第二章 格林定理 镜像法
- 格式:ppt
- 大小:784.00 KB
- 文档页数:16
多元格林定理也称为格林公式或格林第二定理,是微积分中的重要定理之一。
它是格林第一定理在二维空间的推广,用于计算二维平面上曲线围成的有向闭合区域的面积或曲线积分。
多元格林定理的陈述如下:
设D是一个有界的平面区域,其边界曲线C是由一组光滑的曲线段组成,并且C是逆时针方向围成D的。
如果函数P(x, y)和Q(x, y)在D和C上具有一阶连续偏导数,那么有:
∬_D (∂Q/∂x - ∂P/∂y) dA = ∮_C (P dx + Q dy)
其中,∬_D表示对D内部的面积进行二重积分,∮_C表示沿C的曲线积分,dA表示微小面积元素,P和Q是定义在D上的实值函数,(∂Q/∂x - ∂P/∂y)表示P和Q的偏导数之差。
这个定理表明,曲线C围成的区域D的面积可以通过对P和Q的偏导数之差在D上进行二重积分来计算,也可以通过沿曲线C的曲线积分来计算P dx + Q dy。
多元格林定理在物理学、工程学和应用数学等领域中有广泛的应用,特别是在流体力学、电磁学和热力学等领域中的问题求解中常常用到。
它为计算和分析二维平面上的物理量提供了一种有力的工具。
九镜像法用镜像法某些看来棘手的问题很容易地得到解决。
它们是唯一性定理的典型应用之例。
镜像法法的实质是把实际上分片均匀媒质看成是均匀的,并在所研究的场域边界外的适当地点用虚设的较简单的电荷分布来代替实际边界上复杂的电荷分布(即导体表面的感应电荷或介质分界面的极化电荷)。
根据唯一性定理,只要虚设的电荷分布与边界内的实际电荷一起所产生的电场能满足给定的边界条件,这个结果就是正确的。
镜像法最简单的例子是:接地无限大导体平面上方一个点电荷的电场,见图1—28(a)。
显然,只要在导体平面的下方与点电荷q对称的点(—d,0,0)处放置一点电荷(-q),并把无限大导体平板撤去,整个空间充满介电常数为ε的电介质,在平板上半空间内。
故任意点(x,y,z)的电位为(1-77)这里的(—q)相当于(十q)对导体板的“镜像”,故称为镜像法,它代替了分布在导体平板表面上的感应电荷的作用。
用镜像法解题时要注意适用区域。
这里,解(1—77)式适用区域为导体平面上半空间内。
下半空间内实际上不存在电场。
还有几种其它类型的镜像问题。
这里先来研究一个导体球面的镜像问题。
如图1—29所示,在半径为R的接地导体球外,距球心为d处有一点电荷q。
根据问题的对称性,可设镜像电荷(—q`)放在球心O与点电荷q的联线上,且距球心为b。
虽然有(1-78)于是,球外任意点P的电位为(1-79)由此可知,点电荷附近接地导体球的影响,可用位于距球心b处的镜像电荷(—q`)来表示。
也即(—q`)代替金属球面上感应电荷的作用。
镜像法对点电荷在双层介质引起的电场的应用。
如图1—30所示,平面分界面S的左、右半空间分别充满介电常数为与的均匀介质,在左半空间距S为d处有一点电荷q,求空间的电场。
设左半空间电位为,右半空间电位为这里使用这样的镜像系统:即认为左半空间的场由原来电荷q和在像点的像电荷q`所产生(这时介电常数的介质布满整个空间);又认为右半空间的场由位于原来点电荷q处的像电荷q``单独产生(这时介电常数为的介质布满整个空间)。
静电源像法求解格林函数摘要利用静电源象法求出不同区域的格林函数,是求解这些区域上的拉普拉斯方程与泊松方程边界间题的关键。
同时,静电源象法也是物理专业学生在电动力学等专业课的学习中应熟练掌握的一个有用工具。
针对这个间题文章归纳出利用静电源像法求格林函数的一般基本思路。
关键词格林函数;静电源像法;狄利克雷边值静电源像法理论依据静电源像法求区域的格林函数归结为求函数g(,),也就是求感应电荷产生的点位。
当区域的边界具有特殊的对称性时,就可以用类似于反射波的方法求的格林函数。
在区域外也有一个点电荷,他对自由空间的电场产生一个电位,这两个点电荷所产生的电位在边界上恰好抵消,这个点电荷在内的电位就等于感应电荷产生的电位。
现在利用静电源法求秋的格林函数,K是以O为圆心,R为半径的球面。
在点放置一单位电荷,在半射线上截线段使=,(1.1)其中,,称点为关于球面K的反演点。
设P是球面K 上的任意给定一点,考察三角形,他们在点O有公共角,而夹此角的二相应边按(1.1)式是成比例的,因此这两三角形是相似的。
有相似性得到,对球面K上任意点P必有。
在点处有一个点电荷,根据上式,它所产生的电位恰好与处单位电荷所产生的电位抵消,必须是在处的点电的电量为-,因此,这样一来,以K为球面的球上的格林函数就是:, (1.2) 现在用(1.2)求方程满足边界条件(1.3)的狄利克雷问题的解。
应用,其中=,是和OM的夹角,利用(1.1)式,根据(1.2)式就得到格林函数:, 易知在球面K上,-=因此,得到在球上的狄利克雷问题的接的表达式为,(1.4)球坐标形式如下其中()是点的坐标,是球面K上P的坐标,。
静电源像法求解半空间的狄利克雷问题要求一个半空间z>0上的调和函数,它在平面z=0上取函数f(x,y):.点的对称点是。
由此,有如下的格林函数:对于半空间z>0来讲,平面z=0的法线方向是与z轴相反的方向,即。
此外,对于半空间的情形,只要对调和函数()加上在无穷远处的条件:(),再由公式,可得到半空间上的调和方程的狄利克雷问题的解的表达式为:=静电源像法应用举例无限大导体平面前的点电荷用镜像法解题,设在无限大接地导体平面(z=0)附近有一点电荷Q与平面距离为z=h导体平面是等位面。
一、电象法的概念和适用条件1.求解泊松方程的难度一般静电问题可以通过求解泊松方程或拉普拉斯方程得到电场。
但是,在许多情况下非常困难。
例如,对于介质中、导体外存在点电荷的情况虽然可以采用叠加法求解,但是求解比较困难。
求解的困难主要是介质分界面或导体表面上的电荷一般非均匀分布的,造成电场缺乏对称性。
2. 以唯一性定理为依据在唯一性定理保证下,采用试探解,只要保证解满足泊松方程及边界条件即是正确解。
特别是对于只有几个自由点电荷时,可以将导体面上感应电荷分布等效地看作一个或几个点电荷来给出尝试解。
3.电象法概念、适用情况电象法:用假想点电荷来等效地代替导体边界面上的面电荷分布,然后用空间点电荷和等效点电荷迭加给出空间电势分布适用情况:a)所求区域有少许几个点电荷,它产生的感应电荷一般可以用假想点电荷代替。
b)导体边界面形状比较规则,具有一定对称性。
c) 给定边界条件注意:a)做替代时,所研究空间的泊松方程不能被改变(即自由点电荷位置、Q 大小不能变)。
所以假想电荷必须放在所求区域之外。
b)不能改变原有边界条件(实际是通过边界条件来确定假想电荷的大小和位置)。
c)一旦用了假想(等效)电荷,不再考虑原来的电荷分布。
d)坐标系选择仍然根据边界形状来定。
4.格林等效层定理(1)等势面包围的体积V内的电荷在V外产生的电势与在此等势面上置一导体面,并将V内电荷都搬到导体上所产生的电势完全一样。
(2)相反,带电导体所产生的电势也可以用导体面内一定等效电荷分布来代替,只要它产生与导体表面完全重合的等势面。
四、应用举例1.接地无限大平面导体板附近有一点电荷,求空间电势。
从物理问题的对称性和边界条件考虑,假想电荷应在左半空间 z 轴上。
φ=解:根据唯一性定理左半空间右半空间,Q 在(0,0,a )点, 电势满足泊松方程。
边界上00z φ==Q '设电量为 a ',位置为(0,0,)14Q Q φπε'=+zφ='==由边界条件确定Q'a'φ和、唯一解是因为象电荷在左半空间,所以舍去正号解,Q Q a a''=-=±4Qφπε=讨论:(a)导体面上感应电荷分布02223/22()zQaz x y aφσεπ=∂=-=-∂++223/222()Qa rdrQ dS Q Qr aπσπ∞'''==-=-=+⎰⎰(b)电荷Q 产生的电场的电力线全部终止在导体面上它与无导体时,两个等量异号电荷产生的电场在右半空间完全相同。
关于镜像法的总结一、理论依据唯一性定理:它指出了静态场边值问题具有唯一解的条件,在边界面S 上的任一点只需给定ϕ或nϕ∂∂的值,而不能同时给定两者的值。
镜像法的求解思想是:所有研究的区域边界是有规则的导体或介质界面、区域内只有一个或几个点电荷或线电荷时,设法不改变所求区域的电荷分布、在区域的边界外一定位置放置一个或几个镜像电荷来代替导体边界上感应电荷或介质边界上的极化电荷对外的作用。
这样,便把求解泊松方程及边界条件的解的问题,转化为求解几个点电荷及镜像电荷在空间产生场的问题。
二、镜像电荷法求导体球壳电场镜像电荷法是指在待求电场区域之外, 用假想电荷来等效原边界面上的感应电荷或极化电荷的作用, 只要保证求解空间内的全部边值条件得到满足,所得到的解就是唯一正确的解. 运用镜像电荷法求解静电场边值问题的关键根据唯一性定理找出电势满足的全部定解条件, 并由这些边值条件来决定像电荷的量值和位置. 对于平面导体附近有点电荷、球面导体附近有点电荷, 求出空间各点的电势及电场强度问题, 可以采用镜像电荷法来处理, 能够省去一些复杂的数学运算, 使问题巧妙地得到解决.比如, 接地空心导体球的内外半径分别为R1 和R2 , 在球内离球心为a( a< R 1 ) 处置一点电荷Q, 求球腔内的电势。
如图1 所示, 由于接地导体球壳的静电屏蔽作用, 可以得知R \R1的区域电势为零, 依据镜像电荷法规则, 假想点电荷Qc 应代替球壳面上感应电荷对空间电场的作用, 且满足球壳上电势U= 0 的边值条件. 由对称性可知, 假想点电荷Qc 必在OQ 连线上.设P 为球壳内表面上任一点, 由边界条件得'0'Q Q r r +=,式中r 为Q 到P 的距离, r ’为Q ’到P 的距离, 则''r Q r Q==常数 (1) 从图中可以看出, 只要选Qc 在合适的位置就可使'O Q P O P Q∆∆ , 则 1'R r r a==常数 (2)图1 设b 为Q ’到球心的距离, 由两三角形相似条件可得R1 / a= b/ R, 即像电荷Q ’的位置为21R b a= (3)由( 1) 和( 2) 式可求出像电荷Qc 的大小为1'R Q Q a=-(4) 则球腔内任一点P 的电势为10011()4'4QR Q r r a ϕπεπε=-= (5)根据电势与电场强度的关系式E ϕ=-∇, 就可以求出电场强度.通过上面的分析运算可以看出, 采用镜像电荷法不仅解题思路清晰, 而且比分离变量法简单且更容易掌握。
镜像法在静电场中,如果在所考虑的区域内没有自由电荷分布时,可用拉普拉斯方程求解场分布;如果在所考虑的区域内有自由电荷分布时,可用泊松方程求解场分布。
如果在所考虑的区域内只有一个或者几个点电荷,区域边界是导体或介质界面时,一般情况下,直接求解这类问题比较困难,通常可采用一种特殊方法—镜象法来求解这类问题。
镜像法是直接建立在唯一性定理基础上的一种求解静电场问题的方法。
适用于解决导体或介质边界前存在点源或线源的一些特殊问题。
镜像法的特点是不直接求解电位函数所满足的泊松或拉普拉斯方程,而是在所求区域外用简单的镜像电荷代替边界面上的感应电荷或极化电荷。
根据唯一性定理,如果引入镜像电荷后,原求解区域所满足的泊松或拉普拉斯方程和边界条件不变,该问题的解就是原问题的解。
下面我们举例说明。
1导体平面的镜像例.1 在无限大的接地导电平面上方h 处有一个点电荷q ,如图3.2.1所示,求导电平板上方空间的电位分布。
解 建立直角坐标系。
此电场问题的待求场区为0z >;场区的源是电量为q 位于(0,0,)P h 点的点电荷,边界为xy 面,由于导电面延伸到无限远,其边界条件为xy 面上电位为零。
导电平板上场区的电位是由点电荷以及导电平面上的感应电荷产生的,但感应电荷是未知的,因此,无法直接利用感应电荷进行计算。
现在考虑另一种情况,空间中有两个点电荷q 和q -,分别位于(0,0,)P h 和点(0,0,)P h '-,使得xy 面的电位为零,如图3.2.2。
这种情况,对于0z >的空间区域,电荷分布与边界条件都与前一种情况相同,根据唯一性定理,这两种情况0z >区域的电位是相同的。
也就是说,可以通过后一种情况中的两个点电荷来计算前种问题的待求场。
对比这两种情况,对0z >区域的场来说,后一种情况位于(0,0,)P h '-点的点电荷与前一种情况导电面上的感应电荷是等效的。
由于这个等效的点电荷与待求场区的点电荷相对于边界面是镜像对称的,所以这个等效的点电荷称为镜像电荷,这种通过场区之内的电荷与其在待求场区域之外的镜像电荷来进行计算电场的方法称为镜像法。