人类染色体疾病的诊断(二)
- 格式:ppt
- 大小:4.81 MB
- 文档页数:80
第四章人类染色体和染色体病The human chromosome and chromosome disease第一节人类染色体的基本特征染色质和染色体人类染色体的数目、结构和形态性染色体和性别决定染色体的研究方法真核生物的基因大部分存在于位于细胞核内的染色体上,故染色体是遗传物质的载体,是人类细胞遗传学的主要研究对象。
通过细胞分裂,遗传物质随着染色体的传递而传递。
一个生物物种的染色体数目、结构、形态是恒定的,构成了生物的遗传特性。
一、染色质和染色体染色质与染色体是遗传物质在细胞周期的不同阶段的不同表现形式。
化学组成相同:(一) 染色质(chromatin)染色质是DNA和蛋白质的复合体。
基本结构单位是核小体。
1.根据核蛋白分子的螺旋化程度及功能状态不同,细胞间期染色质分成两类:常染色质:螺旋程度低,结构松散,具转录活性,常位于细胞核中央。
异染色质:螺旋程度高,结构紧密,不具转录活性,常位于细胞核边缘。
2.异染色质:分为两种结构性异染色质(constitutive heterochromatin):在各种细胞中总是处于凝缩状态,一般为高度重复的DNA序列。
如着丝粒区,端粒区,次缢痕区等。
兼性异染色质(facultative heterochromatin):即功能性异染色质,在特定细胞的某一特定发育阶段,由常染色质凝缩转变而成。
如X染色质。
(二) 性染色质性染色质(sex chromatin) 是在间期细胞核中性染色体显示的一种特殊结构。
1. X 染色质(X chromatin)(1)1949年,雌猫神经细胞内凝缩的深染小体―Barr小体。
Barr小体普遍存在于雌性哺乳动物(包括人类)的间期细胞核中,是一条发生遗传学失活的X 染色体,呈异固缩状态(浓染小体),贴于核膜内侧缘。
(2) Mary Lyon 假说uX染色质的失活发生在胚胎早期(人类在胚胎第十六天)vX染色体的失活是随机的―父方或母方。
第07章染⾊体病第七章染⾊体病染⾊体病(chromosomal disease)是由于体内﹑外因素导致的先天性的染⾊体数⽬异常或结构畸变⽽引起的疾病。
经研究表明,染⾊体是核基因的载体。
⼈类的⼆倍体细胞含有46条染⾊体,构成2个染⾊体组,每个染⾊体组所携带的基因构成1个基因组,基因在染⾊体上按严格的序列呈直线排列,并且每个毗邻的基因位置是恒定的,⼀旦发⽣染⾊体数⽬增减或结构改变,势必导致多种基因的增加或缺失,⽽这些基因表达结果,可引起机体的多个器官系统的形态、结构及功能的异常。
临床上表现出⼀组症状群,如智⼒低下﹑多发畸形等,故⼜称为染⾊体畸变综合征。
本章共分四⼤部分,既正常核型、分⼦细胞遗传学、染⾊体畸变和染⾊体病。
从正常染⾊体识别及相应发展起来的染⾊体技术介绍,逐渐深⼊到分⼦细胞遗传学技术和应⽤,着重讨论了染⾊体畸变类型、发⽣机制及⼏种染⾊体病病的细胞、分⼦遗传学特征及发⽣机制。
在正常核型⼀节中讲解了染⾊体形态结构和类型,着重对染⾊体分组、核型与各种显带技术介绍。
在介绍分⼦细胞遗传学内容时,列举最新、适⽤、有发展前景的新技术,如荧光原位杂交(FISH)技术、引物原位标记(PRISH)技术、DNA纤维荧光原位杂交(DNA fiber-FISH)技术、⽐较基因组杂交(CGH)技术、染⾊体涂染检测技术。
在讲解染⾊体畸变⼀节中,从数⽬畸变和结构畸变两⼤类进⾏分析,前者分为整倍性改变和⾮整倍性改变两种;后者主要有缺失、重复、插⼊、易位和倒位等。
不管数⽬畸变,还是结构畸变,其实质是涉及染⾊体或染⾊体节段上基因群的增减或位置的转移,使遗传物质发⽣了改变,都可以导致染⾊体异常综合征,或染⾊体病。
详细分析了染⾊体畸变发⽣的原因,重点讨论了染⾊体数⽬异常及其产⽣机制和染⾊体结构畸变及其产⽣机制,并说明了染⾊体畸变的分⼦细胞⽣物学效应。
由染⾊体畸变引起的染⾊体病⼜称为染⾊体畸变综合征,包括常染⾊体病、性染⾊体病。
这类疾病对⼈类危害很⼤,⽆特异性治疗措施。
常见染色体报告的解读染色体报告是一种常见的基因检测报告,它主要用于分析个体的染色体结构和染色体异常情况。
通过分析染色体报告,可以了解个体是否存在染色体异常,从而帮助医生做出准确的诊断和治疗方案。
染色体是人体细胞中的一个重要组成部分,它携带着人类的遗传信息。
正常情况下,人体细胞中应该有23对染色体,共46条。
其中,前22对为常染色体,分别编号为1-22号,而最后一对为性染色体,男性为XY,女性为XX。
在染色体报告中,常见的染色体异常有染色体缺失、染色体重复和染色体易位。
染色体缺失是指染色体上的某一段基因或染色体的一部分缺失。
这可能会导致某些基因的功能丧失,进而引发一系列的遗传疾病。
染色体缺失可以是遗传的,也可以是基因突变或环境因素导致的。
染色体重复是指染色体上的某一段基因或染色体的一部分重复出现。
这种重复可能会导致基因过度表达,从而导致基因功能的异常和遗传疾病的发生。
染色体重复可以是遗传的,也可以是突变或环境因素引起的。
染色体易位是指染色体上的两段基因或染色体的一部分发生了互换位置。
这种互换位置可能会导致基因组的不稳定性,从而引发一系列的遗传疾病。
染色体易位可以是遗传的,也可以是异常的基因组重组导致的。
在染色体报告中,一般会列出染色体数目、结构和可能存在的异常。
例如,正常的染色体报告应该显示为46,XY(男性)或46,XX(女性)。
如果报告中显示为45,X(男性)或45,X0(女性),则可能存在染色体缺失的情况。
另外,染色体报告还会显示染色体的结构和可能存在的异常,如22q11.2删除综合征、Down综合征、爱德华兹综合征等。
这些结构异常会导致不同的遗传疾病,因此需要医生进行进一步的诊断和治疗。
在解读染色体报告时,最重要的是准确理解报告中所列的染色体数目、结构和异常情况。
根据这些信息,医生可以判断个体是否存在染色体异常,并进一步诊断和治疗相应的遗传疾病。
总之,染色体报告是一种常见的基因检测报告,通过分析染色体数目、结构和异常情况,可以了解个体是否存在染色体异常,为医生提供准确的诊断和治疗依据。
医学遗传学中的染色体异常和基因突变分析遗传学是研究生物遗传的学科,而医学遗传学则更注重与人类疾病相关的基因、染色体异常等问题,为医学诊断、预防、治疗疾病提供有力依据。
其中染色体异常和基因突变分析成为医学遗传学中的重要内容。
一、染色体异常分析染色体异常,是指染色体变异发生后所引起的染色体数目、形状或结构上的改变,常有染色体缺失、染色体重复、染色体易位、染色体畸变等表现。
通过分析染色体异常,可以确定遗传病变异的机制。
其中以下三种染色体异常较为常见:1、染色体数目异常。
在正常情况下,人类的体细胞核内有46条染色体(包括44条自体体染色体和两条性染色体)。
若因染色体分离不平衡等原因,导致染色体数目增多或减少,就称为染色体数目异常。
常见的染色体数目异常疾病有唐氏综合征(21三体综合征)、爱德华氏综合征(18三体综合征)、帕塔综合征(13三体综合征)等,这些疾病的产生和染色体分离不平衡有所关联。
2、染色体结构异常。
染色体结构异常是指染色体的某些区域发生了缺失、重复、易位、倒位等结构上的变异。
染色体结构异常常见于家族性遗传病,如克拉宾综合症、唐式综合征等。
3、染色体畸变。
染色体畸变是指染色体在长度和形状上的不正常变化,如某一特定断点上的断裂、变形等。
染色体畸变也是导致一部分遗传病变的原因之一,如微小删除综合征、第二型自体隐性多囊等。
二、基因突变分析基因突变是指基因序列发生了拼写错误导致遗传物质某处发生了单个核苷酸(即DNA基因词汇中最小的单位)的改变,这种改变可能对基因功能造成不同程度的影响,从而导致人类遗传病的发病。
基因突变是遗传病的重要原因之一,如新生儿遗传病中的苯丙酮尿症、肌萎缩性脊髓侧索硬化症、多囊肾等都属于基因突变导致的。
因此,对基因突变进行分析,有助于确定疾病的遗传方式并提供精准的治疗手段。
在疾病基因研究中,现已知的基因有两种突变类型,分别是点突变和结构变异。
点突变即单核苷酸变异,可以分为错义、无义、等位基因、剪切位点等类型。