是DF 的中点, ①求证:BF ∥ 平面ACP ;②求异面直线BE 与CP 所成角的余弦值; (2)若平面DAP 与平面APC 夹角的余弦值为63,求PF 的长度. 解:(1)①证明:连接BD ,交AC 于点O ,连接OP . 因为P 是DF 中点,O 为矩形ABCD 对角线的交点, 所以OP 为三角形BDF 中位线, 所以BF ∥OP ,因为BF ⊄平面ACP ,OP ⊂平面ACP , 所以BF ∥ 平面ACP . ②因为∠BAF =90°, 所以AF ⊥AB ,因为 平面ABEF ⊥平面ABCD , 且平面ABEF ∩平面ABCD = AB ,AF ⊂平面ABEF , 所以AF ⊥平面ABCD , 因为四边形ABCD 为矩形,所以以A 为坐标原点,AB ,AD ,AF 分别为x ,y ,z 轴,建立如图所示空间直角坐标系A xyz .所以B (1,0,0),E ⎝ ⎛⎭⎪⎫12,0,1,P ⎝ ⎛⎭⎪⎫0,1,12,C (1,2,0).所以BE →=⎝ ⎛⎭⎪⎫-12,0,1,CP →=⎝ ⎛⎭⎪⎫-1,-1,12,所以cos 〈BE →,CP →〉=BE →·CP →|BE →|·|CP →|=4515, 即异面直线BE 与CP 所成角的余弦值为4515.(2)因为AB ⊥平面ADF ,所以平面APD 的法向量为n 1=(1,0,0). 设P 点坐标为(0,2-2t ,t )(0<t <1),在平面APC 中,AP →=(0,2-2t ,t ),AC →=(1,2,0), 设平面APC 的法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 2·AP →=(2-2t )y +tz =0,n 2·AC →=x +2y =0,取y =1,则x =-2,z =2t -2t,得平面APC 的一个法向量为n 2=⎝ ⎛⎭⎪⎫-2,1,2t -2t , 所以cos 〈n 1,n 2〉=|n 1·n 2||n 1||n 2|=2(-2)2+1+⎝⎛⎭⎪⎫2t -2t 2=63, 解得t =23或t =2(舍).所以P ⎝ ⎛⎭⎪⎫0,23,23,所以PF 的长度|PF |=(0-0)2+⎝ ⎛⎭⎪⎫23-02+⎝ ⎛⎭⎪⎫23-12=53.[C 素养提升]8.如图所示,在四棱锥P ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 夹角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长. 解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A xyz .则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2), A (0,0,0).(1)因为AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量,AD →=(0,2,0). 因为PC →=(1,1,-2),PD →=(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ),则m ·PC →=0,m ·PD →=0, 即⎩⎨⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1, 所以m =(1,1,1)是平面PCD 的一个法向量, 从而|cos 〈AD →,m 〉|=|AD →·m ||AD →|·|m |=33.所以平面PAB 与平面PCD 夹角的余弦值为33. (2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1). 又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ). 又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →|·|DP →|=1+2λ10λ2+2,设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010,因为y =cos x 在⎝ ⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值,又因为BP =12+22=5,所以BQ =25BP =255.。
空间向量与立体几何知识点第一篇:空间向量1. 空间向量的表示方法空间向量可以用有向线段、坐标和向量分量等多种方式进行表示。
其中,有向线段表示空间向量的长度、方向和起点,坐标表示空间向量的左端点和右端点的坐标,向量分量表示空间向量在三个坐标轴上的投影。
2. 空间向量的加减法空间向量的加减法与二维向量的加减法类似,可以通过将两个向量的分量逐一相加或相减得到结果向量的分量。
也可以通过平移法、三角法、正交分解等方法进行计算。
3. 空间向量的数量积和向量积空间向量的数量积和向量积都具有几何意义和物理意义。
数量积表示两个向量之间的夹角余弦值和向量长度的乘积,通常用于计算向量的投影和求解平面或直线的方程。
向量积表示两个向量所在平行四边形的面积和法向量,通常用于计算向量的叉积、平面或直线的法向量以及计算空间中两个平面的夹角。
4. 空间向量的共线、垂直和平行空间向量的共线、垂直和平行是三种基本关系。
当两个向量共线时,它们所在直线相交或重合;当两个向量垂直时,它们的数量积为0,而向量积为一个与它们垂直的向量;当两个向量平行时,它们的向量积为0,而数量积为它们长度的乘积。
5. 应用举例空间向量广泛应用于物理、工程、计算机图形学等领域。
例如,通过计算物体的重心和质量分布情况,可以求解物体的转动惯量和稳定性问题;通过计算矢量场中的散度和旋度,可以分析流体的运动状态和变化规律;通过计算三维空间中的距离和夹角,可以在计算机图形学中进行三维模型的建模和渲染。
第二篇:立体几何1. 立体几何的基本概念立体几何是研究三维空间中的基本几何对象和它们的性质、关系的数学分支。
它包括点、线、面、体和空间角等多个基本概念,用于描述和分析三维物体的形状、大小和位置关系。
2. 立体几何的基本公理立体几何的基本公理是欧几里得几何的扩展,是指空间中的点、线、面、体和空间角等基本几何对象应满足的性质和约束。
这些公理包括点的唯一性、直线的唯一性、平面的唯一性、线段长度的可加性、平面的无限性、等角推移原理等。
空间向量在立体几何中的应用要求层次重难点空间直角坐标系空间直角坐标系 B (1)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.②会推导空间两点间的距离公式.(2)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.②掌握空间向量的线性运算及其坐标表示.③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.空间两点间的距离公式 B空间向量的应用空间向量的概念 B空间向量基本定理 A空间向量的正交分解及其坐标表示B空间向量的线性运算及其坐标表示C空间向量的数量积及其坐标表示C运用向量的数量积判断向量的共线与垂直C空间向量在立体几何中的应用要求层次重难点空间直角坐标系空间直角坐标系 B(1)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.空间两点间的距离公式 B空间向空间向量的概念 B高考要求模块框架空间向量与立体几何.知识框架量的应用空间向量基本定理 A ②会推导空间两点间的距离公式.(2)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.②掌握空间向量的线性运算及其坐标表示.③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.空间向量的正交分解及其坐标表示B空间向量的线性运算及其坐标表示C空间向量的数量积及其坐标表示C运用向量的数量积判断向量的共线与垂直 C知识内容1.在空间内,把具有大小和方向的量叫空间向量,可用有向线段来表示. 用同向且等长的有向线段表示同一向量或相等的向量.2.起点与终点重合的向量叫做零向量,记为0或0r.在手写向量时,在字母上方加上箭头,如a r ,AB u u u r.3.表示向量a r的有向线段的长度叫做向量的长度或模,记作||a r ,有向线段的方向表示向量的方向.有向线段所在的直线叫做向量的基线.4.如果空间中一些向量的基线互相平行或重合,则这些向量叫做共线向量或平行向量.a r 平行于b r 记为a b r r ∥.5.向量的加法、减法与数乘向量运算:与平面向量类似; 6.空间向量的基本定理:共线向量定理:对空间两个向量a r ,b r (0b ≠r ),a b r r ∥的充要条件是存在实数x ,使a xb =r r.共面向量:通常我们把平行于同一平面的向量,叫做共面向量.共面向量定理:如果两个向量a r ,b r 不共线,则向量c r 与向量a r ,b r共面的充要条件是,存在唯一的一对实数x ,y ,使c xa yb =+r r r.空间向量分解定理:如果三个向量a r ,b r ,c r不共面,那么对空间任一向量p u r ,存在一个唯一的有序实数组x ,y ,z ,使p xa yb zc =++u r r r r.表达式xa yb zc ++r r r ,叫做向量a r ,b r ,c r的线性表示式或线性组合.上述定理中,a r ,b r ,c r叫做空间的一个基底,记作{}a b c r r r ,,,其中a b c r r r ,,都叫做基向量.由此定理知,空间任意三个不共面的向量都可以构成空间的一个基底.7.两个向量的夹角:已知两个非零向量a b r r ,,在空间任取一点O ,作OA a =u u u r r ,OB b =u u u r r,则AOB ∠叫做向量a r 与b r的夹角,记作a b 〈〉r r ,.通常规定0πa b 〈〉r r ≤,≤.在这个规定下,两个向量的夹角就被唯一确定了,并且a b b a 〈〉=〈〉r r r r ,,. 如果90a b 〈〉=r r ,°,则称a r 与b r 互相垂直,记作a b ⊥r r . 8.两个向量的数量积:已知空间两个向量a r ,b r,定义它们的数量积(或内积)为:||||cos a b a b a b ⋅=〈〉r r r r r r ,空间两个向量的数量积具有如下性质:⑴||cos a e a a e ⋅=〈〉r r r r r ,;⑵0a b a b ⇔⋅=r r r r^;⑶2||a a a =⋅r r r ;⑷a b a b ⋅r r r r ||≤||||. 空间两个向量的数量积满足如下运算律:⑴()()a b a b λλ⋅=⋅r r r r ;⑵a b b a ⋅=⋅r r r r;⑶()a b c a c b c +⋅=⋅+⋅r r r r r r r . 9.空间向量的直角坐标运算:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i j k r r r,,,这三个互相垂直的单位向量构成空间向量的一个基底{}i j k r r r,,,这个基底叫做单位正交基底. 空间直角坐标系Oxyz ,也常说成空间直角坐标系[]O i j k r r r ;,,. 10.坐标:在空间直角坐标系中,已知任一向量a r,根据空间向量分解定理,存在唯一数组123()a a a ,,,使123a a i a j a k =++r r r r ,1a i r ,2a j r ,3a k r 分别叫做向量a r在i j k r r r ,,方向上的分量,有序实数组123()a a a ,,叫做向量a r在此直角坐标系中的坐标.上式可以简记作123()a a a a =r,,. 若123()a a a a =r ,,,123()b b b b =r,,, 则:112233()a b a b a b a b +=+++r r ,,;112233()a b a b a b a b -=---r r,,; 123()a a a a λλλλ=r ,,;112233a b a b a b a b ⋅=++r r .一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.11.空间向量的平行和垂直的条件:设111()a a b c =r ,,,123()b b b b =r ,,, a b r r ∥(0b ≠r r )a b λ⇔=r r 112233a b a b a bλλλ=⎧⎪⇔=⎨⎪=⎩;11223300a b a b a b a b a b ⇔⋅=⇔++=r r r r^.两个向量的夹角与向量的长度的坐标计算公式: 222123||a a a a a a ⋅++r r r 222123||b b b b b b =⋅++r r r112233222222123123cos ||||a ba b a b a a a b b b ⋅〈〉==++++r rr r r r ,. 12.位置向量:已知向量a r ,在空间固定一个基点O ,再作向量OA a =u u u r r,则点A 在空间的位置就被向量a r所唯一确定了.这时,我们称这个向量为位置向量.由此,我们可以用向量及其运算来研究空间图形的性质.13.给定一个定点A 和一个向量a r,O 为空间中任一确定的点,B 为直线l 上的点,则P 在为过点A 且平行于向量a r的直线l 上⇔ AP ta =u u u r r①⇔ OP OA ta =+u u u r u u u r r②⇔ (1)OP t OA tOB =-+u u u r u u u r u u u r③这三个式子都称为直线l 的向量参数方程.向量a r称为该直线的方向向量.14.设直线1l 和2l 的方向向量分别为1v u r 和2v u u r,12l l ∥(或1l 与2l 重合)12v v ⇔u r u u r ∥;12l l ^12v v ⇔u r u u r^.若向量1v u r 和2v u u r是两个不共线的向量,且都平行于平面α(即向量的基线与平面平行或在平面内),直线l 的一个方向向量为v r,则l α∥或l 在α内 ⇔ 存在两个实数x y ,,使12v xv yv =+r u r u u r.15.如果向量n r 的基线与平面α垂直,则向量n r就称为平面α的法向量.设A 是空间任一点,n r 为空间内任一非零向量,则满足0AM n ⋅=u u u u r r的点M 表示过点A 且与向量n r 垂直的平面,0AM n ⋅=u u u u r r称为该平面的向量表示式.16.设12n n u u r u u r,分别是平面αβ,的法向量,则αβ∥或α与β重合⇔12n n u u r u u r ∥;12120n n n n αβ⇔⇔⋅=u u r u u r u u r u u r^^17.线面角:斜线和它在平面内的正射影的夹角叫做斜线和平面所成的角,是斜线与这个平面内所有直线所成角中最小的角.18.二面角:平面内的一条直线把平面分成两部分,其中的每一部分都叫做半平面.从一条直线出发的两个半平面所组成的图形叫做二面角;这条直线叫做二面角的棱.每个半平面叫做二面角的面.棱为l ,两个面分别为αβ,的二面角,记作l αβ--.在二面角l αβ--的棱上任取一点O ,在两半平面内分别作射线OA l ^,OB l ^,则AOB Ð叫做二面角l αβ--的平面角.二面角的平面角的大小就称为二面角的大小.我们约定二面角的范围为[0180]°,°. 设12m m αβu u r u u r ,^^,则角12m m 〈〉u u r u u r,与二面角l αβ--相等或互补.。
空间向量与立体几何知识点空间向量与立体几何是数学中的重要分支,它们在解决三维空间问题中发挥着关键作用。
以下是该领域的一些核心知识点:1. 空间向量的概念:空间向量是具有大小和方向的几何对象,可以表示为有序数对或有序数组。
2. 空间向量的表示:空间向量通常用箭头表示,箭头的起点和终点分别代表向量的起点和终点。
3. 空间向量的坐标:空间向量可以通过三个坐标值来表示,这些值分别对应于向量在三个正交坐标轴上的投影。
4. 向量的加法:两个空间向量可以通过平移和连接的方式相加,结果向量的方向和大小由这两个向量决定。
5. 向量的数乘:一个向量可以通过与一个标量相乘来缩放,结果向量的方向保持不变,但大小会按比例变化。
6. 向量的点积(内积):两个向量的点积是一个标量,它反映了这两个向量的夹角和大小的关系。
7. 向量的叉积(外积):两个向量的叉积是一个向量,它垂直于原来的两个向量,并且其大小等于原来两个向量构成的平行四边形的面积。
8. 向量的模:一个向量的模是其长度,可以通过勾股定理计算得到。
9. 向量的单位化:将一个向量除以其模,可以得到一个方向相同但长度为1的单位向量。
10. 空间中的点、线、面:在空间中,点由坐标确定,线由两个点确定,面由三个不共线的点确定。
11. 空间直线的参数方程:空间直线可以通过参数方程来表示,其中参数表示直线上点的位置。
12. 空间平面的方程:空间平面可以通过一个方程来表示,该方程描述了平面上所有点的坐标关系。
13. 点到直线的距离:可以通过向量的点积和叉积来计算点到直线的最短距离。
14. 直线与平面的关系:直线可以与平面相交、平行或在平面内。
15. 立体几何体:空间中的几何体如多面体、圆柱、圆锥等,可以通过空间向量来描述其顶点、边和面。
16. 体积和表面积:空间几何体的体积和表面积可以通过积分或向量方法来计算。
17. 空间几何的对称性:空间几何体的对称性可以通过向量和坐标变换来分析。
立体几何与空间向量知识点归纳总结一、立体几何知识点1、柱、锥、台、球的结构特征(1)棱柱的定义:有两个面是对应边平行的全等多边形,其余各面都是四边形,且相邻四边形的公共边都平行,由这些面围成的几何体叫棱柱。
棱柱的性质:侧面都是平行四边形;侧棱都平行,侧棱长都相等。
直棱柱:侧棱垂直底面的棱柱叫直棱柱。
正棱柱:底面是正多边形的直棱柱叫正棱柱。
(2)棱锥的定义:有一个面是多边形,其余各面都是三角形,由这些面围成的几何体叫棱锥。
棱柱的性质:平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高的比。
(3)棱台的定义:用平行于底面的平面截棱锥,截面与底面的部分叫棱台。
棱台的性质:①上下底面平行且是相似的多边形;②侧面是梯形;③侧棱交于原棱锥的顶点。
(4)圆柱的定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所围成的几何体叫圆柱。
圆柱的性质:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥的定义:以直角三角形的一条直角边为旋转轴,旋转一周所围成的几何体叫圆锥。
圆锥的性质:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台的定义:以直角梯形的垂直于底边的腰为旋转轴,旋转一周所围成的几何体叫圆台。
圆台的性质:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个扇环形。
(7)球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形围成的几何体叫球。
球的性质:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积之和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积rhS π2=圆柱侧'21ch S =正棱锥侧面积 rlS π=圆锥侧面积')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表(3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥'1()3V S S h =台 '2211()()33V S S h r rR R h π=++=++圆台(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24Rπ3、平面及基本性质公理1 ααα⊂⇒∈∈∈∈l B A l B l A ,,, 公理2 若βα∈∈P P ,,则a =⋂βα且α∈P公理3 不共线三点确定一个平面(推论1直线和直线外一点,2两相交直线,3两平行直线)4、空间两直线的位置关系共面直线:相交、平行(公理4) 异面直线 5、异面直线(1)对定义的理解:不存在平面α,使得α⊂a 且α⊂b (2)判定:反证法(否定相交和平行即共面) 判定定理:15P★(3)求异面直线所成的角:①平移法 即平移一条或两条直线作出夹角,再解三角形.②向量法 |||||,cos |cos b a b a =><=θ (注意异面直线所成角的范围]2,0(π(4)证明异面直线垂直,①通常采用三垂线定理及逆定理或线面垂直关系来证明;②向量法 0=⋅⇔⊥b a b a(5)求异面直线间的距离:大纲仅要求掌握已给出公垂线或易找出公垂线的有关问题计算.6、 直线与平面的位置关系1、直线与平面的位置关系A a a a =⋂⊂ααα,//,2、直线与平面平行的判定(1)判定定理: ααα////b a a b b ⇒⎪⎭⎪⎬⎫⊂⊄ (线线平行,则线面平行17P )(2)面面平行的性质:βαβα////a a ⇒⎭⎬⎫⊂ (面面平行,则线面平行) 3、直线与平面平行的性质b a b a a //,//⇒⎭⎬⎫=⋂⊂βαβα (线面平行,则线线平行18P )★4、直线与平面垂直的判定 (1)直线与平面垂直的定义的逆用a l a l ⊥⇒⎭⎬⎫⊂⊥αα, (2)判定定理:αα⊥⇒⎪⎭⎪⎬⎫=⋂⊂⊥⊥l A n m n m n l m l ,, (线线垂直,则线面垂直23P )(3)αα⊥⇒⎭⎬⎫⊥a b b a // (25P 练习 第6题) (4)面面垂直的性质定理:βαβαβα⊥⇒⎪⎭⎪⎬⎫⊥⊂=⋂⊥a l a a l , (面面垂直,则线面垂直51P )(5)面面平行是性质:βαβα⊥⇒⎭⎬⎫⊥l l // 5、射影长定理★6、三垂线定理及逆定理 线垂影⇔线垂斜7、 两个平面的位置关系:空间两个平面的位置关系 相交和平行8、两个平面平行的判定 (1)判定定理:βαβαα//,,//,//⇒⎭⎬⎫=⋂P b a b a b a (线线平行,则面面平行19P )(2)βαβα//⇒⎭⎬⎫⊥⊥l l 垂直于同一平面的两个平面平行 (3)βαγβγα////,//⇒ 平行于同一平面的两个平面平行 (21P 练习 第2题) 9、两个平面平行的性质(1)性质1:βαβα//,//a a ⇒⊂(2)面面平行的性质定理: b a b a //,//⇒⎭⎬⎫=⋂=⋂γβγαβα (面面平行,则线线平行20P )(3)性质2:βαβα⊥⇒⊥l l ,// 10、两个平面垂直的判定与性质(1)判定定理:βααβ⊥⇒⊂⊥a a , (线面垂直,则面面垂直50P )(2)性质定理:面面垂直的性质定理:βαβαβα⊥⇒⎪⎭⎪⎬⎫⊥⊂=⋂⊥a l a a l , (面面垂直,则线面垂直51P )12、 空间角:异面直线所成角(9.1);斜线与平面所成的角 )2,0(π(1)求作法(即射影转化法):找出斜线在平面上的射影,关键是作垂线,找垂足. (2)向量法:设平面α的法向量为n ,则直线AB 与平面α所成的角为θ,则|||||,cos |sin n AB n AB =><=θ )2,0(πθ∈(3)两个重要结论最小角定理48P :21cos cos cos θθθ= ,,26P 例4 28P 第6题 13、空间距离:求距离的一般方法和步骤 (1)找出或作出有关的距离; (2)证明它符合定义;(3)在平面图形内计算(通常是解三角形) 求点到面的距离常用的两种方法 (1)等体积法——构造恰当的三棱锥;(2)向量法——求平面的斜线段,在平面的法向量上的射影的长度:||n d =直线到平面的距离,两个平行平面的距离通常都可以转化为点到面的距离求解 异面直线的距离① 定义:和两异面直线都垂直相交且夹在异面直线间的部分(公垂线段) ② 求法:法1 找出两异面直线的公垂线段并计算,法2 转化为点面距离向量法 ||n n AB d =(A ,B 分别为两异面直线上任意一点,n 为垂直于两异面直线的向量) 注意理解应用:θcos 22222mn d n m l ±++=二、空间向量知识点 1、空间向量的加法和减法:()1求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.()2求两个向量和的运算称为向量的加法:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则. 2、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.3、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.4、向量共线充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.5、平行于同一个平面的向量称为共面向量.6、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A ;或对空间任一定点O ,有x y C OP =OA +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA+OB+O ++=.7、已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.8、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.9、已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0. 10、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积. 11、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=; ()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ()4cos ,ab a b a b⋅〈〉=;()5a b a b ⋅≤.12、空间向量基本定理: 若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.13、空间任意三个不共面的向量都可以构成空间的一个基底. 14、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .15、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---. ()3()111,,a x y z λλλλ=.()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.()6若b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===.()721a a a x =⋅=+()821cos ,x a b a b a bx ⋅〈〉==+.()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB = 16、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y 使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置.17、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量.18、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.19.0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=.20、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.21、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.22、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.23、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.24、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.25、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.26、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=。
空间向量与立体几何知识总结(全国高考必备!)空间向量知识总结:一、向量的基本概念1. 向量的定义:向量是具有大小和方向的量,用箭头表示。
2. 向量的表示:通常用字母加上一个箭头表示向量,如AB→表示从点A指向点B的向量。
3. 零向量:大小为0的向量,表示为0→。
4. 向量的相等:两个向量的大小和方向都相同,即为相等。
5. 单位向量:长度为1的向量,表示为→a。
二、向量的运算1. 向量的加法:两个向量相加,将它们的起点重合,终点连线即为结果向量。
2. 向量的减法:将被减向量取反,然后与减向量相加。
3. 数乘:将向量的大小乘以一个实数,得到新的向量。
4. 内积:两个向量的数量积,结果是一个实数。
5. 外积:两个向量的向量积,结果是一个向量,其大小等于两个向量构成的平行四边形的面积,方向垂直于这个平行四边形的平面。
三、向量的性质1. 交换律:向量的加法满足交换律,即A+B=B+A。
2. 结合律:向量的加法满足结合律,即(A+B)+C=A+(B+C)。
3. 数乘结合律:数乘与向量的加法满足结合律,即k(A+B)=kA+kB。
4. 数乘分配律:数乘对向量的加法满足分配律,即(k+m)A=kA+mA。
5. 内积的性质:内积满足交换律、结合律和分配律。
四、立体几何知识总结:1. 空间几何基本概念:点、线、面。
2. 空间几何基本要素:直线的判定、平面的判定、相交关系的判定。
3. 立体图形的基本要素:点、线、面、体。
4. 空间几何基本定理:平行线与平面的关系、垂直关系、垂直平分线定理、角平分线定理、垂直平面定理、等腰三角形定理等。
5. 空间几何的投影:点到直线的投影、点到平面的投影、直线到直线的投影等。
6. 空间几何的立体图形:立体图形的表面积和体积计算公式,如球体、圆柱体、圆锥体、棱锥体、棱台等。
综上所述,空间向量与立体几何是高中数学中重要的内容,理解并掌握相关的概念、运算、性质以及定理和公式,对于解题和应用具有重要意义。
空间向量与立体几何知识点归纳总结一.知识要点。
1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2.空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b ; BA OA OB a b; O Pa (R )运算律:⑴加法交换律: a b b a⑵加法结合律:( a b ) ca( b c )⑶数乘分配律: ( a b )a b运算法则:三角形法则、平行四边形法则、平行六面体法则3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于b,记作a // b。
(2)共线向量定理:空间任意两个向量a、b(b≠0),a // b存在实数λ,使a=λb。
(3)三点共线:A、 B、C 三点共线 <=> AB AC<=> OC xOA yOB(其中x y 1)a(4)与a共线的单位向量为a4.共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量a , b不共线,p与向量a , b共面的条件是存在实数x , y 使p xa yb 。
(3)四点共面:若 A、B、C、P 四点共面 <=> AP x AB y AC<=> OP x OA y OB zOC (其中 x y z 1)5.空间向量基本定理:如果三个向量 a , b , c 不共面,那么对空间任一向量p,存在一个唯一的有序实数组 x , y, z ,使pxa yb zc 。
空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设 O , A, B , C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x , y , z ,使 O PxO A yO BzO C 。
空间向量在立体几何中的应用要求层次重难点空间直角坐标系空间直角坐标系 B (1)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.②会推导空间两点间的距离公式.(2)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.②掌握空间向量的线性运算及其坐标表示.③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.空间两点间的距离公式 B空间向量的应用空间向量的概念 B空间向量基本定理 A空间向量的正交分解及其坐标表示B空间向量的线性运算及其坐标表示C空间向量的数量积及其坐标表示C运用向量的数量积判断向量的共线与垂直C空间向量在立体几何中的应用要求层次重难点空间直角坐标系空间直角坐标系 B(1)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.空间两点间的距离公式 B空间向空间向量的概念 B高考要求模块框架空间向量与立体几何.知识框架量的应用空间向量基本定理 A ②会推导空间两点间的距离公式.(2)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.②掌握空间向量的线性运算及其坐标表示.③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.空间向量的正交分解及其坐标表示B空间向量的线性运算及其坐标表示C空间向量的数量积及其坐标表示C运用向量的数量积判断向量的共线与垂直 C知识内容1.在空间内,把具有大小和方向的量叫空间向量,可用有向线段来表示. 用同向且等长的有向线段表示同一向量或相等的向量.2.起点与终点重合的向量叫做零向量,记为0或0r.在手写向量时,在字母上方加上箭头,如a r ,AB u u u r.3.表示向量a r的有向线段的长度叫做向量的长度或模,记作||a r ,有向线段的方向表示向量的方向.有向线段所在的直线叫做向量的基线.4.如果空间中一些向量的基线互相平行或重合,则这些向量叫做共线向量或平行向量.a r 平行于b r 记为a b r r ∥.5.向量的加法、减法与数乘向量运算:与平面向量类似; 6.空间向量的基本定理:共线向量定理:对空间两个向量a r ,b r (0b ≠r ),a b r r ∥的充要条件是存在实数x ,使a xb =r r.共面向量:通常我们把平行于同一平面的向量,叫做共面向量.共面向量定理:如果两个向量a r ,b r 不共线,则向量c r 与向量a r ,b r共面的充要条件是,存在唯一的一对实数x ,y ,使c xa yb =+r r r.空间向量分解定理:如果三个向量a r ,b r ,c r不共面,那么对空间任一向量p u r ,存在一个唯一的有序实数组x ,y ,z ,使p xa yb zc =++u r r r r.表达式xa yb zc ++r r r ,叫做向量a r ,b r ,c r的线性表示式或线性组合.上述定理中,a r ,b r ,c r叫做空间的一个基底,记作{}a b c r r r ,,,其中a b c r r r ,,都叫做基向量.由此定理知,空间任意三个不共面的向量都可以构成空间的一个基底.7.两个向量的夹角:已知两个非零向量a b r r ,,在空间任取一点O ,作OA a =u u u r r ,OB b =u u u r r,则AOB ∠叫做向量a r 与b r的夹角,记作a b 〈〉r r ,.通常规定0πa b 〈〉r r ≤,≤.在这个规定下,两个向量的夹角就被唯一确定了,并且a b b a 〈〉=〈〉r r r r ,,. 如果90a b 〈〉=r r ,°,则称a r 与b r 互相垂直,记作a b ⊥r r . 8.两个向量的数量积:已知空间两个向量a r ,b r,定义它们的数量积(或内积)为:||||cos a b a b a b ⋅=〈〉r r r r r r ,空间两个向量的数量积具有如下性质:⑴||cos a e a a e ⋅=〈〉r r r r r ,;⑵0a b a b ⇔⋅=r r r r^;⑶2||a a a =⋅r r r ;⑷a b a b ⋅r r r r ||≤||||. 空间两个向量的数量积满足如下运算律:⑴()()a b a b λλ⋅=⋅r r r r ;⑵a b b a ⋅=⋅r r r r;⑶()a b c a c b c +⋅=⋅+⋅r r r r r r r . 9.空间向量的直角坐标运算:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i j k r r r,,,这三个互相垂直的单位向量构成空间向量的一个基底{}i j k r r r,,,这个基底叫做单位正交基底. 空间直角坐标系Oxyz ,也常说成空间直角坐标系[]O i j k r r r ;,,. 10.坐标:在空间直角坐标系中,已知任一向量a r,根据空间向量分解定理,存在唯一数组123()a a a ,,,使123a a i a j a k =++r r r r ,1a i r ,2a j r ,3a k r 分别叫做向量a r在i j k r r r ,,方向上的分量,有序实数组123()a a a ,,叫做向量a r在此直角坐标系中的坐标.上式可以简记作123()a a a a =r,,. 若123()a a a a =r ,,,123()b b b b =r,,, 则:112233()a b a b a b a b +=+++r r ,,;112233()a b a b a b a b -=---r r,,; 123()a a a a λλλλ=r ,,;112233a b a b a b a b ⋅=++r r .一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.11.空间向量的平行和垂直的条件:设111()a a b c =r ,,,123()b b b b =r ,,, a b r r ∥(0b ≠r r )a b λ⇔=r r 112233a b a b a bλλλ=⎧⎪⇔=⎨⎪=⎩;11223300a b a b a b a b a b ⇔⋅=⇔++=r r r r^.两个向量的夹角与向量的长度的坐标计算公式: 222123||a a a a a a ⋅++r r r 222123||b b b b b b =⋅++r r r112233222222123123cos ||||a ba b a b a a a b b b ⋅〈〉==++++r rr r r r ,. 12.位置向量:已知向量a r ,在空间固定一个基点O ,再作向量OA a =u u u r r,则点A 在空间的位置就被向量a r所唯一确定了.这时,我们称这个向量为位置向量.由此,我们可以用向量及其运算来研究空间图形的性质.13.给定一个定点A 和一个向量a r,O 为空间中任一确定的点,B 为直线l 上的点,则P 在为过点A 且平行于向量a r的直线l 上⇔ AP ta =u u u r r①⇔ OP OA ta =+u u u r u u u r r②⇔ (1)OP t OA tOB =-+u u u r u u u r u u u r③这三个式子都称为直线l 的向量参数方程.向量a r称为该直线的方向向量.14.设直线1l 和2l 的方向向量分别为1v u r 和2v u u r,12l l ∥(或1l 与2l 重合)12v v ⇔u r u u r ∥;12l l ^12v v ⇔u r u u r^.若向量1v u r 和2v u u r是两个不共线的向量,且都平行于平面α(即向量的基线与平面平行或在平面内),直线l 的一个方向向量为v r,则l α∥或l 在α内 ⇔ 存在两个实数x y ,,使12v xv yv =+r u r u u r.15.如果向量n r 的基线与平面α垂直,则向量n r就称为平面α的法向量.设A 是空间任一点,n r 为空间内任一非零向量,则满足0AM n ⋅=u u u u r r的点M 表示过点A 且与向量n r 垂直的平面,0AM n ⋅=u u u u r r称为该平面的向量表示式.16.设12n n u u r u u r,分别是平面αβ,的法向量,则αβ∥或α与β重合⇔12n n u u r u u r ∥;12120n n n n αβ⇔⇔⋅=u u r u u r u u r u u r^^17.线面角:斜线和它在平面内的正射影的夹角叫做斜线和平面所成的角,是斜线与这个平面内所有直线所成角中最小的角.18.二面角:平面内的一条直线把平面分成两部分,其中的每一部分都叫做半平面.从一条直线出发的两个半平面所组成的图形叫做二面角;这条直线叫做二面角的棱.每个半平面叫做二面角的面.棱为l ,两个面分别为αβ,的二面角,记作l αβ--.在二面角l αβ--的棱上任取一点O ,在两半平面内分别作射线OA l ^,OB l ^,则AOB Ð叫做二面角l αβ--的平面角.二面角的平面角的大小就称为二面角的大小.我们约定二面角的范围为[0180]°,°. 设12m m αβu u r u u r ,^^,则角12m m 〈〉u u r u u r,与二面角l αβ--相等或互补.。