2011年全国各地中考数学试题分考点解析汇编---阅读理解型问题
- 格式:doc
- 大小:1.15 MB
- 文档页数:22
2011年安徽省中考数学试题及详细解析一、选择题(共10小题,每小题4分,满分40分)1、在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A、﹣1B、0C、1D、2考点:有理数。
分析:正数是大于0的数,负数是小于0的数,既不是正数也不是负数的是0.解答:解:A、﹣1<0,是负数,故A错误;B、既不是正数也不是负数的是0,正确;C、1>0,是正数,故C错误;D、2>0,是正数,故D错误.故选B.点评:理解正数和负数的概念是解答此题的关键.2、计算(2x)3÷x的结果正确的是()A、8x2B、6x2C、8x3D、6x3考点:整式的除法;幂的乘方与积的乘方;同底数幂的除法。
分析:根据积的乘方等于各因式乘方的积和单项式的除法法则解答.解答:解:(2x)3÷x=8x3÷x=8x2.故选A.点评:本题主要考查积的乘方的性质,单项式的除法,熟练掌握运算性质是解题的关键.3、如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A、50°B、55°C、60°D、65°考点:平行线的性质;对顶角、邻补角;三角形内角和定理。
专题:计算题。
分析:先根据平行线的性质及对顶角相等求出∠3所在三角形其余两角的度数,再根据三角形内角和定理即可求出∠3的度数.解答:解:如图所示:∵l1∥l2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.故选C.点评:本题重点考查了平行线的性质、对顶角相等及三角形内角和定理,是一道较为简单的题目.4、2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A、2.89×107B、2.89×106C、2.89×105D、2.89×104考点:科学记数法—表示较大的数。
(2012年1月最新最细)2011全国中考真题解析120考点汇编阅读理解题一、选择题1.(2011四川广安,8,3分)在直角坐标平面内的机器人接受指令“[],Aα”(α≥0,0︒<A<180︒)后的行动结果为:在原地顺时针旋转A后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y轴的负半轴,则它完成一次指令[]2,60︒后位置的坐标为()A.(1,-B.(1,-C.(-)D.()考点:创新题,阅读理解题,解直角三角形专题:创新题,阅读理解题,分析:根据题意画出图形如图所示机器人由原点位置按指令[]2,60︒到达点M的位置,作MN⊥y轴于点N,由题意可知∠MON=60°,OM=2,所以ON=OM·cos60°=1212⨯=,MN=OM·sin60°=22⨯=M在第三象限,所以该点的坐标为()1-.解答:C点评:解答本题的关键是在读懂题意的基础上画出符合题意的图形,把该问题转化为数学问题,通过添加辅助线构造直角三角形,把求点的坐标转化为求直角三角形中的直角边的长.2. (2011广西百色,14,4分)相传古印度一座梵塔圣殿中,铸有一片巨大的黄铜板,之上树立了三米高的宝石柱,其中一根宝石柱上插有中心有孔的64枚大小两两相异的一寸厚的金盘,小盘压着较大的盘子,如图,把这些金盘全部一个一个地从1柱移到3柱上去,移动过程不许以大盘压小盘,不得把盘子放到柱子之外.移动之日,喜马拉雅山将变成一座金山.设h(n)是把n个盘子从1柱移到3柱过程中移动盘子之最少次数n=1时,h(1)=1;n=2时,小盘→2柱,大盘→3柱,小柱从2柱→3柱,完成.即h(2)=3;n=3时,小盘→3柱,中盘→2柱,小柱从3柱→2柱.[即用h(2)种方法把中.小两盘移到2柱,大盘3柱;再用h(2)种方法把中.小两盘从2柱3柱,完成;我们没有时间去移64个盘子,但你可由以上移动过程的规律,计算n=6时,h(6)=()A.11 B.31 C.63 D.127考点:规律型:图形的变化类.专题:阅读型;规律型.分析:根据移动方法与规律发现,随着盘子数目的增多,都是分两个阶段移动,用盘子数目减1的移动次数都移动到2柱,然后把最大的盘子移动到3柱,再用同样的次数从2柱移动到3柱,从而完成,然后根据移动次数的数据找出总的规律求解即可.解答:解:根据题意,n=1时,h(1)=1,n=2时,小盘→2柱,大盘→3柱,小柱从2柱→3柱,完成,即h(2)=3=22﹣1;n=3时,小盘→3柱,中盘→2柱,小柱从3柱→2柱,[用h(2)种方法把中.小两盘移到2柱,大盘3柱;再用h(2)种方法把中.小两盘从2柱3柱,完成],h(3)=h(2)×h(2)+1=3×2+1=7=23﹣1,h(4)=h(3)×h(3)+1=7×2+1=15=24﹣1,…以此类推,h(n)=h(n﹣1)×h(n﹣1)+1=2n﹣1,∴h(6)=26﹣1=64﹣1=63.故选C.点评:本题考查了图形变化的规律问题,根据题目信息,得出移动次数分成两段计数,利用盘子少一个时的移动次数移动到2柱,把最大的盘子移动到3柱,然后再用同样的次数从2柱移动到3柱,从而完成移动过程是解题的关键,本题对阅读并理解题目信息的能力要求比较高.3.(2011•德州,7,3分)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是()A、a4>a2>a1B、a4>a3>a2C、a1>a2>a3D、a2>a3>a4考点:正多边形和圆;等边三角形的判定与性质;多边形内角与外角;平行四边形的判定与性质。
(2012年1月最新最细)2011全国中考真题解析120考点汇编☆相似三角形判定和性质一、选择题1.(2011湖北荆州,7,3分)如图,P为线段AB上一点,AD与BC交干E,∠CPD=∠A=∠B,BC交PD于E,AD交PC于G,则图中相似三角形有()A、1对B、2对C、3对D、4对考点:相似三角形的判定.专题:证明题.分析:根据题目提供的相等的角和图形中隐含的相等的角,利用两对应角对应相等的两三角形相似找到相似三角形即可.解答:解:∵∠CPD=∠A=∠B,∴△PCF∽△BCP△APG∽△BFP△APD∽△GPD故选B.点评:本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角.2.(2011江苏无锡,7,3分)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是()A.①与②相似B.①与③相似 C.①与④相似D.②与③相似考点:相似三角形的判定。
分析:由OA:OC﹣=0B:OD,利用对顶角相等相等,两三角形相似,①与③相似,问题可求.解答:证明:∵OA:OC=0B:OD,∠AOB=∠COD(对顶角相等),∴①与③相似.故选B.点评:本题解答的关键是熟练记住所学的三角形相似的判定定理,此题难度不大,属于基础题.3.(2011山西,11,2分)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2㎝,则AC的长为()A. B.4cm C. D.考点:三角形中位线,相似三角形的相似比专题:相似三角形分析:由题意知DE 是等腰△ABC 的中位线,所以DE ∥BC ,DE =12BC , 因为DE =2㎝,所以BC =4㎝.又DE ∥BC , 所以△ADE ∽△ABC ,且相似比为12.过点A 作AM ⊥BC 于点M .则MC =2㎝, 由点E 是边AC 的中点,EF ∥AM ,所以FC =1㎝.在△EFC 中, 因为正方形DEFG 的边长是2㎝,所以根据勾股定理得ECAC=)cm , 故选D .解答:D点评:此题是三角形中位线, 等腰三角形的性质,勾股定理,相似三角形的相似比等的综合应用.过点A 作AM ⊥BC 于点M ,构造等腰三角形的高学生不易想到.4. (2011陕西,9,3分)如图,在□ABCD 中,E 、F 分别是AD 、CD 边上的点,连接BE 、AF ,他们相交于点G ,延长BE 交CD 的延长线于点H ,则图中的相似三角形共有( )A .2对B .3对C .4对D .5对考点:相似三角形的判定;平行四边形的性质。
(2012年1月最新最细)2011全国中考真题解析120考点汇编☆二次函数的几何应用一、选择题1.(2011•安顺)正方形ABCD边长为1,E、F、G、H分别为边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设小正方形EFGH的面积为y,AE=x.则y关于x的函数图象大致是()A、B、C、D、考点:二次函数综合题。
分析:由已知得BE=CF=DG=AH=1﹣x,根据y=S正方形ABCD﹣S△AEH﹣S△BEF﹣S△CFG﹣S△DGH,求函数关系式,判断函数图象.解答:解:依题意,得y=S正方形ABCD﹣S△AEH﹣S△BEF﹣S△CFG﹣S△DGH=1﹣4×(1﹣x)x=2x2﹣2x+1,即y=2x2﹣2x+1(0≤x≤1),抛物线开口向上,对称轴为x=,故选C.点评:本题考查了二次函数的综合运用.关键是根据题意,列出函数关系式,判断图形的自变量取值范围,开口方向及对称轴.二、填空题1.(2011山东日照,16,4分)正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM= 2 时,四边形ABCN的面积最大.考点:二次函数的最值;正方形的性质;相似三角形的判定与性质。
专题:应用题。
分析:设BM=x ,则MC=﹣4x ,当AM⊥MN 时,利用互余关系可证△ABM∽△MCN,利用相似比求CN ,根据梯形的面积公式表示四边形ABCN 的面积,用二次函数的性质求面积的最大值. 解答:解:设BM=x ,则MC=﹣4x , ∵∠AMN=90°,∴∠AMB=90°﹣∠NMC=∠MNC, ∴△ABM∽△MCN,则CN BM MC AB =,即CNxx =-44, 解得CN=4)4(x x -, ∴S 四边形ABCN =21×4×[4+4)4(x x -]=﹣21x 2+2x+8,∵﹣21<0,∴当x=)21(22-⨯-=2时,S 四边形ABCN 最大.故答案为:2.点评:本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.三、解答题1. (2011江苏淮安,26,10分)如图,已知二次函数y= -x 2+bx +3的图象与x 轴的一个交点为A (4,0),与y 轴交于点B .(1)求此二次函数关系式和点B 的坐标; (2)在x 轴的正半轴上是否存在点P ,使得△PAB 是以AB 为底的等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.考点:二次函数综合题。
2011年数学中考试题分类赏析1.传承数学文化、让学生体验数学化的科学价值新课标指出:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分”。
“是人类社会进步的产物,也是推动社会发展的动力”。
中考作为一种社会文化现象,必然要从属和服务于社会意识形态和特定的文化结构,必须要承载社会赋予其特定的功能——数学化。
例1:(温州)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1—1)。
图1—2由弦图变化得到,它是由八个全等的直角三角形拼接而成。
记图1—2中正方形,正方形,正方形的面积分别为,若=10,则的值是。
LCX型罗茨油泵解析:由题意可知,,,。
又由=10,易得:的值是CYZ型自吸式离心油泵安装尺寸及曲线图赏析:勾股定理是人类最伟大的十个科学发现之一。
有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它。
赵爽的证明可谓别具匠心,极富创新意识。
他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。
学生通过解此题,进一步体验了形数统一的思想方法,又一次经历了认识勾股定理的数学化过程。
受到优秀文化的熏陶,传承了中华民族悠悠五千年文化史。
2. 关注问题情境、让学生经历数学化的思维过程渣油泵在命制中考试题中,如何创设试题情境是一种智慧的挑战。
试题情境需要命题教师对教学本身进行周密思考与精心设计,试题情境要学生在应试过程中自己去经历、体会、理解,要有让学生思考的时间和空间,使学生在一个曾经历过的熟悉的背景下,产生一种巨大的无形的导引效应,使自己全身心投入到解决问题的数学化过程活动中,从自己的经验出发,运用属于自己的方式和策略,寻找解决问题的方法,发现和整理属于自己的不同形式的解题策略,经历数学化的过程。
2011年陕西省中考数学试题及答案(word 版)第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.32-的倒数为 【 】 A . 23- B .23 C .32 D . 32-2.下面四个几何体中,同一几何体的主视图和俯视图相同的共有 【 】A 、1个B 、2个C 、3个D 、4个3.我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学计数法表示为 【 】 A 、 91037.1⨯B 、71037.1⨯ C 、81037.1⨯ D 、 101037.1⨯4、下列四个点,在正比例函数X Y 52-=的图像上的点是 【 】 A 、( 2, 5 ) B 、( 5, 2) C 、(2,-5)D 、 ( 5 , -2 )5.在△ABC 中,若三边BC ,CA,AB 满足 BC :CA :AB=5:12:13,则cosB= 【 】 A 、125B 、512 C 、135 D 、1312 6.某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,则这组数据的中位数和众数分别是 【 】A 、181,181B 、182,181C 、180,182D 、181,1827.同一平面内的两个圆,他们的半径分别为2和3 ,圆心距为d,当51 d 时,两圆的位置关系是 【 】A 、外离B 、相交C 、内切或外切D 、内含 8.如图,过y 轴上任意一点p ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和的图像交于A 点和B 点,若C 为x 轴上任意一点,连接AC,BC 则△ABC 的面积为 【 】正方体 圆锥 球 圆柱 (第二题图)9、 如图,在ABCD 中EF 分别是AD 、 CD 边上的点,连接BE 、AF,他们相交于G ,延长BE 交CD 的延长线于点H,则图中的全等三角形有 【 】A 、2对B 、3对C 、4对D 、5对10、若二次函数c x x y +-=62的图像过)321,23(),,2(),,1(Y C Y B Y A +-,则321,,y y y 的大小关系是 【 】A 、321y y yB 、321y y yC 、312y y yD 、213y y y第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分) 11.计算:23-= .(结果保留根号)12.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E ,若0641=∠则=∠1 .13、分解因式:=+-a ab ab 442.14、一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为元15、若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .16、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,若AD=3,BC=7,则梯形ABCD 面积的最大值 三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分) 解分式方程:xx x -=--2312418.(本题满分6分)在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE19.(本题满分7分)某校有三个年级,各年级的人数分别为七年级600人,八年级540人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:(1)根据图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图;(2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例较大,你认为小丽的判断正确吗?说明理由。
专题六 阅读理解型问题1.(2011年山东菏泽)定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则,计算2☆3的值是( )A.56B.15C .5D .6 2.(2012年贵州六盘水)定义:f (a ,b )=(b ,a ),g (m ,n )=(-m ,-n ),例如:f (2,3)=(3,2),g (-1,-4)=(1,4),则g [f (-5,6)]=( )A .(-6,5)B .(-5,-6)C .(6,-5)D .(-5,6)3.(2012年山东莱芜)对于非零的两个实数a ,b ,规定a ⊕b =1b -1a.若2⊕(2x -1)=1,则x 的值为( )A.56B.54C.32 D .-164.(2012年湖南湘潭)文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1.若输入7,则输出的结果为( )A .5B .6C .7D .85.(2012年湖北随州)定义:平面内的直线l 1与l 2相交于点O ,对于该平面内任意一点M ,点M 到直线l 1,l 2的距离分别为a ,b ,则称有序非负实数对(a ,b )是点M 的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是( )A .2个B .1个C .4个D .3个6.(2012年四川德阳)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a ,b ,c ,d 对应密文a +2b,2b +c,2c +3d,4d .例如:明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为A .4,6,1,7B .4,1,6,7C .6,4,1,7D .1,6,4,77.(2012年湖北荆州)新定义:[a ,b ]为一次函数y =ax +b (a ≠0,a ,b 为实数)的“关联数”.若“关联数”[1,m -2]的一次函数是正比例函数,则关于x 的方程1x -1+1m=1的解为__________.8.小明是一位刻苦学习、勤于思考、勇于创新的学生.一天,他在解方程时,有这样的想法:x 2=-1这个方程在实数范围内无解,如果存在一个数i 2=-1,那么方程x 2=-1可以变为x 2=i 2,则x =±i ,从而x =±i 是方程x 2=-1的两个根.小明还发现i 具有如下性质:i 1=i ,i 2=-1,i 3=i 2·i =()-1i =-i ,i 4=()i 22=()-12=1,i 5=i 4·i =i ,i 6=()i 23=()-12=1,i 7=i 6·i =-i ,i 8=()i 42=1…… 请你观察上述等式,根据发现的规律填空: i 4n +1=______,i 4n +2=______,i 4n +3=______,i 4n =______(n 为自然数).9.(2012年湖南张家界)阅读材料:对于任何实数,我们规定符号⎪⎪⎪ a c ⎪⎪⎪b d 的意义是⎪⎪⎪ac ⎪⎪⎪bd =ad -bc .例如:⎪⎪⎪ 1 3 ⎪⎪⎪24=1×4-2×3=-2,⎪⎪⎪ -2 3⎪⎪⎪45=(-2)×5-4×3=-22.(1)按照这个规定,请你计算⎪⎪⎪ 57⎪⎪⎪68的值;(2)按照这个规定,请你计算:当x 2-4x +4=0时,⎪⎪⎪ x +1x -1⎪⎪⎪2x2x -3的值.10.(2011年四川达州)给出下列命题:命题1:直线y =x 与双曲线y =1x有一个交点是(1,1);命题2:直线y =8x 与双曲线y =2x有一个交点是⎝⎛⎭⎫12,4; 命题3:直线y =27x 与双曲线y =3x有一个交点是⎝⎛⎭⎫13,9; 命题4:直线y =64x 与双曲线y =4x有一个交点是⎝⎛⎭⎫14,16; ……(1)请你阅读、观察上面命题,猜想出命题n (n 为正整数); (2)请验证你猜想的命题n 是真命题.11.先阅读理解下列例题,再按要求完成下列问题. 例题:解一元二次不等式6x 2-x -2>0.解:把6x 2-x -2分解因式,得6x 2-x -2=()3x -2()2x +1, 又6x 2-x -2>0,所以()3x -2()2x +1>0,由有理数的乘法法则“两数相乘,同号得正”有(1)⎩⎪⎨⎪⎧ 3x -2>0,2x +1>0,或(2)⎩⎪⎨⎪⎧3x -2<0,2x +1<0,解不等式组(1),得x >23,解不等式组(2),得x <-12.所以()3x -2()2x +1>0的解集为x >23或x <-12.因此,一元二次不等式6x 2-x -2>0的解集为x >23或x <-12.(1)求分式不等式5x +12x -3<0的解集;(2)通过阅读例题和解答问题(1),你学会了什么知识和方法?12.(2012年江苏盐城)知识迁移:当a >0,且x >0时,因为⎝⎛⎭⎪⎫x -a x 2≥0,所以x -2 a +a x ≥0.从而x +a x ≥2 a (当x =a时,取等号).记函数y =x +ax(a >0,x >0),由上述结论,可知:当x =a 时,该函数有最小值为2 a .直接应用已知函数y 1=x (x >0)与函数y 2=1x(x >0),则当x =______时,y 1+y 2取得最小值为______.变形应用已知函数y 1=x +1(x >-1)与函数y 2=(x +1)2+4(x >-1),求y 2y 1的最小值,并指出取得该最小值时相应的x 的值.实际应用已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共360元;二是燃油费,每千米1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设汽车一次运输路程为x千米,求当x为多少时,该汽车平均每千米的运输成本最低?最低是多少元?专题六 阅读理解型问题 【专题演练】 1.A2.A 解析:∵f (-5,6)=(6,-5),∴g [f (-5,6)]=g (6,-5)=(-6,5).故选A.3.A 4.B 5.C 6.C 7.x =3 8.i -1 -i 19.解:(1)⎪⎪⎪ 5 7⎪⎪⎪68=5×8-7×6=-2. (2)由x 2-4x +4=0,得x =2.⎪⎪⎪ x +1x -1⎪⎪⎪2x 2x -3=⎪⎪⎪ 3 1⎪⎪⎪41=3×1-4×1=-1.10.解:(1)直线y =n 3x 与双曲线y =nx有一个交点是⎝⎛⎭⎫1n ,n 2. (2)验证如下:将点⎝⎛⎭⎫1n ,n 2代入y =n 3x , ∵右边=n 3·1n=n 2=左边,∴左边=右边.∴点⎝⎛⎭⎫1n ,n 2在直线y =n 3x 上. 同理可证,点⎝⎛⎭⎫1n ,n 2在直线y =nx上. ∴点⎝⎛⎭⎫1n ,n 2是两函数的交点.11.解:(1)由有理数的除法法则“两数相除,异号得负”有: (1)⎩⎪⎨⎪⎧ 5x +1>0,2x -3<0, 或(2)⎩⎪⎨⎪⎧5x +1<0,2x -3>0, 解不等式组(1),得-15<x <32,解不等式组(2),得不等式组(2)无解.因此,分式不等式5x +12x -3<0的解集为-15<x <32.(2)通过阅读例题和解答问题(1),学会了解一元二次不等式、分式不等式的一种方法. 12.解:直接应用:1 2变形应用:因为y 2y 1=(x +1)2+4x +1=(x +1)+4x +1≥4,所以y 2y 1的最小值是4.此时x +1=4x +1,(x +1)2=4,x =1.实际应用:设该汽车平均每千米的运输成本为y ,则y =360+1.6x +0.001x 2.故平均每千米的运输成本为y x =0.001x +360x +1.6=0.001x +0.360.001x+1.6. 由题意,可得当0.001x =0.36,即x =600时,yx取得最小值.此时yx≥2 0.36+1.6=2.8.答:当汽车一次运输路程为600千米时,其平均每千米的运输成本最低,最低是2.8元.。
2011年高中阶段学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是 A .4B .2C .-2D .2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有 A .D 点B .A 点C .A 点和D 点D .B 点和C 点3.下列运算正确的是 A .(ab )5=ab 5B .a 8÷a 2=a 6C .(a 2)3=a 5D .(a -b )2=a 2-b 24.如图2,CA ⊥BE 于A ,AD ⊥BF 于D ,下列说法正确的是 A .α的余角只有∠B B .α的邻补角是∠DACC .∠ACF 是α的余角D .α与∠ACF 互补5.下列说法正确的是A .频数是表示所有对象出现的次数B .频率是表示每个对象出现的次数C .所有频率之和等于1D .频数和频率都不能够反映每个对象出现的频繁程度6.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C 的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C ,峰顶的温度为(结果保留整数)A .-26°CB .-22°CC .-18°CD .22°C图2图17.已知a、b、c分别是三角形的三边,则方程(a + b)x2 + 2cx + (a + b)=0的根的情况是A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A、C、D三点至少有一点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是A.r>15 B.15<r<20 C.15<r<25 D.20<r<25 9.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 210.如图3,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED、CD分别与Rt△ABC的直角边BC相交于M、N,则当△DMN为等边三角形时,AM的值为A .3B .233C .33D.12011年高中阶段学校招生统一考试数学第Ⅱ卷(非选择题共90分)题号二三总分总分人17 18 19 20 21 22 2324得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD中,对角线AC、BD交于点O,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20080+233=__________.图4图313.若A (1x ,1y )、B (2x ,2y )在函数12y x=的图象上,则当1x 、2x 满足_______________时,1y >2y .14.如图5,校园内有一块梯形草坪ABCD ,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF ,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).15.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x ,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:(212x x --2144x x -+)÷222x x-,其中x =1.18.(本小题满分7分)如图7,在△ABC 中,∠A 、∠B 的平分线交于点D ,DE ∥AC 交BC 于点E ,DF ∥BC 交AC 于点F .(1)点D 是△ABC 的________心; (2)求证:四边形DECF 为菱形.图5图7图619.(本小题满分8分)惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1) 3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区?(2)要使救灾物资一次性地运往灾区,共有哪几种运货方案?20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A 袋中放着分别标有数字1、2、3的三个小球,B 袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放回...地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小双设计的游戏方案对双方是否公平?不必说理.21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2kx的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标; (3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 约为多少米?(结果可保留根号)23.(本小题满分10分)阅读下列材料,按要求解答问题: 如图9-1,在ΔABC 中,∠A =2∠B ,且∠A =60°.小明通过以下计算:由题意,∠B =30°,∠C =90°,c =2b ,a =3b ,得a 2-b 2=(3b )2-b 2=2b 2=b ·c .即a 2-b 2= bc . 于是,小明猜测:对于任意的ΔABC ,当∠A =2∠B 时,关系式a 2-b 2=bc 都成立. (1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由;(3)若一个三角形的三边长恰为三个连续偶数,且∠A =2∠B ,请直接写出这个三角形三边的长,不必说明理由.图8图9-1图9-2图9-324.(本小题满分12分)如图10,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB为直径作⊙O ′,交y 轴的负半轴于点C ,过A 、B 、C 三点作抛物线.(1)求抛物线所对应的函数关系式; (2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O ′于点D ,连结BD ,求直线BD 所对应的函数关系式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD ?如果存在,请求出点P 的坐标;如果不存在,请说明理由.图102011年高中阶段学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题:(每小题3分,共10个小题,满分30分)1-5. DCBDC ;6-10. AACBB.二、填空题:(每小题3分,共6个小题,满分18分)11.答案不唯一,ΔAOB≌ΔCOD、ΔAOD≌ΔCOB、ΔADB≌ΔCBD、ΔABC≌ΔCDA之一均可;12.3434+(或34+3);13.x1<x2<0或0<x1<x2;14.4;15.10 ;16.9,12;三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x-–21(2)x-]×(2)2x x-······························································ 3分=1(2)x x-×(2)2x x-–21(2)x-×(2)2x x-=12–2(2)xx-·········································································································· 4分=22(2)xx--–2(2)xx-=12x-····················································································································· 5分当x=1时,原式=121-·············································································································· 6分= 1 ··························································································································· 7分图7 说明:以上步骤可合理省略 . 18.(1) 内. ············································································································ 2分 (2) 证法一:连接CD , ························································································· 3分 ∵ DE ∥AC ,DF ∥BC , ∴ 四边形DECF 为平行四边形,·········································································· 4分 又∵ 点D 是△ABC 的内心, ∴ CD 平分∠ACB ,即∠FCD =∠ECD , ································································ 5分 又∠FDC =∠ECD ,∴ ∠FCD =∠FDC ∴ FC =FD , ··········································································································· 6分 ∴ □DECF 为菱形. ······························································································ 7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . ·································· 3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI =DG , DG =DH .∴DH =DI . ·············································································································· 4分 ∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, ··········································································· 5分 ∴S □DECF =CE ·DH =CF ·DI , ∴CE =CF . ·············································································································· 6分 ∴□DECF 为菱形. ······························································································· 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13,·················································· 1分 ∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区.································································································································ 2分 (2) 设安排甲种货车x 辆,则安排乙种货车(9–x )辆, ········································ 3分由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩·············································································· 5分解得:1.5≤x ≤5 ····································································································· 6分注意到x 为正整数,∴x =2,3,4,5 ···································································· 7分 ∴安排甲、乙两种货车方案共有下表4种:方 案 方案一 方案二 方案三 方案四 甲种货车 2 3 4 5 乙种货车7654································································································································ 8分 说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程...也给全分. 20.(1) 大双的设计游戏方案不公平. ································································· 1分 可能出现的所有结果列表如下:1 2 344812大双积 小双5510 15或列树状图如下:·························································· 4分∴P(大双得到门票)= P(积为偶数)=46=23, P(小双得到门票)= P(积为奇数)=13, ···································································· 6分∵23≠13,∴大双的设计方案不公平. ··································································· 7分 (2) 小双的设计方案不公平. ················································································ 9分 参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y =2kx的图象经过点(1,1), ∴1=2k ····················································································································· 1分 解得k =2, ·············································································································· 2分∴反比例函数的解析式为y =1x. ··········································································· 3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩, ························································· 5分 ∵点A 在第三象限,且同时在两个函数图象上,∴A (12-,–2). ······································································································· 6分(3) P 1(32,–2),P 2(52-,–2),P 3(52,2).(每个点各1分) ································ 9分22. (1) 在Rt △BPQ 中,PQ =10米,∠B =30°, 则BQ =cot30°×PQ =103, ············································································ 2分 又在Rt △APQ 中,∠P AB =45°, 则AQ =tan45°×PQ =10,即:AB =(103+10)(米); ························································· 5分 (2) 过A 作AE ⊥BC 于E ,图8在Rt△ABE中,∠B=30°,AB =103+10,∴AE=sin30°×AB=12(103+10)=53+5, ··············································· 7分∵∠CAD=75°,∠B=30°,∴∠C=45°,····································································································· 8分在Rt△CAE中,sin45°=AE AC,∴AC =2(53+5)=(56+52)(米) ·······················································10分23. (1) 由题意,得∠A=90°,c=b,a =2b,∴a2–b2=(2b)2–b2=b2=bc. ······················································3分(2) 小明的猜想是正确的.·······················································4分理由如下:如图3,延长BA至点D,使AD=AC=b,连结CD,···································································································5分则ΔACD为等腰三角形.∴∠BAC=2∠ACD,又∠BAC=2∠B,∴∠B=∠ACD=∠D,∴ΔCBD为等腰三角形,即CD=CB=a, ·······················································6分又∠D=∠D,∴ΔACD∽ΔCBD,···············································7分∴AD CDCD BD=.即b aa b c=+.∴a2=b2+bc.∴a2–b2= bc············8分(3) a=12,b=8,c=10. ························································· 10分24.(1) ∵以AB为直径作⊙O′,交y轴的负半轴于点C,∴∠OCA+∠OCB=90°,又∵∠OCB+∠OBC=90°,∴∠OCA=∠OBC,又∵∠AOC= ∠COB=90°,∴ΔAOC∽ ΔCOB,·································································································· 1分∴OA OCOC OB=.又∵A(–1,0),B(9,0),∴19OCOC=,解得OC=3(负值舍去).∴C(0,–3), ································································································································ 3分设抛物线解析式为y=a(x+1)(x–9),∴–3=a(0+1)(0–9),解得a=13,∴二次函数的解析式为y=13(x+1)(x–9),即y=13x2–83x–3.································· 4分(2) ∵AB为O′的直径,且A(–1,0),B(9,0),∴OO′=4,O′(4,0),······························································································ 5分∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,∴∠BCD=12∠BCE=12×90°=45°,连结O′D交BC于点M,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=12AB=5.图9-3。
2011年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.(3分)(2013?宁德)﹣5的绝对值是()5 A.B.﹣5 C.D.﹣考点:绝对值.分析:根据绝对值的性质求解.解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.点评:此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2011?河南)如图,直线a,b被c所截,a∥b,若∠1=35°,则∠2的大小为()35°145°55°125°A.B.C.D.考点:平行线的性质.分析:由a∥b,根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义,即可求得∠2的度数.解答:解:∵a∥b,∴∠3=∠1=35°,∴∠2=180°﹣∠3=180°﹣35°=145°.故选B.点评:此题考查了平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.3.(3分)(2011?河南)下列各式计算正确的是()236224A.B.C.D.a)=a (2a+4a=6a考点:二次根式的加减法;合并同类项;幂的乘方与积的乘方;零指数幂;负整数指数幂.分析:根据各选项进行分析得出计算正确的答案,注意利用幂的乘方的运算以及二次根式的加减,负整数指数幂等知识分别判断即可.解答: 1 0﹣解:A、(﹣1)﹣()=1﹣2=﹣1,故此选项错误;B、与不是同类项无法计算,故此选项错误;222C、2a+4a=6a,故此选项错误;236D、(a)=a,故此选项正确.故选D.点评:此题主要考查了二次根式的混合运算以及幂的乘方的运算和负整数指数幂等知识,此题难度不大注意计算要认真,保证计算的正确性.1河南)不等式的解集在数轴上表示正确的是(?)4.(3分)(2011 C..D.B A.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x>﹣2,由②得,x≤3,故此不等式组的解集为:﹣2<x≤3.在数轴上表示为:故选B.点评:本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.5.(3分)(2011?河南)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产22=2.7SS.则关于两种小麦推广种植的合=29.6,千克,量分别是=610=608千克,亩产量的方差分别是乙甲理决策是()A.甲的平均亩产量较高,应推广甲甲、乙的平均亩产量相差不多,均可推广B.甲的平均亩产量较高,且亩产量比较稳定,应推广甲C.D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙考方差;算术平均数专压轴题分析本题需先根据甲、乙亩产量的平均数得出甲、乙的平均亩产量相差不多,再根据甲、乙的平均亩产量的差即可得出乙的亩产量比较稳定,从而求出正确答案解答解:=61千克=60千克∴甲、乙的平均亩产量相差不多22 S=2.7.,∵亩产量的方差分别是S=29.6乙甲∴乙的亩产量比较稳定.D.故选本题主要考查了方差和平均数的有关知识,在解题时要能根据方差和平均数代表的含义得出正确答案是本点评:题的关键.°旋转180先将它绕原点?分)(2011河南)如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,O3.6(的坐标为(AA2到乙位置,再将它向下平移个单位长到丙位置,则小花顶点在丙位置中的对应点′)2)1,1 D.(3)C.(3,﹣1)1 A.(3,1)B.(,平移.-旋转;坐标与图形变化-考点:坐标与图形变化压轴题;网格型;数形结合.:专题上加下“),根据平移°后得到的坐标为(3,1A点坐标为(﹣3,﹣1),它绕原点O旋转180分析:根据图示可知.1)原则,向下平移2个单位得到的坐标为(3,﹣减”,1)A点坐标为(﹣3,﹣解答:解:根据图示可知横纵坐标互为相反数180°根据绕原点O旋转,1)∴旋转后得到的坐标为(3,”原则,根据平移“上加下减),个单位得到的坐标为(3,﹣1∴向下平移2 C.故选°特点以及平移的特点,比较综合,难度适中.点评:本题主要考查了根据图示判断坐标、图形旋转180 27分)二、填空题(每小题3分,共.的立方根为33分)(2011?河南)277.(立方根.考点:计算题.专题:的数即可.找到立方等于分析:273解答:3,=27解:∵,27的立方根是3∴.故答案为:3 考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.点评:BD的度数7,则AB中AB=AC平分AC,A=3分201河南)如图,△等腰三角形的性质考,并能求出其角度等于AC18可求得C平分AC,A=3,根据三角形内角分析AB=AC DBC求得所求角度.在△,,∠ACBA=36°解:∵AB=AC,CD平分∠解答:.DCB=36°°°)÷2=72,∠180∴∠B=(°﹣36 .BDC=72°∴∠.72°故答案为:BDC的角度.度,在△CDB中从而求得∠点评:本题考查了等腰三角形的性质,本题根据三角形内角和等于180轴对称的点在反比例函数yP关于b(a,)在反比例函数的图象上,若点P(.9(3分)2011?河南)已知点.的值为﹣2k的图象上,则轴对称的点的坐标.轴、yx考点:反比例函数图象上点的坐标特征;关于轴对称的点在反比例函数yPyPab 分析:本题需先根据已知条件,求出的值,再根据点关于轴对称并且点关于3K的值.的图象上即可求出点解答:,b)在反比例函数的图象上,a解:∵点P(∴ab=2,,b),∵点P关于y轴对称的点的坐标是(﹣a ab=﹣2.∴k=﹣故答案为:﹣2.本题主要考查了反比例函数图象上点的坐标的特征,在解题时要能灵活应用反比例函数图象上点的坐标的点评:特征求出k的值是本题的关键.、上异于点A为⊙O的直径,点E是且如图,CB切⊙O 于点B,CA交⊙O于点DAB(10.(3分)2011?河南).40°D的一点.若∠C=40°,则∠E的度数为切线的性质;圆周角定理.考点:常规题型;压轴题.专题:的度数,然后用同弧所对的圆周角ABD分析:连接BD,根据直径所对的圆周角是直角,利用切线的性质得到∠的度数.相等,求出∠E ,解答:解:如图:连接BD 是直径,∵AB ,∴∠ADB=90°O于点B,BC∵切∴ABC=9∵C=4BAC=5∴ABD=4∴ABD=4∴E故答案为40E的度数.点评:本题考查的是切线的性质,利用切线的性质和圆周角定理求出∠2的大小关系与y﹣3,y)是二次函数y=x2x+1的图象上两点,则yByA(.11(3分)2011?河南)点(2,)、(2112).”””(填<y“>、“<、“=y为21二次函数图象上点的坐标特征.考点:分析:y与yBA本题需先根据已知条件求出二次函数的图象的对称轴,再根据点、的横坐标的大小即可判断出21的大小关系.42解答:x=1,y=x2x+1﹣的图象的对称轴是解:∵二次函数x的增大而增大,在对称轴的右面y随2 2x+1的图象上两点,y)是二次函数y=x﹣y)、B(3,,∵点A(221 3,2<y.∴y<21故答案为:<.本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐点评:标特征是本题的关键.的两个小球,另一个装有标号分2河南)现有两个不透明的袋子,其中一个装有标号分别为1、2011.(3分)(?12个小球,两球标号恰好相同的概1、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出别为2、3.率是列表法与树状图法.考点:首先根据题意画树状图,然后由树状图求得所有等可能的结果与两球标号恰好相同的情况,即可根据概率分析:公式求解.解:画树状图得:解答:种等可能的结果,∴一共有6 种情况,两球标号恰好相同的有1.∴两球标号恰好相同的概率是此题考查了树状图法与列表法求概率.树状图法与列表法适合两步完成的事件,可以不重不漏的表示出所点评:所求情况数与总情况数之比.有等可能的情况.用到的知识点为:概率=PC.若CD,∠ADB=∠°,AD=4,连接BD,BD⊥?13.(3分)(2011河南)如图,在四边形ABCD中,∠A=90 .长的最小值为4是BC边上一动点,则DP角平分线的性质;垂线段最短考压轴题专的长度最小,则结合已知条件,利用三角形的内角和定D垂直B的时候分析根据垂线段最短,D的长的长可DCB,由角平分线性质即可AD=D,A推出ABDD的长度最小DB的时候解答解:根据垂线段最短,当,,又∠°A=90°∵BD⊥CD,即∠BDC=90 ,∠CBDC∴∠A=∠,又∠ADB= ,BD,⊥DCDAABD=∴∠∠CBD,又⊥BA AD=4,又,∴AD=DP .DP=4∴4故答案为:.本题主要考查了直线外一点到直线的距离垂线段最短、全等三角形的判定和性质、角平分线的性质,解题点评:5.垂直于BC的关键在于确定好DP .π2011?河南)如图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为9014.(3分)(圆锥的计算;由三视图判断几何体.:考点压轴题.:专题根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积为,即可得出表面积.分析:,,底面圆的直径为10解答:解:∵如图所示可知,圆锥的高为12 ,∴圆锥的母线为:13 π,π×5×13=65∴根据圆锥的侧面积公式:πrl=2,πr=25π底面圆的面积为:.∴该几何体的表面积为90π.故答案为:90π此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.点评:是E,BC=2AD=2,点BC,∠ABC=90°,∠C=60°15.(3分)(2011?河南)如图,在直角梯形ABCD中,AD∥3+.G,则△BFG的周长为交BC边的中点,△DEF是等边三角形,DFAB于点直角梯形;等边三角形的性质;解直角三角形.考点:几何综合题;压轴题专是矩形,所以得到直角三角ABEB边的中点,推出四边ABC=9分析首先由已AB,ADD,由直角三角AG可求CE,所以能求CD,又DE是等边三角形,得BF的周长,得BF=A,从而求进而求F,再AG≌BGF解答:AD=BE=CE=,是BC边的中点,即∥BC,∠ABC=90°,点E解:已知AD 为矩形,∴四边形ABED ,,∠A=90°∴∠DEC=90°,又∠C=60°,×=3DE=CE?tan60°=∴是等边三角形,又∵△DEF ADG=30°∠EDF=60°,∠∴DF=DE=AB=3,∠AGD=,=×=1°∴AG=AD?tan30 ,﹣DG=1,∴DG=2FG=DF 1=2﹣,BG=3 ,FGB ∠,BG=DG=2AG=FG=1∴,∠AGD= BGF≌△,∴△AGD,BF=AD=∴,2+1+BFG ∴△的周长为=3+63+.故答案为:此题考查的知识点是直角梯形、等边三角形的性质及解直角三角形,解题的关键是先由已知推出直角三角点评:DEF是等边三角形,解直角三角形证明三角形全等求解.形CED,再通过△分)三、解答题(本大题共8个小题,满分75的范围内选取一个合适的整数作为22≤x≤(8分)(2011?河南)先化简,然后从﹣16.的值代入求值.x 分式的化简求值.考点:开放型.专题:的整数x分析:首先对分式进行化简、把除法转化为乘法、在进行混合运算,把分式转化为最简分式,然后确定的值不可使分式的分母为零.值,把合适的值代入求值,x 解答:=原式.= ,﹣2.≤2且为整数,若使分式有意义,x只能取0xx满足﹣2≤=).=(或:当x=﹣2时,原式∴当x=0时,原式的取值不可是分式的分x的合适的整数值,x点评:本题主要考查分式的化简、分式的性质,解题的关键在于找到母为零..ABDE交于点M延长CB到点E,使BE=AD,连接中,分)17.(9(2011?河南)如图,在梯形ABCDAD∥BC,;△AMD≌△BME(1)求证:的长.BE=2,求BC)若N是CD的中点,且MN=5,2(梯形;全等三角形的判定与性质考计算题;证明题专AD,即可证明AB,E,分析)找出全等的条件BE=AA=,即可求得.BE+BC),又BE=2((2)首先证得MN是三角形的中位线,根据MN= ,AD∥BC 解答:(1)证明:∵∠E,∴∠A=∠MBE,∠ADM= 中,BME在△AMD和△,ASA);BME∴△AMD≌△(BME)解:∵△AMD≌△,2(ND=NCMD=ME∴,,7,∴MN=EC ,EC=2MN=2×5=10∴2=8EB=10﹣.∴BC=EC﹣的长是8.答:BC 点评:本题考查了全等三角形的判断及三角形中位线定理的应用,熟记其性质、定理是证明、解答的基础.的驾车理念,某市一家报社设计了如右的调查问“开车不喝酒,喝酒不开车”分)(2011?河南)为更好地宣传18.(9 .在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:卷(单选)根据以上信息解答下列问题:;1)补全条形统计图,并计算扇形统计图中m=20(B的司机大约有多少人?(2)该市支持选项的提醒标志,则支持该选项的司机请勿酒驾”的司机中随机选择100名,给他们发放“(3)若要从该市支持选项B 小李被选中的概率是多少?条形统计图;用样本估计总体;扇形统计图;概率公式.考点:压轴题专所占的百分比求出总人数,然后减去其的人数,和扇形分析)先算组里的人数,根据条形的人数组的人数,求支持选的人数的百分比可求出结果)全市所以司机的人的提醒标志,则可请勿酒)算出的支的人数,以及随机选10名,给他们发)根据出支持该选项的司机小李被选中的概率是多少345=9(人66236解解答=20m%=66239选项的频数分所m=2分的人数大约为)支持选50023%=115人)∵总人=50023%=115(9.∴小李被选中的概率是:=(分)8本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部点评:分占整体的百分比以及概率等概念从而可求出解.河南)如图所示,中原福塔(河南广播电视塔)是世界第﹣高钢塔.小明所在的课外活动小组在?9分)(201119.(米;从地的距离DG为10α为45°,点D到AO处,测得地面上点距地面268米高的室外观光层的点DB的俯角并求出请你根据以上数据计算塔高AO,60测得塔尖A的仰角β为°.面上的点B沿BO方向走50米到达点C处,.结果精确到0.1米)米之间的误差.(参考数据:≈1.732,≈1.414计算结果与实际塔高388解直角三角形的应用-仰角俯角问题.考点:探究型.:专题的值,再是等腰直角三角形,进而可得出BF=45°可判断出△DBF,先作DF⊥BO于点F,根据DE∥BOα分析:中利用锐角三角函数的定义及特殊角的三角ACO的值,在FO与CORt△根据四边形DFOG是矩形可求出的长,进而可得出其误差.函数值可求出ADB 于解答解:=4DB=4DBF∴分RDB中BF=DF=26BC=550=21CF=BBC=26由题意知四边DFO是矩形FO=DG=1分CO=CF+FO=218+10=22=6AC中R分1.732=394.89°AO=Ctan6226.(米∴误差394.89388=6.89分即计算结果与实际高度的误差约6.米本题考查的是解直角三角形的应用﹣仰角俯角问题,涉及到的知识点为:等腰直角三角形的判定与性质点评矩形的性质、锐角三角函数的定义及特殊角的三角函数值,熟知以上知识是解答此题的关键.,(﹣)和,(的图象交于点A4mB与反比例函数x+2=k河南)如图,一次函数2011分)(20.9(?y811 y,与2﹣).轴交于点C9,k=16;(1)k= 21(2)根据函数图象可知,当y>y时,x的取值范围是﹣8<x<0或x>4;21(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S:S=3:1时,求点P的坐标.ODE△ODAC四边形考点:反比例函数综合题.专题:代数几何综合题;数形结合.分析:(1)本题须把B点的坐标分别代入一次函数y=kx+2与反比例函数的解析式即可求出K、k的值.1112(2)本题须先求出一次函数y=kx+2与反比例函数的图象的交点坐标,即可求出当y>y时,x2111的取值范围.(3)本题须先求出四边形OCAD的面积,从而求出DE的长,然后得出点E的坐标,最后求出直线OP的解析式即可得出点P的坐标.解答:解:(1)∵一次函数y=kx+2与反比例函数的图象交于点A(4,m)和B(﹣8,﹣2),11(﹣2)=16,)∴K=(﹣8×2+2 8k﹣2=﹣1=∴k1=)∵一次函x+与反比例函)(,的图象交于1时,x的取值范围是y∴当y>21或<﹣8x<0x>4;.)由(1)知,3(∴m=4,点C的坐标是(0,2)点A的坐标是(4,4).∴CO=2,AD=OD=4.∴.∵S:S=3:1,∴S=S=×12=4,ODEODE△△ODACODAC梯形梯形即OD?DE=4,∴DE=2.∴点E的坐标为(4,2).又点E在直线OP上,10.∴直线OP的解析式是的坐标为(的图象在第一象限内的交点与P ).∴直线OP 4>8<x<0或x故答案为:,16,﹣本题主要考查了反比例函数的综合问题,在解题时要综合应用反比例函数的图象和性质以及求一次函数与点评:反比例函数交点坐标是本题的关键.”活动,收费标准如下:河南)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游分)21.(10(2011?200>≤200 m100 人数m 0<m≤100<m75 85 90 人)收费标准(元/人,乙校报名参加的甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100 元,若两校联合组团只需花费18 000元.学生人数少于100人.经核算,若两校分别组团共需花费20 800 )两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(1 2)两所学校报名参加旅游的学生各有多少人?(二元一次方程组的应用.考点:压轴题;方程思想.专题:a200和100<≤200,得出结论;1分析:()由已知分两种情况讨论,即a>100<x≤200分别设未知数列方程组求解,讨论得出答案.x(2)根据两种情况的费用,即>200和人,理由为:)这两所学校报名参加旅游的学生人数之和超过(1200解答:解设两校人数之和75=2420,a=18000,不合题意,,则a≤200a=18000÷85=211>200<若100 则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.人,则y)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有2(200时,得≤当①100<x(解得6分)时,得②当>200x解得不合题意,舍去.80160答:甲学校报名参加旅游的学生有人,乙学校报名参加旅游的学生有人.点评:此题考查的是二元一次方程组的应用,关键是把不符合题意的结论舍去.11BC=5,∠C=30°.点D从点C出发沿CA2011?河南)如图,在Rt△ABC中,∠B=90°,方向以22.(10分)(每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.考点:菱形的性质;含30度角的直角三角形;矩形的性质;解直角三角形.专题:几何图形问题;动点型.分析:(1)在△DFC中,∠DFC=90°,∠C=30°,由已知条件求证;(2)求得四边形AEFD为平行四边形,若使?AEFD为菱形则需要满足的条件及求得;(3)①∠EDF=90°时,四边形EBFD为矩形.在直角三角形AED中求得AD=2AE即求得.②∠DEF=90°时,由(2)知EF∥AD,则得∠ADE=∠DEF=90°,求得AD=AE?cos60°列式得.③∠EFD=90°时,此种情况不存在.解答:(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF.(2)解:能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.AE=D∴四边AEF为平行四边形∵AB=BC?tan30°=5=5,∴AC=2AB=10.∴AD=AC﹣DC=10﹣2t.若使?AEFD为菱形,则需AE=AD,即t=10﹣2t,t=.时,四边形AEFD为菱形.即当t=(3)解:①∠EDF=90°时,四边形EBFD为矩形.在Rt△AED中,∠ADE=∠C=30°,∴AD=2AE.即10﹣2t=2t,t=.②∠DEF=90°时,由(2)四边形AEFD为平行四边形知EF∥AD,∴∠ADE=∠DEF=90°.∵∠A=90°﹣∠C=60°,12.cos60°∴AD=AE?.2t=﹣t,t=4即10 时,此种情况不存在.③∠EFD=90°秒时,△DEF为直角三角形.综上所述,当t=秒或4难以及菱形与矩形之间的联系.考查了菱形是平行四边形,考查了菱形的判定定理,点评:本题考查了菱形的性质,度适宜,计算繁琐.两、B(2011?河南)如图,在平面直角坐标系中,直线与抛物线交于A23.(11分)8.A在x轴上,点B的横坐标为﹣点,点1)求该抛物线的解析式;(AB,交直线,过点P作x轴的垂线,垂足为C2()点P是直线AB上方的抛物线上一动点(不与点A、B重合).PE⊥AB于点E于点D,作关于x的函数关系式,并求出l的最大值;的周长为设△PDEl,点P的横坐标为x,求l①FAPFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点PA②连接,以PA为边作图示一侧的正方形y轴上时,直接写出对应的点P的坐标.或G恰好落在二次函数综合题考代数几何综合题;压轴题;数形结合;待定系数法专即可分析)利用待定系数法求,再求PD=求出二函数最值即可PEAO∽,得DPPD=根P,解得,即,轴上时,由落在y△ACP≌△GOA得PC=AO=2当点②GP点坐标.x+﹣﹣落在所以得出P点坐标,当点Fy轴上时,x=,解得x=,可得解答:﹣时,.当y=0,x=2)对于(解:1x= .﹣8y=,当∴A点坐标为(2 .,0),B点坐标为13两点,经过A、B由抛物线得.解得∴.轴交于点)①设直线与yM,(2.时,y=.∴OM=当x=0.∴AM=.,∵点A的坐标为(20),∴OA=2 5.4∵OM:OA:AM=3::.∽△由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOMPED ∴DE:PE:PD=3:4:5.∵点上方的抛物线上一动点,P是直线AB 轴,PD⊥x∵两点横坐标相同,∴PD)x+PD=y∴﹣y=﹣﹣﹣(x﹣DP2 x+4x=﹣,﹣∴..∴﹣∴x=3时,l=15.最大PC=AO=2,得△y ②当点G落在轴上时,如图2,由ACP≌△GOA,即,解得所以,SPSPNPN作⊥y轴于点,过点作⊥x轴于点,P3如图,过点,≌△△由PNFPSA P,可得点横纵坐标相等,PN=PS F故得当点落在轴上时,y x=,解得x+﹣x=﹣,(舍去)可得.,14综上所述:满足题意的点P有三个,分别是.此题主要考查了二次函数的综合应用以及相似三角形的判定以及待定系数法求二次函数解析式,利用数形点评:结合进行分析以及灵活应用相似三角形的判定是解决问题的关键.15。
1 / 12高中阶段教育学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -3的绝对值是( )A. 3B. -3C.13 D. 13- 2. “中国国家馆”作为2010年上海世博会的主题场馆,充分体现了中国文化的精神与气质. 资料表明,在建设过程中使用的一种工艺,需要对中国馆的大台阶进行约5.4×107次加工. 其中5.4×107表示的数为( )A. 5 400 000B. 54 000 000C. 540 000 000D. 5 400 000 000 3. 小明调查了本班同学最喜欢的课外活动项目,并作出如图1所示的扇形统计图,则从图中可以直接看出的信息是( )A. 全班总人数B. 喜欢篮球活动的人数最多C. 喜欢各种课外活动的具体人数D. 喜欢各种课外活动的人数占本班总人数的百分比4. 顺次连接边长为2的等边三角形三边中点所得的三角形的周长为( )A. 1B. 2C. 3D. 45. 用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是( ) A. 球体 B. 圆柱 C. 圆锥 D. 三棱锥6. 若实数a 、b 满足5a b +=,2210a b ab +=-,则ab 的值是( ) A. -2B. 2图1图22 / 12C. -50D. 507. 如图2,A 为⊙O 上一点,从A 处射出的光线经圆周4次反射后到达F 处. 如果反射前后光线与半径的夹角均为50°,那么∠AOE 的度数是( )A. 30°B. 40°C. 50°D. 80°8. 为缓解考试前的紧张情绪,某校九年级举行了“猪八戒背媳妇”的趣味接力比赛. 比赛要求每位选手在50米跑道上进行折返跑,其中有50米必须“背媳妇”. 假设某同学先跑步后“背媳妇”,且该同学跑步、“背媳妇”均匀速前进,他与起点的距离为s ,所用时间为t ,则s 与t 的函数关系用图象可表示为()A. B. C. D.9. 在同一平面内,如果两个多边形(含内部)有除边界以外的公共点,则称两多边形有“公共部分”.如图3,若正方形ABCD 由9个边长为1的小正方形镶嵌而成,另有一个边长为1的正方形与这9个小正方形中的n 个有“公共部分”,则n 的最大值为( ) A. 4 B. 5 C. 6 D. 710. 如图4,已知点A 1,A 2,…,A 2011在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 2011在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 2011在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2010201120112011C A C B 都是正方形,则正方形2010201120112011C A C B 的边长为( )A. 2010B. 2011C. 20102D. 20112图3图43 / 12高中阶段教育学校招生统一考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 9的平方根为____________.12. 第16届亚运会将于2010年11月12日至27日在中国广州进行,各类门票现已开始销售. 若部分项目门票的最低价和最高价如图5所示,则这六个项目门票最高价的中位数是____________ .13. 若菱形一边的垂直平分线经过这个菱形的一个顶点,则此菱形较大内角的度数为_______.14. 若关于x 的方程2220x m x m m -+-=无实数根,则实数m 的取值范围是____________.15. 如图6,已知△ABC是等腰直角三角形,CD 是斜边AB 的中线,△ADC 绕点D 旋转一定角度得到△A DC '',A D '交AC 于点E ,DC '交BC 于点F ,连接EF ,若25A E ED '=,则EF A C ''=_________ . 16. 给出下列命题:① 若方程2560x x +-=的两根分别为1x ,2x ,则121156x x +=;② 对于任意实数x 、y ,都有2233()()x y x xy y x y -++=-;③ 如果一列数3,7,11,…满足条件:“以3为第一个数,从第二个数开始每一个数与它前面相邻的数的差为4”,那么99不是这列数中的一个数;④若※表示一种运算,且1※2=1,3※2=7,4※4=8,…,按此规律,则可能有a ※b =3a -b . 其中所有正确命题的序号是__________________ .图6图54 / 12三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)化简:2162393m m m -÷+--.18.(本小题满分7分)在为迎接“世界环境日”举办的“保护环境、珍爱地球”晚会上,主持人与观众玩一个游戏:取三张完全相同、没有任何标记的卡片,分别写上“物种”、“星球”和“未来”,并将写有文字的一面朝下,随机放置在桌面上,然后依次翻开三张卡片.(1) 用列表法(或树状图)求翻开卡片后第一张是“物种”且第二张是“星球”的概率; (2) 主持人规定:若翻开的第一张卡片是“未来”,观众获胜,否则主持人获胜. 这个规定公平吗?为什么?19.(本小题满分8分)如图7,已知A 、B 、C 是数轴上异于原点O 的三个点,且O 为AB 的中点,B为AC 的中点. 若点B 对应的数是x ,点C 对应的数是2x -3x ,求x 的值.图75 / 1220.(本小题满分8分)已知关于x 的不等式组4(1)23,617x x x ax -+>⎧⎪+⎨-<⎪⎩有且只有三个整数解,求a 的取值范围.21.(本小题满分8分)如图8,已知直线l :y =kx +b 与双曲线C :my x=相交于点A (1,3)、B (32-,-2),点A 关于原点的对称点为P .(1) 求直线l 和双曲线C 对应的函数关系式; (2) 求证:点P 在双曲线C 上;(3) 找一条直线l 1,使△ABP 沿l 1翻折后,点P 能落在双曲线C 上. (指出符合要求的l 1的一个解析式即可,不需说明理由)图86 / 1222.(本小题满分8分)在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向. 在一次反恐演习中,甲队员在A 处掩护,乙队员从A 处沿12点方向以40米/分的速度前进,2分钟后到达B 处. 这时,甲队员发现在自己的1点方向的C 处有恐怖分子,乙队员发现C 处位于自己的2点方向(如图9). 假设距恐怖分子100米以外为安全位置.(1) 乙队员是否处于安全位置?为什么?(2) 因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置. 为此,乙队员至少..应用多快的速度撤离?(结果精确到个位. 参考数据:13 3.6≈0,14 3.74≈.)23.(本小题满分8分)如图10-1,已知AB 是⊙O 的直径,直线l 与⊙O 相切于点B ,直线m 垂直AB 于点C ,交⊙O 于P 、Q 两点. 连结AP ,过O 作OD ∥AP 交l 于点D ,连接AD 与m 交于点M .(1) 如图10-2,当直线m 过点O 时,求证:M 是PO 的中点;(2) 如图10-1,当直线m 不过点O 时,M 是否仍为PC 的中点?证明你的结论.图9图10-1 图10-27 / 1224.(本小题满分9分)如图11,在直角梯形ABCD 中,已知AD ∥BC ,AB =3,AD =1,BC =6,∠A =∠B =90°.设动点P 、Q 、R 在梯形的边上,始终构成以P 为直角顶点的等腰直角三角形,且△PQR 的一边与梯形ABCD 的两底边平行.(1) 当点P 在AB 边上时,在图中画出一个符合条件的△PQR (不必说明画法); (2) 当点P 在BC 边或CD 边上时,求BP 的长.图118 / 1225.(本小题满分9分)如图12,已知直线22y x =+交y 轴于点A ,交x 轴于点B ,直线l :39y x =-+交x 轴于点C .(1) 求经过A 、B 、C 三点的抛物线的函数关系式,并指出此函数的函数值随x 的增大而增大时,x 的取值范围;(2) 若点E 在(1)中的抛物线上,且四边形ABCE 是以BC 为底的梯形,求梯形ABCE 的面积; (3) 在(1)、(2)的条件下,过E 作直线EF ⊥x 轴,垂足为G ,交直线l 于F . 在抛物线上是否存在点H ,使直线l 、直线FH 和x 轴所围成的三角形的面积恰好是梯形ABCE 面积的12?若存在,求点H 的横坐标;若不存在,请说明理由.图12高中阶段教育学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABDCB;6-10. ABCCD.二、填空题(每小题3分,共6个小题,满分18分):11.±3;12.800元;13. 120°;14.m<0;15.57;16.①②④.(注:12、13题有无单位“元”或“°”均不扣分. ) 三、解答题(共9个小题,满分72分):17.解:原式=1633(3)(3)2mm m m-+++-····················································3分=1333m m+++···················································································5分=43m+. ··························································································7分18.(1) 解一:列表如下: ············································································································3分∴第一张是“物种”且第二张是“星球”的概率是16. ······························4分解二:树状图如下:9 / 1210 / 12···························· 3分∴ 第一张是“物种”且第二张是“星球”的概率是16. ············································(2) 这个规定不公平. ··········································································5分因为观众获胜的概率是13,主持人获胜的概率是23. ·································7分19.解:由已知,点O 是AB 的中点,点B 对应的数是x ,∴ 点A 对应的实数为-x . ····································································1分 ∵ 点B 是AC 的中点,点C 对应的数是2x -3x , ∴ (2x -3x )-x =x -(-x ). ··········································································4分 整理,得2x -6x =0,解之得 x =0,或x =6. ···············································6分 ∵ 点B 异于原点,故x =0应舍去. ∴ x 的值为6. ·····································7分 20.解:由4(1)23x x -+>得,x >2; ···························································2分由617x ax +-<得,x <a +7. ··································································5分依题意得,不等式组的解集为2<x <a +7. ··················································6分 又 ∵ 此不等式组有且只有三个整数解,故整数解只能是x =3,4,5, ∴ 5<a +7≤6,则-2<a ≤-1. ·································································8分 (注:未取等号扣1分)21. 解:(1) 将点A 、B 的坐标代入y =kx +b ,有31,32().2k b k b =⨯+⎧⎪⎨-=⨯-+⎪⎩ ·············································································2分 解得,2k =,b =1,即直线l 对应的函数关系为y =2x +1. ·····························3分将点A (1,3)(或B )的坐标代入my x =,得m =3,∴ 双曲线C 对应的函数关系为y =3x. ·····················································4分(2) ∵ P 为点A 关于原点的对称点,∴ 点P 的坐标为(-1,-3),符合双曲线C 的函数关系,故点P 在双曲线C 上. ·················································································6分(3) l 1的解析式为y =x ,或y =-x . ·····························································8分 (注:写出一个解析式即得2分.) 22.解:(1) 乙队员不安全. ······················································· 1分易求AB =80米. ∵ ∠BAC =∠C =30°,∴ BC =AB =80米<100米. ·························· 3分 ∴ 乙队员不安全.(2) 过C 点作CD ⊥AB ,垂足为D ,在AB 边上取一点B 1,使CB 1=100. ······················································································ 4分在Rt △CBD 中,∠CBD =60°,BC =80,则BD =40,CD =403. ···· 5分在Rt △1CDB 中,由勾股定理知22112013B D B C CD =-=, ·····················6分11 / 12而20134015-≈2.13米/秒, ·······························································7分 依题意,乙队员至少应以3米/秒的速度撤离. ··········································8分 (注:结果为2米/秒,本步不给分.)23.(1) 证明:连接PD ,∵ 直线m 垂直AB 于点C ,直线l 与⊙O 相切于点B ,AB 为直径,∴ ∠POA =∠DBA =90°.又∵ AP ∥OD ,∴ ∠P AO =∠DOB . ························································1分 又∵ AO =BO ,∴ △APO ≌△ODB . ·······················································2分 ∴ AP =OD ,∴ 四边形APDO 是平行四边形, ·········································3分 ∴ M 是PO 的中点. ···········································································4分(其他解法:证△APO ≌△ODB 后,据中位线定理证12OM BD =;或证△DPO ≌△DBO ,得∠DPO =∠DBO =90°,从而证四边形APDO 是平行四边形等.)(2) M 是PC 的中点. 证明如下:∵AP ∥OD ,∴ ∠P AO =∠DOB ,又 ∠PCA =∠DBO =90°,∴ △APC ∽△ODB ,∴ PC AC BD BO=.①·····················································5分 又易证△ACM ∽△ABD ,∴ AC MC AB BD=. ·················································6分 又∵ AB =2OB ,∴ 2AC MC OB BD =,∴2AC MC OB BD=.② ····································7分 由①②得,2PC MC BD BD=,∴ PC =2MC ,即M 是PC 的中点. ·························8分 24.(1) 如图.(注:答案不唯一,在图中画出符合条件的图形即可) ······················2分(2) ① 当P 在CD 边上时,由题意,PR ∥BC ,设PR =x .可证四边形PRBQ 是正方形,∴ PR =PQ =BQ =x .过D 点作DE ∥AB ,交BC 于E ,易证四边形ABED 是矩形.∴ AD =BE =1,AB =DE =3. ··········································· 3分又 PQ ∥DE ,∴△CPQ ∽△CDE ,PQ CQ DE CE=. ∴ 635x x -=, ························································ 4分 ∴ x =94,即BP =942. ············································ 5分 (注:此时,由于∠C ≠45°,因此斜边RQ 不可能平行于BC . 在答题中未考虑此问题者不扣分.) ② 当P 在BC 边上,依题意可知RQ ∥BC .过Q 作QF ⊥BC ,易证△BRP ≌△FQP ,则PB =PF . ········· 6分易证四边形BFQR 是矩形,设BP =x ,则BP =BR =QF =PF =x ,BF =RQ =2x . ·················· 7分∵ QF ∥DE ,∴ △CQF ∽△CDE ,∴ QF CF DE CE =. ······································8分12 / 12 ∴6235x x -=,∴ x =1811. ···································································9分 (注:此时,直角边不可能与两底平行. 在答题中未考虑此问题者不扣分.)25.(1) ∵ 直线AB 的解析式为22y x =+,∴ 点A 、B 的坐标分别为A (0,2),B (-1,0).又直线l 的解析式为39y x =-+,∴ 点C 的坐标为(3,0). ··························1分 由上,可设经过A 、B 、C 三点的抛物线的解析式为y =a (x +1)(x -3),将点A 的坐标代入,得 a =23-,∴ 抛物线的解析式为224233y x x =-++. ·····2分 ∴ 抛物线的对称轴为x =1.由此可知,函数值随x 的增大而增大时,x 的取值范围是x ≤1. ···················3分 (注:本步结果无等号不扣分.)(2) 过A 作AE ∥BC ,交抛物线于点E . 显然,点A 、E 关于直线x =1对称,∴ 点E 的坐标为E (2,2). ····································································4分故梯形ABCE 的面积为 S =12(2+4)×2=6. ··················································5分 (3) 假设存在符合条件的点H ,作直线FH 交x 轴于M ,由题意知,3CFM S =. 设F (m ,n ),易知m =2,将F (2,n )的坐标代入y =-3x +9中,可求出n =3,则FG =3. ························6分∴ 132CFM S FG CM ==,∴ CM =2. 由C (3,0)知,1M (5,0),2M (1,0), ·······················································7分设FM 的解析式为y =kx +b ,由1M (5,0),F (2,3)得,F 1M 的解析式为y =-x +5,则F 1M 与抛物线的交点H 满足: 25,24 2.33y x y x x =-+⎧⎪⎨=-++⎪⎩整理得,22790x x -+=, ∵ △<0,∴ 不符合题意,舍去. ······················· 8分由2M (1,0),F (2,3)得,F 2M 的解析式为y =3x -3,则F 2M 与抛物线的交点H 满足:233,24 2.33y x y x x =-⎧⎪⎨=-++⎪⎩整理得,225150x x +-=, ∴ 51454x -±=. ··············································································9分 即:H点的横坐标为51454-±.。
2011全国各中考数学试题分考点解析汇编阅读理解型问题一、选择题1. (2011四川广安,8,3分)在直角坐标平面内的机器人接受指令“[],Aα”(α≥0,0︒<A<180︒)后的行动结果为:在原地顺时针旋转A后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y轴的负半轴,则它完成一次指令[]2,60︒后位置的坐标为()A.(-) B.(1,- C.(1-) D.()考点:创新题,阅读理解题,解直角三角形专题:创新题,阅读理解题,分析:根据题意画出图形如图所示机器人由原点位置按指令[]2,60︒到达点M的位置,作MN⊥y轴于点N,由题意可知∠MON=60°,OM=2,所以ON=OM·cos60°=1212⨯=,MN=OM·sin60°=22⨯=,由于点M在第三象限,所以该点的坐标为()1-.解答:C点评:解答本题的关键是在读懂题意的基础上画出符合题意的图形,把该问题转化为数学问题,通过添加辅助线构造直角三角形,把求点的坐标转化为求直角三角形中的直角边的长.2. (2011广西百色,14,4分)相传古印度一座梵塔圣殿中,铸有一片巨大的黄铜板,之上树立了三米高的宝石柱,其中一根宝石柱上插有中心有孔的64枚大小两两相异的一寸厚的金盘,小盘压着较大的盘子,如图,把这些金盘全部一个一个地从1柱移到3柱上去,移动过程不许以大盘压小盘,不得把盘子放到柱子之外.移动之日,喜马拉雅山将变成一座金山.设h(n)是把n个盘子从1柱移到3柱过程中移动盘子之最少次数n=1时,h(1)=1;n=2时,小盘→2柱,大盘→3柱,小柱从2柱→3柱,完成.即h(2)=3;n=3时,小盘→3柱,中盘→2柱,小柱从3柱→2柱.,h(3)=h(2)×h(2)+1=3×2+1=7=23﹣1,h(4)=h(3)×h(3)+1=7×2+1=15=24﹣1,…以此类推,h(n)=h(n﹣1)×h(n﹣1)+1=2n﹣1,∴h(6)=26﹣1=64﹣1=63.故选C.点评:本题考查了图形变化的规律问题,根据题目信息,得出移动次数分成两段计数,利用盘子少一个时的移动次数移动到2柱,把最大的盘子移动到3柱,然后再用同样的次数从2柱移动到3柱,从而完成移动过程是解题的关键,本题对阅读并理解题目信息的能力要求比较高.3. (2011•德州,7,3分)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是()A、a4>a2>a1B、a4>a3>a2C、a1>a2>a3D、a2>a3>a4 考点:正多边形和圆;等边三角形的判定与性质;多边形内角与外角;平行四边形的判定与性质。
专题:计算题。
分析:设等边三角形的边长是a,求出等边三角形的周长,即可求出等边三角形的周率a1;设正方形的边长是x,根据勾股定理求出对角线的长,即可求出周率;设正六边形的边长是b,过F作FQ∥AB交BE于Q,根据等边三角形的性质和平行四边形的性质求出直径,即可求出正六边形的周率a3;求出圆的周长和直径即可求出圆的周率,比较即可得到答案.解答:解:设等边三角形的边长是a,则等边三角形的周率a1=3aa=3设正方形的边长是x,由勾股定理得:对角线是x,则正方形的周率是设正六边形的边长是b,过F作FQ∥AB交BE于Q,得到平行四边形ABQF和等边三角形EFQ,直径是b+b=2b,∴正六边形的周率是a3=62bb=3,圆的周率是422rarππ==,∴a4>a3>a2.故选B.点评:本题主要考查对正多边形与圆,多边形的内角和定理,平行四边形的性质和判定,等边三角形的性质和判定等知识点的理解和掌握,理解题意并能根据性质进行计算是解此题的关键.二、填空题1. (2011四川遂宁,15,4分)阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式a2+2ab+ac+bc+b2= .考点:因式分解-分组分解法。
专题:阅读型。
分析:首先进行合理分组,然后运用提公因式法和公式法进行因式分解.解答:解:原式=(a2+2ab+b2)+(ac+bc)=(a+b)2++c(a+b)=(a+b)(a+b+c).故答案为(a+b)(a+b+c).点评:此题考查了因式分解法,要能够熟练运用分组分解法、提公因式法和完全平方公式.2. (2011北京,12,4分)在右表中,我们把第i行第j列的数记为ai,j(其中i,j都是不大于5的正整数),对于表中的每个数ai,j,规定如下:当i≥j时,ai,j=1;当i <j时,ai,j=0.例如:当i=2,j=1时,ai,j=a2,1=1.按此规定,a1,3= 0 ;表中的25个数中,共有15 个1;计算a1,1•ai,1+a1,2•ai,2+a1,3•ai,3+a1,4•ai,4+a1,5•ai,考点:规律型:数字的变化类。
分析:由题意当i<j时,ai,j=0.当i≥j时,ai,j=1;由图表中可以很容易知道等于1的数有15个.解答:解:由题意,很容易发现,从i与j之间大小分析:当i<j时,ai,j=0.当i≥j时,ai,j=1;由图表可知15个1.故填:0;15;1.点评:本题考查了数字的变化,由题意当i<j时,ai,j=0.当i≥j时,ai,j=1;仔细分析很简单的问题.三、解答题1.(2011广东珠海,20,9分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2,善于思考的小明进行了以下探索:设a +b 2=(m +n 2)2(其中a 、b 、m 、n 均为正整数),则有a +b 2=m2+2n2+2mn 2,∴a= m2+2n2,b =2mn .这样小明就找到了一种把部分a +b 2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +b 3=(m +n 3)2,用含m 、n 的式子分别表示a 、b ,得:a = , b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空: + 3=( + 3)2;(3)若a +43=(m +n 3)2,且a 、m 、n 均为正整数,求a 的值.考点:二次根式 阅读理解 规律探究 专题:二次根式 阅读理解 规律探究分析:(1)将 (m +n 2)2展开得m2+2n2+2mn 2,因为a +b 3=(m +n 3)2,所以a +b 3= m2+2n2+2mn 2,根据恒等可判定a =m2+3n2 ,b =2mn ;(2)根据(1)中a 、b 和m 、n 的关系式,取的值满足a =m2+3n2 ,b =2mn 即可.(3)将(m +n 3)2展开,由(1)可知a 、m 、n 满足⎩⎨⎧=+=mnn m a 24322,再利用a 、m 、n 均为正整数,2mn =4,判断出m 、n 的的值,分类讨论,得出a 值. 解答:(1)a = m2+3n2 , b =2mn . (2)4,2,1,1(答案不唯一)(3)根据题意得,⎩⎨⎧=+=mnn m a 24322∵2mn=4,且m 、n 为正整数, ∴m=2,n =1或m =1,n =2 ∴a=13或7.点评:】通过阅读,理解式子之间的关系,找到内在的规律,写出关系式,问题可获解决. 2. (2010广东佛山,25,8分)阅读材料我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物; 比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;请解决以下问题:如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;(1)写出筝形的两个性质(定义除外);(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明.考点全等三角形的判定与性质;多边形分析(1)根据题意及图示即可得出筝形的性质;(2)根据筝形的性质即可写出判断方法,然后根据题意及图示即可进行证明.解答解:(1)性质1:只有一组对角相等,性质2:只有一条对角线平分对角;(2)判定方法1:只有一条对角线平分对角的四边形是筝形,判定方法2:两条对角线互相垂直且只有一条被平分的四边形是筝形,证明方法1:∵∠BAC=∠DAC,∠BCA=∠DCA,AC=AC,∴△ABC≌△ADC,∴AB=AD,CB=CD,①易知AC⊥BD,又∵∠ABD≠∠CBD,∴∠BAC≠∠CBA,AB≠BC,②由①②知四边形ABCD是筝形.点评本题主要考查了根据题意及图示判断筝形的定义及性质,然后根据题目要求依次进行解答,难度适中.21.(2012四川达州,21,8分)(8分) 问题背景若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:xxxs(212+-=﹥0),利用函数的图象或通过配方均可求得该函数的最大值.提出新问题若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?分析问题若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:)1(2xxy+ =(x﹥0),问题就转化为研究该函数的最大(小)值了. 解决问题借鉴我们已有的研究函数的经验,探索函数)1(2x x y +=(x ﹥0)的最大(小)值. (1)实践操作:填写下表,并用描点法画出函数)1(2x x y +=(x ﹥0)的图象:(2)观察猜想:观察该函数的图象,猜想当x = 时,函数)1(2x x y +=(x ﹥0)有最 值(填“大”或“小”),是 .(3)推理论证:问题背景中提到,通过配方可求二次函数x x x s (212+-=﹥0)的最大值,请你尝试通过配方求函数)1(2x x y +=(x ﹥0)的最大(小)值,以证明你的 猜想. 〔提示:当x >0时,2)(x x =〕解析:对于(1)按照画函数图象的列表、描点、连线三步骤进行即可;对于(2),由结合图表可知有最小值为4;对于(3),可按照提示,用配方法来求出。