高三数学(文科)专题练习(二)——概率统计部分
- 格式:doc
- 大小:352.00 KB
- 文档页数:5
2015届高考文科数学概率与统计基础练习(二)一、选择题:1.已知,x y的取值如下表所示,若y与x线性相关,且ˆ=()A.2.2 B2.一枚硬币连掷2次,只有一次出现正面的概率为()A.32B.41C.31D.213.要完成下列2项调查:①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学高一年级的12名体育特长生中选出3人调查学习负担情况.应采用的抽样方法是A.①用简单随机抽样法②用系统抽样法B.①用分层抽样法②用简单随机抽样法C.①用系统抽样法②用分层抽样法D.①、②都用分层抽样法4.函数[]2()2155f x x x x=+-∈-,,,在定义域内任取一点x,使()0f x≤的概率是()A.13B.23C.320D.165.若采用系统抽样方法从420人中抽取21人做问卷调查,为此将他们随机编号为1,2, (420)则抽取的21人中,编号在区间[]241,360内的人数是()A.5 B.6 C.7 D.86.为了了解某同学的数学学习情况,对他的6次数学测试成绩(满分100分)进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A.中位数为83 B.众数为85C.平均数为85 D.方差为197.为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算K2=8.01,A.0.1% B8.从装有2个红球和2个黑球的口袋内任取得2个球,那么互斥而不对立的两个事件是()A.至少有1个黑球与都是黑球 B.至少有1个红球与都是黑球C.至少有1个黑球与至少有1个红球 D.恰有1个黑球与恰有2个黑球9.对两个变量y和x进行回归分析,得到一组样本数据:11(,)x y,22(,)x y,…,(,)n nx y,则下列说法中不正确的是()A.由样本数据得到的回归方程y bx a=+必过样本中心(,)x yB.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数为0.9362r=-,则变量y和x之间具有线性相关关系10.一只受伤的丹顶鹤在如图所示(直角梯形)的草原上飞过,其中2,1ADDC BC==,它可能随机在草原上任何一处(点),若落在扇形沼泽区域ADE以外丹顶鹤能生还,则该丹顶鹤生还的概率是()A.1215π- B.110π-C.16π- D.3110π-二、填空题:11.一支田径队有男运动员28人,女运动员21人,现按性别用分层抽样的方法,从中抽取14位运动员进行健康检查,则男运动员应抽取________人.12.设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.13.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为偶数的概率是14.在棱长为3的正方体1111DCBAABCD-内随机取点P,则点P到正方体各顶点的距离都大于1的概率为 .三、解答题:若广告费支出x与销售额y回归直线方程为 6.5()y x a a R=+∈.(Ⅰ)试预测当广告费支出为12万元时,销售额是多少?(Ⅱ)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.16.(本小题满分12分)某工厂的A 、B 、C 三个不同车间生产同一产品的数量(单位:件)如下表. (1)求这6件样品中来自A 、B 、C 各车间产品的数量;(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.17.(本小题满分14分)甲、乙两家药厂生产同一型号药品,在某次质量检测中,两厂各有5份样品送检,检测的平均得分相等(检测满分为100分,得分高低反映该样品综合质量的高低).成绩统计用茎叶图表示如下:(1)求a ;(2)某医院计划采购一批该型号药品,从质量的稳定性角度考虑,你认为采购哪个药厂的产品比较合适? (3)检测单位从甲厂送检的样品中任取两份作进一步分析,在抽取的两份样品中,求至少有一份得分在(90,100]之间的概率. 18.(本小题满分14分)下图是调查某地某公司1000名员工的月收入后制作的直方图.根据直方图估计:(Ⅰ)该公司月收入在1000元到1500元之间的人数; (Ⅱ)该公司员工的月平均收入; (Ⅲ)该公司员工收入的众数; (Ⅳ)该公司员工月收入的中位数;19.(本小题满分14分)为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进为肥胖。
概率统计综合检测题(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)某校要从高一、高二、高三共2010名学生中选取50名组成访问团,若采用下面的方法选取:先按简单随机抽样的方法从2010人中剔除10人,剩下的2000人再用分层抽样方法进行,则每个人入选的概率()A.不全相等 B.均不相等C.都相等且为D.都相等且为2.(5分)某学校2009年五四青年节举办十佳歌手赛,如图是七位评委为某选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数与方差分别为()A.83,1.6 B.84,0.4 C.85,1.6 D.86,1.53.(5分)一个单位有职工120人,其中业务人员60人,管理人员40人,后勤人员20人,为了解职工健康情况,要从中抽取一个容量为24的样本,如用分层抽样,则管理人员应抽到的人数为()A.4 B.12 C.5 D.84.(5分)某地2009年2月到6月各(x)月的平均气温y(℃)如表:根据表中数据,用最小二乘法求得平均气温y关于月份x的线性回归方程是()A.=5x﹣11.5 B.=6.5x﹣11.5 C.=1.2x﹣11.5 D.5.(5分)如图,已知正方形的边长为10,向正方形内随机地撒200颗黄豆,数得落在阴影外的黄豆数为114颗,以此实验数据为依据,可以估计出阴影部分的面积约为()A.53 B.43 C.47 D.576.(5分)足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,那么一个队打14场共得19分的情况有()A.3种B.4种C.5种D.6种7.(5分)将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设两条直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,则复数P1+P2i所对应的点P与直线l2:x+2y=2的位置关系()A.P在直线l2的右下方B.P在直线l2的右上方C.P在直线l2上D.P在直线l2的左下方8.(5分)下列命题中,正确命题的个数为()①命题“若,则x=2且y=﹣1”的逆命题是真命题;②P:个位数字为零的整数能被5整除,则¬P:个位数字不是零的整数不能被5整除;③茎叶图中,去掉一个最大的数和一个最小的数后,所剩数据的方差与原来不相同.A.0 B.1 C.2 D.39.(5分)连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,那么点P在圆x2+y2=17内部的概率是()A.B.C.D.10.(5分)将长度为1米的铁丝随机剪成三段,则这三段能拼成三角形(三段的端点相接)的概率等于()A.B.C.D.11.(5分)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a,b 的值分别为()A.0.27,78 B.0.27,83 C.2.7,78 D.2.7,8312.(5分)已知Ω={(x,y)|},直线y=mx+2m和曲线y=有两个不同的交点,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),若P(M)∈[,1],则实数m的取值范围()A.[,1]B.[0,] C.[,1] D.[0,1]二、填空题(共4小题,每小题4分,满分16分)13.(4分)200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/h的汽车数量为辆.14.(4分)从集合{(x,y)|x2+y2≤4,x∈R,y∈R}内任选一个元素(x,y),则x,y满足x+y≥2的概率为.15.(4分)用黑白两种颜色的正方形地砖依照图中的规律拼成若干图形,则按此规律第100个图形中有白色地砖块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是.16.(4分)给出下列命题:①命题“∃x∈R,使得x2+x+1<0”的非命题是“对∀x∈R,都有x2+x+1>0”;②独立性检验显示“患慢性气管炎和吸烟有关”,这就是“有吸烟习惯的人,必定会患慢性气管炎”;③某校有高一学生300人,高二学生270人,高三学生210人,现教育局欲用分层抽样的方法,抽取26名学生进行问卷调查,则高三学生被抽到的概率最小.其中错误的命题序号是(将所有错误命题的序号都填上).三、解答题(共6小题,满分74分)17.(12分)某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18]如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数.(2)设m,n表示该班两个学生的百米测试成绩,已知m,n∈[13,14)∪[17,18]求事件“|m﹣n|>2”的概率.18.(12分)已知关于x的一元二次函数f(x)=ax2﹣4bx+1.(1)设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)设点(a,b)是区域内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.19.(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?20.(12分)某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6则中一等奖,等于5中二等奖,等于4或3中三等奖.(1)求中三等奖的概率;(2)求中奖的概率.21.(12分)福州某中学高一(10)班男同学有45名,女同学有15名,老师按照性别分层抽样的方法组建了一个由4人组成的课外学习兴趣小组.(Ⅰ)求课外兴趣小组中男、女同学的人数;(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定从该组内选出2名同学分别做某项试验,求选出的2名同学中恰有1名女同学的概率;(Ⅲ)试验结束后,同学A得到的试验数据为68,70,71,72,74;同学B得到的试验数据为69,70,70,72,74;请问哪位同学的试验更稳定?并说明理由.22.(14分)先后2次抛掷一枚骰子,将得到的点数分别记为a,b.(Ⅰ)设函数f(x)=|x﹣a|,函数g(x)=x﹣b,令F(x)=f(x)﹣g(x),求函数F(x)有且只有一个零点的概率;(Ⅱ)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.概率统计综合检测题(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•沈阳模拟)某校要从高一、高二、高三共2010名学生中选取50名组成访问团,若采用下面的方法选取:先按简单随机抽样的方法从2010人中剔除10人,剩下的2000人再用分层抽样方法进行,则每个人入选的概率()A.不全相等 B.均不相等C.都相等且为D.都相等且为【分析】剔除10人是按照随机抽样进行的,剩下的2000人再用分层抽样方法,也符合随机抽样原理,即每个人入选的概率是样本容量比总体容量【解答】解:剔除10人是按照随机抽样进行的,剩下的2000人再用分层抽样方法,也符合随机抽样原理,即每个人入选的概率是样本容量比总体容量,故为故选C【点评】本题主要考查分层抽样方法.2.(5分)(2012•陆丰市校级模拟)某学校2009年五四青年节举办十佳歌手赛,如图是七位评委为某选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数与方差分别为()A.83,1.6 B.84,0.4 C.85,1.6 D.86,1.5【分析】根据算分的规则,去掉一个最高分和一个最低分有84,84,84,86,87五个数据,把五个数据代入求平均数的公式,得到这组数据的平均数,再代入方差的公式,得到方差.【解答】解:∵由题意知,选手的分数去掉一个最高分和一个最低分有84,84,84,86,87,∴选手的平均分是=85,选手的得分方差是(1+1+1+1+4)=1.6,故选C.【点评】本题考查平均数和方差,对于一组数据通常要求的是这组数据的众数,中位数,平均数,方差,它们分别表示一组数据的特征,这样的问题可以出现在选择题或填空题.3.(5分)(2016春•益阳校级期末)一个单位有职工120人,其中业务人员60人,管理人员40人,后勤人员20人,为了解职工健康情况,要从中抽取一个容量为24的样本,如用分层抽样,则管理人员应抽到的人数为()A.4 B.12 C.5 D.8【分析】根据各个部门存在较大的差异,利用分层抽样方法抽取一个样本,首先根据所给的总人数和样本数,做出每个个体被抽到的概率,利用这个概率乘以管理人员的数目,得到结果.【解答】解:∵一个单位有职工120人,为了解职工健康情况,要从中抽取一个容量为24的样本,∴每个个体被抽到的概率是,∵管理人员40人,∴从管理人员中抽取40×=8故选D.【点评】本题考查分层抽样,这是最典型的一个分层抽样题目,高考卷中曾经考过类似的问题,同学们要认真对待,不能丢分.4.(5分)(2010•锦州二模)某地2009年2月到6月各(x)月的平均气温y(℃)如表:根据表中数据,用最小二乘法求得平均气温y关于月份x的线性回归方程是()A.=5x﹣11.5 B.=6.5x﹣11.5 C.=1.2x﹣11.5 D.【分析】由已知表格中的数据,我们易计算出变量x,y的平均数,及x i,x i y i的累加值,代入回归直线系数公式,即可求出回归直线的系数,进而求出回归直线方程.【解答】解:,所以回归直线方程为故选D.【点评】求回归直线的方程,关键是要求出回归直线方程的系数,由已知的变量x,y的值,我们计算出变量x,y的平均数,及x i,x i y i的累加值,代入回归直线系数公式,即可求出回归直线的系数,进而求出回归直线方程.5.(5分)(2010•辽宁模拟)如图,已知正方形的边长为10,向正方形内随机地撒200颗黄豆,数得落在阴影外的黄豆数为114颗,以此实验数据为依据,可以估计出阴影部分的面积约为()A.53 B.43 C.47 D.57【分析】本题利用几何概型求解.由于是向正方形内随机地撒200颗黄豆,其落在阴影外的概率是阴影外的面积与整个正方形的面积之比,从而可列式求得阴影部分的面积.【解答】解:设阴影外部分的面积为s,则由几何概型的概率公式得:,解得s=57,可以估计出阴影部分的面积约为100﹣57=43.故选B.【点评】本题主要考查了几何概型,以及利用几何意义求面积,属于基础题.简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.6.(5分)足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,那么一个队打14场共得19分的情况有()A.3种B.4种C.5种D.6种【分析】本题是一个分类计数问题,需要分别列举出胜平负的所有情况,从胜一场开始,当胜一场时得到3分,平16场才能凑足19分,这样需要打17场,故不合题意,当胜2场时同样可以分析不合题意,再分析胜3,4,5,6场的情况,兼顾所打的场数和所得到分数.【解答】解:由题意知本题是一个分类计数问题,当胜一场时得到3分,平16场才能凑足19分故不合题意,当胜2场时得到6分,平13场,共需15场比赛,不合题意,胜3场时得到9分,平10场,输一场,符合题意.胜4场时得到12分,平7场,输3场,符合题意胜5场时得到15分,平4场,输5场,符合题意胜6场时得到18分,平1场,输6场,符合题意综上所述共有4种结果满足题意,故选B.【点评】本题考查分类计数问题,这是经常出现的一个问题,解题时一定要分清做这件事需要分为几类,每一类包含几种方法,把几个步骤中数字相加得到结果7.(5分)(2010•广东校级模拟)将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设两条直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,则复数P1+P2i所对应的点P与直线l2:x+2y=2的位置关系()A.P在直线l2的右下方B.P在直线l2的右上方C.P在直线l2上D.P在直线l2的左下方【分析】据两直线相交斜率不等,求出a,b满足的条件,据古典概型概率公式求出P1,P2,据复数的集合意义求出点P坐标,判断出与直线的关系.【解答】解:易知当且仅当时两条直线只有一个交点,而的情况有三种:a=1,b=2(此时两直线重合);a=2,b=4(此时两直线平行);a=3,b=6(此时两直线平行).而投掷两次的所有情况有6×6=36种,所以两条直线相交的概率;两条直线平行的概率为P1=,P1+P2i所对应的点为P,易判断P在l2:x+2y=2的左下方,故选项为D.【点评】本题融合了直线、线性规划、概率及复数等有关知识,在处理方法上可采用枚举法处理,注意不等忽视了直线重合这种情况,否则会选C.8.(5分)(2010•辽宁模拟)下列命题中,正确命题的个数为()①命题“若,则x=2且y=﹣1”的逆命题是真命题;②P:个位数字为零的整数能被5整除,则¬P:个位数字不是零的整数不能被5整除;③茎叶图中,去掉一个最大的数和一个最小的数后,所剩数据的方差与原来不相同.A.0 B.1 C.2 D.3【分析】写出第一个命题的逆命题x=2且y=﹣1可以推出成立,对个位数字为零的整数能被5整除的否定个位数字为零的整数不能被5整除,去掉一个最大的数和一个最小的数后,所剩数据的方差与原来不相同,得到结果.【解答】解:∵x=2且y=﹣1可以推出,故①正确,∵P:个位数字为零的整数能被5整除,它的¬P:个位数字为零的整数不能被5整除;故②不正确,∵去掉一个最大的数和一个最小的数后,所剩数据的方差与原来不相同故③正确,总上可知有2个命题是正确的,故选C.【点评】本题考查极差、方差与标准差,考查四种命题之间的关系,考查命题的否定,命题的否定与否命题要区别开,这是一个易错题.9.(5分)(2010•上虞市模拟)连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,那么点P在圆x2+y2=17内部的概率是()A.B.C.D.【分析】连续掷两次骰子,以先后得到的点数结果有36种,构成的点的坐标有36个,把这些点列举出来,检验是否满足x2+y2<17,满足这个条件的点就在圆的内部,数出个数,根据古典概型个数得到结果.【解答】解:这是一个古典概型由分步计数原理知:连续掷两次骰子,构成的点的坐标有6×6=36个,而满足x2+y2<17的有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共有8个,∴P==,故选C.【点评】将数形结合的思想渗透到具体问题中来,用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏.比如,列举点的坐标时,我们把横标从小变大挨个列举.10.(5分)(2009•泰安一模)将长度为1米的铁丝随机剪成三段,则这三段能拼成三角形(三段的端点相接)的概率等于()A.B.C.D.【分析】将长度为1米的铁丝随机剪成三段的长度分别为x,y,z,x+y+z=1则求解面积,然后求构成试验的全部区域为所表示的区域的面积,代入几何概率的计算公式可求.【解答】解:设将长度为1米的铁丝随机剪成三段的长度分别为x,y,z,x+y+z=1则构成试验的全部区域为⇒所表示的区域为边长为1的直角三角形,其面积为记“这三段能拼成三角形”为事件A,则构成A的区域⇒为边长为的直角三角形,面积为代入几何概率公式可得P(A)=故选B【点评】本题考查了与面积有关的几何概率的求解,难点是要把题中所提供的条件转化为数学问题,进而求出面积,突破难点的关键是构造与构成三角形的条件,根据线性规划的知识求解面积.11.(5分)(2005•江西)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a,b的值分别为()A.0.27,78 B.0.27,83 C.2.7,78 D.2.7,83【分析】先根据直方图求出前2组的频数,根据前4组成等比数列求出第3和第4组的人数,从而求出后6组的人数,根据直方图可知4.6~4.7间的频数最大,即可求出频率a,根据等差数列的性质可求出公差d,从而求出在4.6到5.0之间的学生数为b.【解答】解:由频率分布直方图知组矩为0.1,4.3~4.4间的频数为100×0.1×0.1=1.4.4~4.5间的频数为100×0.1×0.3=3.又前4组的频数成等比数列,∴公比为3.根据后6组频数成等差数列,且共有100﹣13=87人.从而4.6~4.7间的频数最大,且为1×33=27,∴a=0.27,设公差为d,则6×27+d=87.∴d=﹣5,从而b=4×27+(﹣5)=78.故选:A.【点评】本题考查频率分布直方图的相关知识,以及等差数列和等比数列的应用等有关知识,直方图中的各个矩形的面积代表了频率,所以各个矩形面积之和为1,同时考查分析问题的能力,属于基础题.12.(5分)(2013•东莞一模)已知Ω={(x,y)|},直线y=mx+2m和曲线y=有两个不同的交点,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),若P(M)∈[,1],则实数m的取值范围()A.[,1]B.[0,] C.[,1] D.[0,1]【分析】画出图形,不难发现直线恒过定点(﹣2,0),结合概率范围可知直线与圆的关系,直线以(﹣2,0)点为中心顺时针旋转至与x轴重合,从而确定直线的斜率范围.【解答】解:画出图形,不难发现直线恒过定点(﹣2,0),圆是上半圆,直线过(﹣2,0),(0,2)时,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),此时P(M)=,当直线与x轴重合时,P(M)=1;直线的斜率范围是[0,1].故选D.【点评】本题考查直线与圆的方程的应用,几何概型,直线系,数形结合的数学思想,是好题,难度较大.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2014•市中区校级二模)200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/h的汽车数量为76辆.【分析】先根据“频率=×组距”求出时速不低于60km/h的汽车的频率,然后根据“频数=频率×样本容量”进行求解.【解答】解:时速不低于60km/h的汽车的频率为(0.028+0.01)×10=0.38∴时速不低于60km/h的汽车数量为200×0.38=76故答案为:76【点评】本题考查频率分布直方图的相关知识,直方图中的各个矩形的面积代表了频率,频数=频率×样本容量,属于基础题.14.(4分)(2013•南充一模)从集合{(x,y)|x2+y2≤4,x∈R,y∈R}内任选一个元素(x,y),则x,y满足x+y≥2的概率为.【分析】利用几何概型求解本题中的概率是解决本题的关键.需要作出事件所满足的区域,找出全部事件的区域和所求事件区域,利用二者的面积比求出该题的概率.【解答】解:本题事件所包含的区域如图,全部事件区域是整个圆内部分,事件x+y≥2表示的在圆内并且位于直线x+y=2右侧的部分.因此,所求概率为圆在第一象限位于直线x+y=2右侧的弓形部分面积除以整个圆的面积而得.即为:.故答案为:.【点评】本题考查几何概型求概率的办法,考查不等式满足的可行域问题,考查数形结合的思想和几何图形面积的计算问题.15.(4分)(2010•辽宁模拟)用黑白两种颜色的正方形地砖依照图中的规律拼成若干图形,则按此规律第100个图形中有白色地砖503块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是.【分析】由第一、二、三个图形寻找白色地砖块数的规律性,易发现构成等差数列,由等差数列的通项公式求出第100个图形中有白色地砖的块数,再由几何概型求概率即可.【解答】解:白色地砖构成等差数列:8,13,18,…,5n+3,a n=5n+3,a100=503,第100个图形中有地砖503+100=603,故所求概率.故答案为:503;【点评】本题考查归纳推理和几何概型知识,考查利用所学知识解决问题的能力.16.(4分)给出下列命题:①命题“∃x∈R,使得x2+x+1<0”的非命题是“对∀x∈R,都有x2+x+1>0”;②独立性检验显示“患慢性气管炎和吸烟有关”,这就是“有吸烟习惯的人,必定会患慢性气管炎”;③某校有高一学生300人,高二学生270人,高三学生210人,现教育局欲用分层抽样的方法,抽取26名学生进行问卷调查,则高三学生被抽到的概率最小.其中错误的命题序号是①②③(将所有错误命题的序号都填上).【分析】据特称命题的否定是全称命题:将存在改为任意,结论否定;得到①错误;独立性检验显示的分类变量有关、无关不是确定关系,故两个分类变量有关时,不能推出一个存在另一个一定存在故②错;在抽样方法中,每种抽样方法都遵循每个个体被抽到的概率相等的特点,故③错.【解答】解:①中原命题的非命题是“对∀x∈R,都有x2+x+1≥0”,所以①错误;②中说法不正确,“患慢性气管炎和吸烟有关”只是说明“患慢性气管炎”和“吸烟”有一定的相关关系,但不是确定关系,所以“有吸烟习惯的人,未必患慢性气管炎”;③中,由于抽样比为=,所以高一学生被抽到的人数为×300=10人,高二学生被抽到的人数为×270=9人,高三学生被抽到的人数为×210=7人,尽管高三学生抽到的人数少,但每个学生被抽到的机会均等,所以“高三学生被抽到的概率最小”这种说法错误.故答案为①②③【点评】本题三个命题重点考查简易逻辑用语、统计案例和统计等基本概念.三、解答题(共6小题,满分74分)17.(12分)(2012•宝鸡模拟)某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18]如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数.(2)设m,n表示该班两个学生的百米测试成绩,已知m,n∈[13,14)∪[17,18]求事件“|m﹣n|>2”的概率.【分析】(Ⅰ)根据直方图矩形的面积表示频率,可知成绩在[14,16)内的人数;(Ⅱ)成绩在[13,14)的人数有2人,设为a,b.成绩在[17,18]的人数有3人,设为A,B,C;基本事件总数为10,事件“|m﹣n|>2”由6个基本事件组成.根据古典概型公式可求出所求.【解答】解:(Ⅰ)根据直方图可知成绩在[14,16)内的人数为:50×0.18+50×0.38=28人;(5分)(Ⅱ)成绩在[13,14)的人数有:50×0.04=2人,设为a,b.成绩在[17,18]的人数有:50×0.06=3人,设为A,B,C.m,n∈[13,14)时有ab一种情况.m,n∈[17,18]时有AB,AC,BC三种情况.m,n分别在[13,14)和[17,18]时有aA,aB,aC,bA,bB,bC六种情况.基本事件总数为10,事件“|m﹣n|>2”由6个基本事件组成.所以P(|m﹣n|>2)=(13分)【点评】本题主要考查了频率分布直方图,以及古典概型的概率问题、用样本的数字特征估计总体的数字特征等有关知识,属于中档题.18.(12分)(2011•广东三模)已知关于x的一元二次函数f(x)=ax2﹣4bx+1.(1)设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)设点(a,b)是区域内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.【分析】(1)本题是一个等可能事件的概率,试验发生包含的事件是3×5,满足条件的事件是函数f(x)=ax2﹣4bx+1在区间[1,+∞)上为增函数,根据二次函数的对称轴,写出满足条件的结果,得到概率.(2)本题是一个等可能事件的概率问题,根据第一问做出的函数是增函数,得到试验发生包含的事件对应的区域和满足条件的事件对应的区域,做出面积,得到结果.【解答】解:(1)由题意知本题是一个等可能事件的概率,∵试验发生包含的事件是3×5=15,函数f(x)=ax2﹣4bx+1的图象的对称轴为,要使f(x)=ax2﹣4bx+1在区间[1,+∞)上为增函数,当且仅当a>0且,即2b≤a若a=1则b=﹣1,若a=2则b=﹣1,1;若a=3则b=﹣1,1;∴事件包含基本事件的个数是1+2+2=5∴所求事件的概率为.(2)由(Ⅰ)知当且仅当2b≤a且a>0时,函数f(x)=ax2﹣4bx+1在区是间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为构成所求事件的区域为三角形部分由得交点坐标为,∴所求事件的概率为.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积、和体积、的比值得到.19.(12分)(2016•河南模拟)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?【分析】(1)根据题意列举出从5组数据中选取2组数据共有10种情况,每种情况都是可能出现的,满足条件的事件包括的基本事件有6种.根据等可能事件的概率做出结果.(2)根据所给的数据,先做出x,y的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程.(3)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.【解答】解:(1)设抽到不相邻的两组数据为事件A,从5组数据中选取2组数据共有10种情况:(1,2)(1,3)(1,4)(1,5)(2,3)(2,4)(2,5)(3,4)(3,5)(4,5),其中数据为12月份的日期数.每种情况都是可能出现的,事件A包括的基本事件有6种.∴P(A)=.。
近年山东文科高考分类汇编---概率统计部分【2016山东(文)】16.某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【解析】解:(Ⅰ)两次记录的数为(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(3,3),(4,2),(4,3),(4,4),共16个,满足xy≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5个,∴小亮获得玩具的概率为;(Ⅱ)满足xy≥8,(2,4),(3,4),(4,2),(4,3),(3,3),(4,4)共6个,∴小亮获得水杯的概率为;小亮获得饮料的概率为1﹣﹣=,∴小亮获得水杯大于获得饮料的概率.【2014山东(文)】(16)(本小题满分12分)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如右表所示. 工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(I)求这6件样品中来自A ,B ,C 各地区商品的数量;(II )若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.【解析】16、(Ⅰ)因为工作人员是按分层抽样抽取商品,所以各地区抽取商品比例为:::50:150:1001:3:2A B C ==所以各地区抽取商品数为:1:616A ⨯=,3:636B ⨯=,2:626C ⨯=; (Ⅱ)设各地区商品分别为:12312,,,,,A B B B C C基本时间空间Ω为:()()()()()()()123121213,,,,,,,,,,,,,A B A B A B A C A C B B B B ()()()()()()()()1112232122313212,,,,,,,,,,,,,,,B C B C B B B C B C B C B C C C ,共15个. 样本时间空间为:()()()()12132312,,,,,,,B B B B B B C C所以这两件商品来自同一地区的概率为:()4 15P A=.【2013山东(文)】16.(本小题满分12分)某小组共有A,B,C,D,E五位同学,他们的身高(单位:米)2(1) 1.78以下的概率;(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.【解析】解:(1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),共6个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有:(A,B),(A,C),(B,C),共3个.因此选到的2人身高都在1.78以下的概率为P=36=12.(2)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C,D),(C,E),(D,E),共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为P=3 10.【2012山东(文)】(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【解析】(18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310 P=.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815 P=.【2011山东(文)】18.(本小题满分12分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I )若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II )若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.【解析】18.解:(I )甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E 、F 表示从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D )(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F )共9种。
高三文科专题复习(概率统计)【归纳】在高考中,概率统计题通常都考中低档题,相对来说难度不大,所以大家应该力求拿满分。
而且概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题,成为高考卷中的主流应用题。
说白了都是些换汤不换药的题目,只要大家把统计中的抽样方法、用样本估计总体、独立性检验、线性回归分析,还有概率中的古典概型和几何概型都熟练掌握了,那就考什么概率统计题都不用害怕了!【考点1、求样本的数字特征】1、如图,从参加环保知识竞赛的学生中抽出40名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)80~90这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛成绩的平均数、众数、中位数。
(不要求写过程)(3)从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率.2、一汽车厂生产A、B、C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本。
将该样本看成一个总体,从中任取2辆,求至少有l辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率。
3、某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔l 小时抽一包产品, 称其重量(单位:克)是否合格,分别记录抽查数据,获得重量数据的茎叶图如图4. (1)根据样品数据,计算甲、乙两个车间产品重量的均值 与方差,并说明哪个车间的产品的重量相对较稳定; (2)若从乙车间6件样品中随机抽取两件,求所抽取的两 件样品的重量之差不超过2克的概率.【考点2、线性回归分析】4、一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:其中i=1,2,3,4,5,6,7.(I)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图. (Ⅱ)求回归直线方程.(结果保留到小数点后两位) (参考数据4375)(7,5075,43.15,25,3245227171=====∑∑==x x y x yx i i ii i 26957=xy )(Ⅲ)预测进店人数为80人时,商品销售的件数.(结果保留整数)5、某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研 究,他们分别记录了l2月1日至l2月5日的每天昼夜温差与实验室每天每100颗种 子中的发芽数,得到如下资料:该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回 归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是l2月1日与l2月5日的两组数据,请根据l2月2日至l2月4日的数据,求出y 关于x 的线性回归方程a bx y+=ˆ (3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?【考点3、独立性检验】 6、为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:(1)用分层抽样的方法在喜欢打篮球的学生中抽6人,其中男生抽多少人? (2)在上述抽取的6人中选2人,求恰有一名女生的概率.(3)为了研究喜欢打蓝球是否与性别有关,计算出333.82≈K 你有多大的把握认为是 否喜欢打篮球与性别有关? 下面的临界值表供参考:【考点4,古典概型与几何概型】7、已知关于x 的一元二次函数14)(2+-=bx ax x f(1)设集合P={1,2,3}和Q={-l ,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数)(x f y =在区间[l ,+∞)上是增函数的概率;(2)设点),(b a 是区域⎪⎩⎪⎨⎧>>≤-+8008y x y x 内的随机点,求函数)(x f y =在区间[l ,+∞)上是增函数的概率。
高三数学单元测试题(概率与统计)班别 姓名 座号 评分 一、选择题(本大题共10小题,每小题5分,共50分。
每小题中只有一项符合题目要求) 1.x 是[4,4]-上的一个随机数,则使x 满足220x x +-<的概率为A .12B .38C .58D .02.有两个质地均匀、大小相同的正四面体玩具,每个玩具的各面上分别写有数字1,2,3,4。
把两个玩具各抛掷一次,斜向上的面写有的数字之和能被5整除的概率为 A .116B .14C .38D .123.若以连续掷两次骰子(各面分别标有1~6点的正方体)分别得到的点数m n 、 作为点P 的坐标,则点P 落在区域040x y x y -≥⎧⎨+-<⎩内的概率为A .1936B .1736C .512D .1184.从2004名学生中选取50名组成参观图,若采用下面的方法选取,先用简单随机抽样法从2004人中剔除4人,剩下的2000人再按系统抽样的方法进行,则每人入选的概率 A .不全相等 B .均不相等C .都相等且为251002D .都相等且为1405.在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这正方形的面积介于236cm 与281cm 之间的概率为 A .14B .13C .427D .4156.如图,A 是圆上固定的一点,在圆上其他位置任取一点A ',连结AA ',它是一条弦,它的长度大于等于半径长度的概率为A .12B .23C .32D .147.某城市2006年的空气质量状况如下表所示: 污染指数T 3060100110130140概率P110 16 13 730 215 130其中污染指数时,空气质量为优;时,空气质量为良;100150T <≤时空气质量为轻微污染。
该城市2006年空气质量达到良或优的概率为A .35B .1180C .119D .568.有一笔统计资料,共有11个数据如下(不完全以大小排列):2,4,4,5,5,6,7,8,9,11,x ,已知这组数据的平均数为6,则这组数据的方差为 A .6B .6C .66D .6.59.对于一组数据 (1,2,3,,)i x i n =L ,如果将它们改变为(1,2,3,,)i x c i n +=L ,其中0c ≠,则下面结论中正确的是A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化10.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a 、b 的值分别为A .0.27,78B .0.27,83C .2.7,78D .27,83 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)11.采用简单随机抽样,从含有10个个体的总体中抽取一个容量为4的样本,这个总体中的个体x 前3次没有被抽到,第4次被抽到的概率是12.若施化肥量x 与小麦产量y 之间的回归直线方程为ˆ2504y x =+,当施化肥量为50kg时,预计小麦产量为13.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,若选到男教师的概率为920,则参加联欢会的教师共有 人。
1.【2015高考湖北,文14】某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(Ⅰ)直方图中的a=_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.【答案】(Ⅰ)3;(Ⅱ)6000.【解析】由频率分布直方图及频率和等于1可得⨯+⨯+⨯+⨯+⨯+⨯=,a0.20.10.80.1 1.50.120.1 2.50.10.11解之得3⨯+⨯+⨯+⨯=,所以消费a=.于是消费金额在区间[0.5,0.9]内频率为0.20.10.80.120.130.10.6金额在区间[0.5,0.9]内的购物者的人数为:0.6100006000⨯=,故应填3;6000.2.【2015高考北京,文14】高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.【答案】乙;数学【解析】①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学.3.【2015高考安徽,文17】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],,[80,90],[90,100](Ⅰ)求频率分布图中a 的值;(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;(Ⅲ)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【答案】(Ⅰ)0.006;(Ⅱ)0.4;(Ⅲ)110【解析】(Ⅰ)因为110)028.02022.00018.0004.0(=⨯+⨯+++a ,所以006.0=a(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为4.010)018.0022.0(=⨯+, 所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为321,,A A A ; 受访职工评分在[40,50)的有: 50×0.004×40=2(人),即为21,B B .从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{}{}{}{},,,,,,,,21113121B A B A A A A A{}{}{}{}{}{},,,,,,,,,,,,2123132212312B B B A B A B A B A A A 又因为所抽取2人的评分都在[40,50)的结果有1种,即{}21,B B ,故所求的概率为101=p . 4.【2015高考北京,文17】(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(I)估计顾客同时购买乙和丙的概率;(II)估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;(III)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?【答案】(I)0.2;(II)0.3;(III)同时购买丙的可能性最大.【解析】试题解析:(Ⅰ)从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.2 1000=.(Ⅱ)从统计表可以看出,在在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为1002000.3 1000+=.(Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为2000.2 1000=,顾客同时购买甲和丙的概率可以估计为1002003000.61000++=,顾客同时购买甲和丁的概率可以估计为1000.1 1000=,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.考点:统计表、概率.5.【2015高考福建,文18】全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(Ⅰ)现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【答案】(Ⅰ)910;(Ⅱ)6.05. 【解析】解法一:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (II )这20家“省级卫视新闻台”的融合指数平均数等于28734.5 5.5 6.57.5 6.0520202020⨯+⨯+⨯+⨯=. 解法二:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个. 所以所求的概率1911010P =-=. (II )同解法一.6.【2015高考广东,文17】(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户? 【答案】(1)0.0075;(2)230,224;(3)5.【解析】试题解析:(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中x 的值是0.0075(2)月平均用电量的众数是2202402302+= 因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户 7.【2015高考湖南,文16】(本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球12,A A 和1个白球B 的甲箱与装有2个红球12,a a 和2个白球12,b b 的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖。
高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。
文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率()()1,0∈AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表 满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=22满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意()02k K P ≥ 0.10 0.05 0.01 0.005 0k 2.706 3.841 6.635 7.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 25 a b(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 22.在区间[-2,3]上随机选取一个数x ,则1≤x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年 份 2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn tyt n y t b ni ini ii ˆˆ,ˆ1221-=--=∑∑==.28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁) 频数 频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350[35,40) 30 b[40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。
文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率1,0AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:db c a d cb a bcd a n K22满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意2k KP 0.10 0.05 0.01 0.005 0k 2.7063.8416.6357.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ . 18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分组并得到的频率分布直方图如图所示.下表是年龄的频数分布表.区间[25,30)[30,35)[35,40)[40,45)[45,50]人数25ab(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.31 B.21 C.32 D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.107 B.85 C.83 D.10322.在区间[-2,3]上随机选取一个数x ,则1x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为()A.1?x yB.1?x yC.xy 2188? D.176?y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程axb y ???中的b ?为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元B.65.5万元C.67.7万元D.72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程at by ???;(Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm )174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程at b y ???中,t by atn t yt n y t b ni ini ii ??,?1221. 28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:分组[70,80)[80,90)[90,100)[100,110)频数 3 4 8 15 分组[110,120)[120,130)[130,140)[140,150]频数15x32乙校:分组[70,80)[80,90)[90,100)[100,110)频数 1 2 8 9 分组[110,120)[120,130)[130,140)[140,150]频数1010y3(1)计算y x,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率;(3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算db c a d cb abcadn K22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:学生 A B C D E 数学成绩x (分)89 91 93 95 97 物理成绩y (分)8789899293(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;甲校乙校总计优秀非优秀总计2k KP 0.10 0.05 0.010 0k 2.7063.8416.635(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:ax b y ???,其中x byaxx y y x x b ni ini i i??,?121;90,93y x ,30,4051251yy x x xx ii i i i.30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 5保费0.85aa1.25a1.5a 1.75a 2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 5 概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁)频数频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350 [35,40) 30 b [40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。
高三复习文科统计概率(概率专项)练习必须掌握知识点:○1随机事件的定义;正确理解概率的定义,能理解频率与概率的联系与区别.解析:判断事件是否随机抓住不能确保发生或不发生的事件,通常未发生的不是自然科学规律的事件为随机事件,而已发生、自然科学规律、公式以及定理等确定的事件为必然事件,违背自然科学的未发生的为不可能事件;事件发生的概率通俗讲就是事件发生的可能性大小,故可能发生也可能不发生,如天气预报有雨却没下雨,某人说某事99%的概率发生缺没发生等并不表示天气预报有误也不表示某人说法错误;频率是统计得来,随着试验次数不同而浮动,概率可看着是对频率的固定值估计,是一个定值,但试验次数无限增加时,频率无限趋近该事件的概率.○2掌握对立事件与互斥事件的区别与联系.解析:对立事件与互斥事件都不能同时发生,而互斥事件可以同时不发生,对立事件却必然有事件发生,故对立事件是互斥事件充分不必要条件;互斥事件与对立事件经常作为间接求解使用.○3掌握古典概型和几何概型.解析:古典概型成立的特征需两个条件,条件一是试验的结果是有限的(如抛一枚硬币出现正面、方面两种情况),条件二是试验的所有结果发生可能性相同(如抛一枚硬币出现正面、反面的概率一样),解答古典概型题计算方式为()AP A事件发生的事件总数试验所有可能发生的事件总数;几何概型其实就是一个“量比”的问题,事件发生的概率与试验“器具”的量有关,且为其“量比”(如长度比、面积比、事件比、空间比、数轴比等,典型的如等公交车、过交通岗、设靶、数轴取数、抛黄豆以等).○4独立性检验解析:独立性检验是经常出现在大题当中,固定的考试模式以及固定的求解步骤对考生来说没有难度,需要注意的是几种求问法:(1)是否有不低于99.5%的把握认为吸烟与患肺炎相关;(2)是否能在犯错误的概率不超过0.5%前提下,认为吸烟与患肺炎有关;(3)若低于95%的把握,则认为吸烟与患肺炎无关,反之亦然,从上表统计数据是否能判断吸烟与患肺炎有关,请注明你的结论。
高三数学(文科)专题练习(二)——概率统计部分
1. 公安部发布酒后驾驶处罚的新规定(一次性扣罚12分)已于今年4月1日起正式施行.酒后
违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q (简称血酒含量,单位是毫克/100毫升),当2080Q ≤<时,为酒后驾车;当80Q ≥时,为醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量(如下表).
(Ⅰ)分别写出酒后违法驾车发生的频率和酒后违法驾车中醉酒驾车的频率;
(Ⅱ)从酒后违法驾车的司机中,抽取2人,请一一列举出所有的抽取结果,并求取到的2人中含有醉酒驾车的概率. (酒后驾车的人用大写字母如A ,B ,C ,D 表示,醉酒驾车的人用小写字母如a,b,c,d 表示)
2. 某种零件按质量标准分为5,4,3,2,1五个等级.现从一批该零件中随机抽取20个,对其等级进行统计分析,得到频率分布表如下:
(Ⅱ)在(Ⅰ)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零 件等级恰好相同的概率.
75 80 85 90 95 100 分数
频率
0.01
0.02
3. 如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A 所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A 指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后各转动一次游戏转盘,得分记为(,)a b (假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动). (Ⅰ)请列出一个家庭得分(,)a b 的所有情况;
(Ⅱ)若游戏规定:一个家庭的总得分为参与游戏的两人所得分数之和,且总得分为偶数的家庭可以获得一份奖品.请问一个家庭获奖的概
率为多少?
4. 为了解某地区中学生的身体发育状况,拟采用分层抽样的方法从甲、乙、丙三所中学抽取6个教学班进行调查.已知甲、乙、丙三所中学分别有12,6,18个教学班.(Ⅰ)求从甲、乙、丙三所中学中分别抽取的教学班的个数;
(Ⅱ)若从抽取的6个教学班中随机抽取2个进行调查结果的对比,求这2个教学班中至少有1个来自甲学校的概率.
5. 某高校在2011年的自主招生考试成绩 中随机抽取100名学生的笔试成绩,按成绩 分组:第1组[75,80),第2组[80,85),
第3组[85,90),第4组[90,95),第5组
[95,100]得到的频率分布直方图如图所示. (Ⅰ)分别求第3,4,5组的频率;
(Ⅱ)若该校决定在笔试成绩高的第3,4,5组
中用分层抽样抽取6名学生进入第二轮面
试,求第3,4,5组每组各抽取多少名学生进入第二轮面试?
(Ⅲ)在(Ⅱ)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率.
高三数学(文科)专题练习(二)——概率统计部分参考答案
1.解:(Ⅰ)由表可知,酒后违法驾车的人数为6人,………………………1分 则违法驾车发生的频率为:
100
3
2006=或03.0;………………………3分 酒后违法驾车中有2人是醉酒驾车,则酒后违法驾车中醉酒驾车的频率为
3
1
62=.…………………6分 (Ⅱ)设酒后驾车的4人分别为A 、B 、C 、D ;醉酒驾车的2人分别为a 、b……………7分 则从违法驾车的6人中,任意抽取2人的结果有:(A ,B),(A ,C),(A ,D),(A ,a), (A ,b),(B ,C),(B ,D),(B ,a),(B ,b),(C ,D),(C ,a),(C ,b),(D ,a),(D ,b), (a ,b)共有15个. …………………9分
设取到的2人中含有醉酒驾车为事件E ,…………………10分 则事件E 含有9个结果:(A ,a),(A ,b),
(B ,a),(B ,b) ,(C ,a),(C ,b),(D ,a),(D ,b),(a ,b). …………………12分 ∴93()155
P E =
= ……13分
2.解:(Ⅰ)由频率分布表得 0.050.150.351m n ++++=,
即 0.45m n +=. ……2分 由抽取的20个零件中,等级为5的恰有2个, 得 1.020
2
==
n . ……4分 所以0.450.10.35m =-=. ……5分
(Ⅱ)解:由(Ⅰ)得,等级为3的零件有3个,记作123,,x x x ;等级为5的零件有2个, 记作12,y y .从12312,,,,x x x y y 中任意抽取2个零件,所有可能的结果为:
12131112232122313212(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)x x x x x y x y x x x y x y x y x y y y
共计10种. ……9分
记事件A 为“从零件12312,,,,x x x y y 中任取2件,其等级相等”.
则A 包含的基本事件为12132312(,),(,),(,),(,)x x x x x x y y 共4个. ………………11分 故所求概率为 4
()0.410P A =
=.
………………13分 3.解:(Ⅰ)由题意可知,一个家庭的得分情况共有9种,分别为(2,2),(2,3),(2,5),(3,2),
(3,3),(3,5),(5,3),(5,2),(5,5). ………………………………7分
(Ⅱ)记事件A :一个家庭在游戏中获奖,则符合获奖条件的得分情况包括
(2,2),(3,3),(3,5),(5,3),(5,5)共5种, ……………………11分 所以5()9
P A =
.
所以一个家庭获奖的概率为5
9
. ………………………13分
4.解:(Ⅰ)由已知可知在甲、乙、丙三所中学共有教学班的比是12:6:18=2:1:3,…1分
所以甲学校抽取教学班数为26=26⨯个,乙学校抽取教学班数为1
6=16
⨯个,丙学校抽取教学班数为3
6=36
⨯
个, ……4分 所以分别抽取的教学班个数为2,1,3. …5分
(Ⅱ)由(Ⅰ)知,从甲、乙、丙三所中学分别抽取2,1,3个教学班,不妨分别记为1A ,
2A ,1B ,1C ,2C ,3C ,则从6个教学班中随机抽取2个教学班的基本事件为:12(,)A A ,
11(,)A B ,11(,)A C ,12(,)A C ,13(,)A C ,21(,)A B ,21(,)A C ,22(,)A C ,23(,)A C ,11(,)B C ,12(,)B C ,13(,)B C ,12(,)C C ,13(,)C C ,23(,)C C 共15个. …7分
设“从6个教学班中随机抽取2个教学班,至少有1个来自甲学校”为事件D ,8分
则事件D 包含的基本事件为:12(,)A A ,11(,)A B ,11(,)A C ,12(,)A C ,13(,)A C ,
21(,)A B ,21(,)A C ,22(,)A C ,23(,)A C 共9个. ……10分
所以 93
()155
P D =
=. ………12分 所以从抽取的6个教学班中随机抽取2个,且这2个教学班中至少有1个来自甲学校的概率为
3
5
.…13分
5. 解:
解:(Ⅰ)由题设可知,第3组的频率为0.0650.3⨯=, 第4组的频率为0.0450.2⨯=,
第5组的频率为0.0250.1⨯=.
……………………3分
(Ⅱ)第3组的人数为0.310030⨯=, 第4组的人数为0.210020⨯=,
第5组的人数为0.110010⨯=.
因为第3,4,5组共有60名学生,
所以利用分层抽样在60名学生中抽取6名学生,每组抽取的人数分别为:
第3组:30
6360
⨯=, 第4组:
20
6260
⨯=,
第5组:
10
6160
⨯=. 所以第3,4,5组分别抽取3人,2人,1人. ……………………8分 (Ⅲ)设第3组的3位同学为1A ,2A ,3A ,
第4组的2位同学为1B ,2B , 第5组的1位同学为1C . 则从六位同学中抽两位同学有:
1213111211(,),(,),(,),(,),(,),A A A A A B A B A C 23212221(,),(,),(,),(,),A A A B A B A C 313231(,),(,),(,),A B A B A C 121121(,),(,),(,),B B B C B C
共15种可能.
其中第4组的2位同学为1B ,2B 至少有一位同学入选的有:
11122122(,),(,),(,),(,),A B A B A B A B
3112321121(,),(,),(,),(,),(,),A B B B A B B C B C 共9种可能,
所以第4组至少有一名学生被甲考官面试的概率为
93
155
=. ……………………13分。