高中数学常见的函数问题总结
- 格式:ppt
- 大小:1.33 MB
- 文档页数:53
有关高一数学必修一函数知识点总结4篇有关高一数学必修一函数知识点总结4篇积累通识知识可以让我们对各种事物有更全面、更深刻的理解和把握。
积累专业知识可以让我们在自己的领域内成为专家,获得更高的社会地位和经济回报。
下面就让小编给大家带来高一数学必修一函数知识点总结,希望大家喜欢! 高一数学必修一函数知识点总结篇1知识点总结本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。
函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。
所以理解了前面的几个知识点,函数的图象就迎刃而解了。
一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
四、常见考法本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。
选择题、填空题和解答题都有,并且题目难度较大。
在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。
多考查函数的单调性、最值和图象等。
五、误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。
3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。
4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。
5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。
高一数学必修一函数知识点总结篇2一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
函数最值、值域、恒成立问题一、函数最值定义1.(1)一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:①x I ∀∈,都有()f x M ≤;②0x I ∃∈,使得()0f x M =。
就称M 是函数()y f x =的最大值。
(2)一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:①x I ∀∈,都有()f x M ≥;②0x I ∃∈,使得()0f x M =。
就称M 是函数()y f x =的最小值。
2.【注】(1)函数的最值指的是函数值(y 值)的最大值和最小值。
求函数的最值,既要求函数的最大值也要求函数的最小值。
【注】(2)从函数图象上看,函数的最大值对应函数图象最高点的纵坐标;函数的最小值对应函数图象最低点的纵坐标。
二、单调函数的最值1.单调函数的最值在闭区间的端点处取得。
(1)单调递增函数在闭区间的左端点取得最小值,在右端点取得最大值。
(2)单调递减函数在闭区间的左端点取得最大值,在右端点取得最小值。
【注】单调函数在开区间上无最值,即既无最大值,也无最小值。
2.函数值域闭区间的左端点是函数值的最小值,右端点是函数值的最大值。
求函数的值域,往往要求函数的最大值和最小值。
三、分段函数的最值1.分段函数的最大值,是各段函数值最大值中的最大值;2.分段函数的最小值,是各段函数值最小值中的最小值。
四、函数最值的求解方法函数求最值的方法一般有:配方法、换元法、数形结合法(图象法)、结合函数的单调性法等。
五、函数的值域问题函数值域中的最小值往往是函数值的最小值,函数值域中的最大值往往是函数值中的最大值,所以求函数的值域往往需要先求出函数的最大值和最小值。
六、恒成立问题假设()g x 为已知函数,求()f a 的取值范围,则有以下两种情况:(1)()()f a g x ≤恒成立()()min f a g x ⇔≤;(2)()()f a g x ≥恒成立()()max f a g x ⇔≥。
高中数学知识点总结三角函数的导数与极限高中数学知识点总结:三角函数的导数与极限一、三角函数的极限在高中数学中,我们经常遇到三角函数的极限问题。
三角函数的极限计算是求取无穷小量与无穷大量之间的关系,下面就来总结一些三角函数的极限。
1. 正弦函数的极限lim (x→0) sin(x) / x = 1这个极限可以通过泰勒级数展开或用几何图形说明来证明。
因为sin(x)的图像在x=0处有一条切线,斜率为1,所以极限值为1。
2. 余弦函数的极限lim (x→0) (cos(x) - 1) / x = 0余弦函数的图像在x=0处有一条切线,斜率为0,所以极限值为0。
3. 正切函数的极限lim (x→0) tan(x) / x = 1正切函数在x=0时,正切线斜率为1,因此极限值为1。
4. 余切函数的极限lim (x→0) csc(x) = ∞余切函数在x=0时趋于无穷大。
5. sec(x)与cot(x)的极限lim (x→0) sec(x) = 1lim (x→0) cot(x) = ∞在x=0处,sec(x)为1,cot(x)为无穷大。
二、三角函数的导数导数是函数在某一点上的变化率,下面我们来总结一下常见三角函数的导数。
1. 正弦函数的导数d/dx sin(x) = cos(x)2. 余弦函数的导数d/dx cos(x) = -sin(x)3. 正切函数的导数d/dx tan(x) = sec^2(x)4. 余切函数的导数d/dx cot(x) = -csc^2(x)5. 正割函数的导数d/dx sec(x) = sec(x) * tan(x)6. 余割函数的导数d/dx csc(x) = -csc(x) * cot(x)三、三角函数的导数与极限的应用三角函数的导数与极限在物理、工程、计算机科学等领域有广泛的应用。
下面举几个例子说明其应用。
1. 物理学中的振动问题物理学中很多振动问题涉及到角度的变化,而角度变化与三角函数有密切关系,通过计算三角函数的导数和极限,可以得到振动过程中的速度和加速度等相关信息。
高中数学常见题型解法归纳 函数的零点个数问题的求解方法【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步.三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景 一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.【例2】(2017全国高考新课标I 理科数学)已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(2) ①若0,a ≤由(1)知()f x 至多有一个零点.②若0a >,由(1)知当ln x a =-时,()f x 取得最小值,1(ln )1ln f a a a-=-+. (i )当1a =时,(ln )f a -=0,故()f x 只有一个零点. (ii )当(1,)a ∈+∞时,由于11ln a a-+>0,即(ln )0f a ->,故()f x 没有零点. (iii )当0,1a ∈()时,11ln 0a a-+<,即(ln )0f a -<. 422(2)(2)2220,f ae a e e ----=+-+>-+>故()f x 在(,ln )a -∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln ,()n n n n n n f n e ae a n e n n aa f x a>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a 的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a ∈()时,要先判断(,ln )a -∞的零点的个数,此时考查了函数的零点定理,(ln )0f a -<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f aea e e ----=+-+>-+>要说明(2)0f ->,这里利用了放缩法,丢掉了42ae ae --+.(3) 当0,1a ∈()时,要判断(ln ,)a -+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax=+,其中a 为实数,常数 2.718e =.(1) 若1 3x=是函数()f x的一个极值点,求a的值;(2) 当4a=-时,求函数()f x的单调区间;(3) 当a取正实数时,若存在实数m,使得关于x的方程()f x m=有三个实数根,求a的取值范围.方法三方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x=,重新构造方程()()g x h x=,再画函数(),()y g x y h x==的图像分析解答.【例4】函数()lg cosf x x x=-的零点有()A.4 个 B.3 个 C.2个 D.1个【点评】调性不是很方便,所以先令()lg cos0f x x x=-=,可化为lg cosx x=,再在同一直角坐标系下画出lgy x=和cosy x=的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln,1,02f x x m xg x x m x m=-=-+>.(1)求函数()f x的单调区间;(2)当1m≥时,讨论函数()f x与()g x图象的交点个数.422510152025oy=cosxy=lgxyx参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1,)22-,15(,1)22+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1,)++∞; 【反馈检测3答案】(1)单调递增区间是),m +∞, 单调递减区间是(m ;(2)1.【反馈检测3详细解析】(1)函数()f x 的定义域为()()(0,,'x m x m f x x+∞=.当0x m <<()'0f x <,函数()f x 单调递减,当x m >时,()'0f x >函数()f x 单调递增,综上,函数()f x 的单调递增区间是),m +∞, 单调递减区间是(m .(2)令()()()()211ln ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数,()()()1'x x m F x x--=-,当1m =时,()'0F x ≤,函数()F x 为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。
高中数学中的函数最值求解问题是学习中的难点,在解决函数最值问题的时候要经过全方位的考虑,结合函数的定义域,将各种可能出现的结果进行分析,最终求得准确的计算结果。
在数学学习的过程中活跃的数学思维非常重要,它不仅可以改善学习方法,而且可以帮助学生掌握更多的解题技巧,进而提高解题速度和学习效率。
本文总结了一些求函数最值的常用方法如下:一、利用一次函数的单调性【例题1】 已知 x , y , z 是非负实数,且 x + 3y + 2z = 3 , 3x + 3y + z = 4 ,求函数 w = 2x - 3y + z 的最值 .解:得 y = 5/3 (1 - x), z = 2x - 1∴ w = 9x - 6又 x , y , z 非负,依一次函数 w = 9z - 6 的单调性可知当 x = 1/2 时,Wmin = -3/2 ,当 x= 1 时,Wmax = 3 .注:再求多元函数的条件最值时,通常是根据已知条件消元,转化为一元函数来解决问题.对于一次函数 y = kx + b ( k ≠ 0 ) 的最值,关键是指出自变量的取值范围,即函数的定义域,当一次函数的定义域是闭区间时,其最值在闭区间的端点处取得 .二、利用二次函数的性质【例题2】 设 α , β 是方程 4x^2 - 4kx + k + 2 = 0 的两个实数根,当 k 为何值时 α^2 + β^2 有最小值?解:∵ α , β 为方程的两个实数根,∴ α + β = k , αβ = 1/4 ( k + 2 ) ,令 y = α^2 + β^2 , 则有又由原方程由实数根可知,∴ k ≤ -1 或 k ≥ 2 .而二次函数的顶点 (1/4,-17/16)不在此范围内,根据二次函数的性质知,y 是以 k = 1/4 为对称轴,开口向上的,定义域为 (-∞,-1]∪[2,+∞)的抛物线,比较 k = -1 及 k = 2 时 y 的值知,当 k = -1 时,有 ymin = 1/2 .注:利用二次函数的性质求最值时,不能机械地套用最值在顶点处取得 . 首先要求出函数的定义域,然后在看顶点是否在函数的定义域内,最后再根据函数的单调性来判定 . 【例题3】 如图所示,抛物线 y = 4 - x^2 与直线 y = 3x 交于 A , B 两点,点 P 在抛物线上由 A 运动到 B,求 △APB 的面积最大时点 P 的坐标 .分析:由于 A , B 为定点,所以 AB 长为定值,欲使 △APB 的面积最大,须使 P 到 AB的距离最大 .解:设 P 点坐标为 (x0 , y0),∵ A , B 在直线 y = 3x 上,∴联立抛物线与直线方程,可得xA = -4 , xB = 1 ,∴ -4 ≤ x0 ≤ 1 ,则有∴当 x = -3/2 时,d 取最大值,△APB 面积最大,此时 P 点坐标为 (-3/2 , 7/4).注:在解决实际问题时要注意确定自变量取值范围的方法,本题是由直线与抛物线的交点来确定的,这样才能确定定义域内的最值 .三、利用二次方程的判别式欲求函数 y = f(x) ( x ∈ R ) 的极值,如果可以把函数式整理成关于 x 的二次方程, 注意到 x 在其定义域内取值,即方程有实根,所以可以通过二次方程的判别式 △ ≥ 0 来探求 y 的极大值与极小值 .【例题4】 已知 0 ≤ x ≤ 1 , 求的最值 .解: 原式可化为∵ x ∈ R ,∴解得 y ≤ 1/4 或 y ≥ 9/16 ,即函数 y 的值域为 y ≤ 1/4 或 y ≥ 9/16 ,∴ y极大 = 1/4,y极小 = 9/16 .当 y = 1/4 时,代入原函数解析式得 x = 1 ∈ [ 0 , 1 ] ;当 y = 9/16 时,代入原函数解析式得 x = -1 [ 0 , 1 ] .又 x = 0 时 , y = 2/3 ,∴ 当 x = 0 时,y 取极大值 2/3 .注:① 由判别式确定的是函数的值域,由值域得到的是函数的极值而不是最值;② 对有些函数来说,极值与最值相同,而有的函数就不一定,如本题中的极大值比极小值还小,这是因为极值是就某局部而言;③ 若要求函数在给定的定义域内的最值,一定要注意极值是否在此定义域内取得, 即要注意验根 .四、利用重要不等式【例题5】 设 x , y , z ∈ R+ , 且 2x + 4y + 9z = 16 .求 6√x + 4√y + 3√z 的最大值 .解:令 u = 6√x + 4√y + 3√z ,∴ u ≤ 4√23 ,( 其中当 9/x = 1/y = 1/9z 时,即当 x = 144/23 , y = 16/23 , z = 16/207 时取等号) 故注:这里是应用柯西不等式,在应用公式时,如何构造出已知条件等式 2x + 4y + 9z = 16,颇具技巧性和解题意义 .五、利用三角函数的有界性对于三角函数的极值,通常是利用三角函数的有界性来求解问题的,如正、余弦函数的最大(小)值很明显:y = asinx + bcosx (a , b ≠ 0)引入辅助角 θ,则其最值也一目了然 . 而对于其它的类型或用同角关系式、或用万能公式、或用正余弦定理作转化,变为二次函数问题来求解 .【例题6】 求的最值 .解法一: (利用降幂公式)解法二: (用判别式法)注: 本例还可以用万能公式等方法来求解 .六、利用参数换元对于有些函数而言,直接求极值比较复杂或不方便,这时可根据题目的特点作变量代换,然后运用前面的几种方法来解决问题.在换元时,一定要注意新的变量的取值范围 . 【例题7】 求函数 y = x + √( 1 - x ) 的极值 .解:原函数变为∵ t = 1/2 ∈ [ 0 , +∞ ) ,∴ 当 t = 1/2 ,即 x = 3/4 时,ymax = 5/4 .注: 这种换元虽然十分简单,但具有代表性 .七、利用复数的性质【例题8】 已知复数 z 满足 | z | = 2 , 求 | 1 + √3 i + z | 的极值 . 解法一:设 z = 2(cosθ + isinθ) (∵ | z | = 2)故 | 1 + √3 i + z |max = 4 , | 1 + √3 i + z |min = 0 .解法二:依据 | z1 | - | z2 | ≤ | z1 + z2 | ≤ | z1 | + | z2 | ,有 | 1 + √3 i | - | z | ≤ | 1 + √3 i + z | ≤ | 1 + √3 i | + | z | ,即 2 - 2 ≤ | 1 + √3 i + z | ≤ 2 + 2 ,∴ | 1 + √3 i + z |max = 4 , | 1 + √3 i + z |min = 0 .注:求复数模的最值通常可用代数法,三角法(解法一),复数模的性质及其公式 | z1 | - | z2 | ≤ | z1 + z2 | ≤ | z1 | + | z2 | , 此外还有数形结合方法等,但以上两种方法最为简捷.八、利用数形结合有些代数和三角问题,若能借助其几何背景,予以几何直观,这时求其最值常能收到直观、明快,化难为易得功效.【例题9】 求的最值 .解: 将函数式变形为其几何意义是在直角坐标系中,动点 P(cosx , sinx)和定点 A(-2 ,-1)连线的斜率,动点 P 的轨迹为单位圆,如下图所示:知 kAB 最小,kAC 最大,显然 kAB = 0 ,又 tgθ = |OB|/|AB| = 1/2 ,tg∠A = tg2θ = 2tgθ/(1 - tg^2 θ)= 4/3 ,即 kAC = 4/3 ,故 ymin = 0 , ymax = 4/3 .注:形如 [f(x) - a] / [g(x) - b] 的函数式,通常都可视作点 (g(x) ,f(x) ) 与点 (b , a)的连线的斜率 .运用数形结合的思想解题,关键是要进行合理的联想和类比,将代数式通过转化、变形、给予几何解释,通常这种转化与变形的过程常是一种挖掘和发现的过程,如本例需要挖掘 .。
高中数学根据导数求函数的最值问题解题技巧总结在高中数学中,根据导数求函数的最值是一个常见的考点。
这类问题要求我们通过求函数的导数,找到函数的极大值或极小值点,从而确定函数的最值。
下面我将总结一些解题技巧,帮助高中学生和他们的父母更好地应对这类问题。
一、寻找函数的极值点在解决根据导数求函数最值问题时,首先需要找到函数的极值点。
一般来说,函数的极值点就是函数的导数等于零的点,即函数的驻点。
我们可以通过以下步骤来找到函数的极值点:1. 求函数的导数。
根据问题给出的函数,我们可以先对其求导数。
例如,对于函数f(x),我们可以求得它的导函数f'(x)。
2. 解方程f'(x) = 0。
将求得的导函数f'(x)置零,解方程求得函数的驻点。
这些驻点就是函数的极值点。
需要注意的是,有时候函数的极值点可能还存在于函数的定义域的边界处,所以我们还需要将边界处的点也考虑进去。
二、判断极值点的性质找到函数的极值点后,我们需要进一步判断这些点的性质,即确定它们是极大值点还是极小值点。
这里有两种常见的方法:1. 使用导数的符号表。
我们可以通过绘制导数的符号表来判断极值点的性质。
具体做法是,在函数的定义域上选择几个代表性的点,代入导数f'(x)的值,然后根据导数的正负确定函数在这些点附近的增减性。
如果导数从正变负,那么这个点就是极大值点;如果导数从负变正,那么这个点就是极小值点。
2. 使用二阶导数。
二阶导数可以帮助我们更准确地判断极值点的性质。
具体做法是,求得函数的二阶导数f''(x),然后将极值点代入二阶导数。
如果二阶导数大于零,那么这个点就是极小值点;如果二阶导数小于零,那么这个点就是极大值点。
三、举一反三根据导数求函数的最值问题不仅仅局限于求解极值点,还可以应用到其他类型的函数中。
下面举一个例子来说明。
例题:求函数f(x) = x^3 - 3x^2 + 2x的最大值和最小值。
高中数学常见函数及其应用数学是一门广泛应用于各个领域的学科,而函数是数学中的基本概念之一。
在高中数学中,我们需要掌握并熟练运用一些常见函数及其应用。
本文将介绍一些常见的高中数学函数及其在实际问题中的应用。
一、线性函数线性函数是最简单的一类函数,其表达式为y = kx + b,其中k和b为常数。
线性函数的图像为一条直线,其斜率k代表直线的倾斜程度,而常数b代表直线与y轴的截距。
线性函数常见的应用有以下几种:1. 方程的解:在线性方程中,我们常常需要求解一元一次方程。
以y = 2x + 3为例,我们可以通过这个线性函数找到方程的解。
当x取特定的值时,我们可以求得对应的y值,从而得到该方程的解。
2. 直线的斜率和截距:线性函数的斜率和截距可以帮助我们分析直线的性质。
斜率决定了直线的倾斜程度,而截距则决定了直线与y轴的交点。
二、二次函数二次函数是一个非常常见的函数形式,其表达式为y = ax^2 + bx + c,其中a、b和c为常数,且a不等于0。
二次函数的图像通常是一个开口向上或向下的抛物线,常见的应用有以下几种:1. 抛物线的顶点问题:二次函数的顶点是抛物线的最高点或者最低点,在实际问题中可以用来寻找最优解,例如最大值或最小值。
2. 建模问题:二次函数可以用来建立实际问题的模型。
例如,通过分析苹果从树上掉落的过程,可以建立一个与时间相关的二次函数来描述苹果的运动轨迹。
三、指数函数指数函数是以一个正常数为底数,变量为指数的函数,其表达式为y = a^x,其中a为常数且大于0。
指数函数的图像通常是上升或下降的曲线,常见的应用有以下几种:1. 指数增长问题:指数函数在自然界中的许多现象都有应用,例如人口增长、细胞分裂等。
通过分析指数函数的特点,我们可以预测未来的发展趋势。
2. 复利计算:指数函数在金融领域中有着重要的应用,特别是在计算复利方面。
通过利率和时间的指数函数关系,我们可以计算复利的收益。
四、对数函数对数函数是指以一个正常数为底数,另一个正数为真数的函数,其表达式为y = loga(x),其中a为常数且大于0且不等于1。
高中数学常用问题总结归纳在高中数学学习过程中,我们常常会遇到一些困难和难题。
本文将总结归纳高中数学常见的问题,帮助同学们更好地理解和应对这些困难。
以下是一些常见问题及解答:一、代数运算问题高中代数运算问题主要包括整式的运算、方程的解法等。
在解决整式的运算问题时,常常会碰到因式分解和配方法的困扰。
在解决方程的解法时,方程的分解、配方法及根的求解是常见的问题。
解决这些问题的关键在于理解代数运算的基本规则,熟练掌握因式分解和配方法,并且灵活运用这些规则和方法。
二、函数与图像问题函数与图像问题是高中数学中的重点内容。
常见问题包括函数的性质、图像的变换和对称性等。
在解决函数的性质问题时,需要掌握函数的定义、定义域、值域、单调性和奇偶性等基本概念。
在解决图像的变换问题时,了解平移、伸缩、翻转和旋转等变换方式,并能够根据给定的函数式进行图像的变换。
此外,对称性是函数与图像问题中的另一个重要方面,需要熟练掌握函数图像的对称性和判定方法。
三、几何问题高中几何问题包括平面几何和立体几何两个方面。
在解决平面几何问题时,常见的问题包括直线与圆的性质、相交定理、相似三角形等。
解决这些问题的关键在于几何图形的性质和定理的理解和运用。
在解决立体几何问题时,需要掌握立体图形的性质、体积和表面积的计算等。
在解决这些问题时,可以多画图、多列方程,以便更好地理解和解决问题。
四、概率与统计问题概率与统计问题是高中数学中的一块重要内容。
在解决概率问题时,常见的问题包括事件的概率计算、条件概率和独立事件等。
解决这些问题需要掌握基本的概率计算方法和公式,并能够运用它们解决实际问题。
在解决统计问题时,需要了解统计数据的收集和整理方法,以及数据的分析和解读。
同时,也需要掌握频率分布表、直方图和折线图等统计图形的绘制和解读。
总结:在高中数学学习过程中,我们会遇到各种各样的问题,但只要我们充分理解并掌握基本的数学概念和方法,灵活运用它们,就能够解决大多数的困难。
高中数学常见的函数问题总结在高中数学学习过程中,我们经常遇到各种关于函数的问题。
函数作为数学中的一种基本概念,广泛应用于各个领域,并在解决实际问题中发挥重要的作用。
本文将总结并分类常见的高中数学函数问题,希望能够帮助同学们更好地理解和应用函数知识。
一、函数的定义和性质问题函数的定义是数学函数学习的第一步,也是最基本的概念之一。
在函数的定义问题中,常常涉及到确定定义域、值域、函数值、自变量等概念。
以函数f(x) = x²为例,常见的问题有:1. 确定定义域和值域;2. 求特定函数值,如f(2)、f(a)等;3. 求自变量,使得函数值满足一定条件,如f(x) = 4的解;4. 通过定义域和值域讨论函数的奇偶性、单调性等性质。
二、函数的图象和图像的性质问题函数的图象是函数概念的直观体现,通过观察函数图象的形状、特点,可以进一步了解函数的性质。
以函数f(x) = sinx为例,常见的问题有:1. 绘制函数的图象,并根据周期、对称性等性质进行分析;2. 求函数在某个区间上的最值,如f(x)在[0, π]上的最大值和最小值;3. 根据图象判断函数的奇偶性、单调性等性质;4. 根据图象及其性质,解决与函数相关的实际问题。
三、函数的运算问题函数的运算是高中数学中的一个重要知识点,掌握函数的运算规则,能够解决更加复杂的函数问题。
以函数f(x) = 2x + 1和g(x) = x²为例,常见的问题有:1. 计算两函数的和、差、积及商函数;2. 求复合函数,如f(g(x))、g(f(x))等;3. 求函数的反函数,并讨论反函数与原函数之间的关系;4. 利用函数的运算规则,简化和求解函数表达式。
四、函数的应用问题函数作为数学工具,广泛应用于各个学科和实际问题中。
通过函数的应用问题,我们能够更好地理解函数的实际意义和应用方法。
以函数f(t) = 30t + 500为例,常见的问题有:1. 利用函数模拟和解决实际问题,如某人每天固定工资500元,每工作1小时再额外获得30元,问他工作t小时总共能获得多少报酬;2. 使用函数模型进行预测和预测误差的分析,如根据历史数据建立的销售额预测模型;3. 使用函数解决几何问题,如通过函数关系求解图形的面积、体积等。
函数性质的综合问题一、利用函数的奇偶性、单调性比较大小1 已知函数f (x )在[-5,5]上是偶函数,且在[0,5]上是单调函数,若f (-4)<f (-2),则下列不等式一定成立的是( )A .f (-1)<f (3)B .f (2)<f (3)C .f (-3)<f (5)D .f (0)>f (1)2.已知偶函数f (x )在区间[0,+∞)上的解析式为f (x )=x +1,下列大小关系正确的是( )A .f (1)>f (2)B .f (1)>f (-2)C .f (-1)>f (-2)D .f (-1)<f (2)3.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),都有f (x 2)-f (x 1)x 2-x 1<0成立,则( ) A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)二、利用奇函数、偶函数的图象解不等式4 设函数f (x )为奇函数,且在(-∞,0)上是减函数,若f (-2)=0,则xf (x )<0的解集为( )A .(-1,0)∪(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2) 5.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则不等式f (x )x>0的解集为________. 三、利用函数的奇偶性、单调性解不等式6 奇函数f (x )是定义在(-1,1)上的减函数,若f (m -1)+f (3-2m )<0,求实数m 的取值范围.7.已知f (x )是定义在R 上的奇函数,当x ≥0,f (x )=x 2+2x ,若f (3-2a )>f (a ),则实数a 的取值范围是( )A .(-∞,-1)B .(-∞,1)C .(-1,+∞)D .(1,+∞)8.已知函数f (x )在R 上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]9.设函数f (x )在R 上是偶函数,在区间(-∞,0)上单调递增,且f (2a 2+a +1)<f (2a 2-2a +3),则a 的取值范围是________.四、利用函数的奇偶性、单调性求函数的最值10 已知函数f (x )为奇函数,当x >0时,f (x )=⎩⎪⎨⎪⎧1x -2,0<x <1,2x -3,x ≥1,若f (x )在⎣⎡⎦⎤-4,-14上的最大值为m ,最小值为n ,求m +n .11已知奇函数f (x )在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则在区间[-b ,-a ]上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-312.已知二次函数f (x )=ax 2+2ax +1在区间[-3,2]上的最大值为4,则a 的值为________.五、抽象函数的性质应用13 函数f (x )对任意的a ,b ∈R ,都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1.(1)求证:f (x )在R 上是增函数;(2)若f (4)=5,解不等式f (3m -2)<3.14.已知函数f (x )的定义域是(0,+∞),当x >1时,f (x )>0,且f (x ·y )=f (x )+f (y ).(1)求f (1);(2)证明:f (x )在定义域上是增函数;(3)如果f ⎝⎛⎭⎫13=-1,求满足不等式f (x )-f (x -2)≥2的x 的取值范围.六、函数性质的综合应用15 已知函数f (x )=ax +b x 2+1,f (x )为R 上的奇函数且f (1)=12.(1)求a ,b ;(2)判断f (x )在[1,+∞)上单调性并证明;(3)当x ∈[-4,-1]时,求f (x )的最大值和最小值.16.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x ≥0,ax 2+bx ,x <0为奇函数.(1)求a -b 的值;(2)若f (x )在区间[-1,m -2]上单调递增,求实数m 的取值范围.练习,已知函数是偶函数,则的递减区间是七、奇函数+常数类型求值17.已知f (x )=x 5+ax 3+bx -8(a ,b 是常数),且f (-3)=5,则f (3)=________.练习,设函数1sin )1()(22+++=x xx x f 的最大值为M ,最小值为m ,则m M +=_18.函数f (x )在R 上为奇函数,且x ≥0时,f (x )=x 2-x +2-b ,则f (-2)等于( )A .6-bB .-4+bC .2D .-2八、函数周期性和对称性19.已知)(x f 在R 上是奇函数,且满足)()4(x f x f =+,当)2,0(∈x 时,22)(x x f =,则)7(f 的值为 ( )2()(2)(1)3f x k x k x =-+-+)(x fA .2-B .2C .98-D .9820.已知定义在R 上的函数()f x ,对任意x R ∈,都有()()()63f x f x f +=+成立,若函数()1y f x =+的图象关于直线1x =-对称,则()2013()f =A .0B .2013C .3D .2013-21.设偶函数()f x 对任意x R ∈都有()()13f x f x +=-,且当[]3,2x ∈--时,()4f x x =,则()107.5f =( )A .10B .110C .-10D .110- 22.奇函数f (x )的定义域为R ,若f(x+2)为偶函数,则f(1)=1,则f(8)+f(9)= ( )A. -2B.-1C. 0D. 123.定义在R 上的奇函数)(x f 满足=-=+=-)1(,2)2014(),23()(f f x f x f 则 .1、已知()1+x f是偶函数,则函数()x f y 2=的图象的对称轴是( ) A. 1-=x B. 1=x C . 21-=x D. 21=x 2.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( ) A .0 B .1 C .25 D .53.设f (x )是定义在R 上以6为周期的函数,f (x )在(0,3)内单调递减,且y=f (x )的图象关于直线x=3对称,则下面正确的结论是 ( )(A)()()()1.5 3.5 6.5f f f <<; (B)()()()3.5 1.5 6.5f f f <<;(C)()()()6.5 3.5 1.5f f f <<; (D)()()()3.5 6.5 1.5f f f <<4.已知定义在R 上的奇函数)x (f 满足)x (f )2x (f -=+,则)6(f 的值为( )A. 1-B. 0C. 1D. 25.函数)x (f 对于任意实数x 满足条件)x (f 1)2x (f =+,若5)1(f -=,则))5(f (f 等于A. 5B. 5-C. 51D. 51- 6.已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值是( )A.0 B. C.1 D. 7.在R 上定义的函数)x (f 是偶函数,且)x 2(f )x (f -=,若)x (f 在 区间]2,1[上是减函数,则)x (f ( )A. 在区间]1,2[--上是增函数,在区间]4,3[上是增函数B. 在区间]1,2[--上是增函数,在区间]4,3[上是减函数C. 在区间]1,2[--上是减函数,在区间]4,3[上是增函数D. 在区间]1,2[--上是减函数,在区间]4,3[上是减函数8.已知定义在R 上的函数)x (f y =满足下列三个条件:① 对于任意的R x ∈,都有)x (f )4x (f =+;② 对于任意的2x x 021≤<≤,都有)x (f )x (f 21<;③ 函数)2x (f y +=的图象关于y 轴对称。