碱金属铌酸盐无铅压电陶瓷性能及应用精品PPT课件
- 格式:pptx
- 大小:2.02 MB
- 文档页数:40
第23卷 第2期2009年 5月山 东 轻 工 业 学 院 学 报J OURNAL OF S HANDONGI NS T I TUTE OF L I GHTI NDUS TRY Vo.l 23 No .2M ar . 2009收稿日期:2009-03-20基金项目:济南市科学技术发展计划项目(046039)作者简介:郑凯(1985-),男,山东省泰安市人,山东轻工业学院材料科学与工程学院硕士研究生,研究方向:功能陶瓷.文章编号:1004-4280(2009)02-0013-04铌酸钾钠基无铅压电陶瓷的研究进展郑 凯,沈建兴,范战彪,马 元(山东轻工业学院材料科学与工程学院,山东济南250353)摘要:铌酸钾钠基无铅压电陶瓷的研究和开发是当前压电铁电材料领域的研究热点之一。
本文结合近期国内外有关无铅压电陶瓷论文,综述了铌酸钾钠基无铅压电陶瓷的性能和改性方法,简介了几种最先进的制备方法,并分析了无铅压电陶瓷发展趋势。
关键词:铌酸盐;无铅压电陶瓷;掺杂;改性中图分类号:T M225 文献标识码:AR esearch and advances of the KNbO 32Na NbO 3base lead 2free p iezoelectric cera m icsZ HENG Ka,i S HEN Jian 2xing ,F AN Zhan 2biao ,MA Yuan(Scho ol ofM ater i a l Sc i ence and Engi neeri ng ,Shandong Institute of Lig h t Industry ,Jinan 250353,Ch i na)Abstr act :The research and deve lopment ofKNbO 32N a N bO 3base lead 2free piez oe lectric cera m ics is hot i n the fie l d of p i e zoe lectric and f err oe lectric materia ls .Th is paper revie ws the perf or mance and mod ifi e smethods of the KNbO 32N a N bO 3base lead 2f ree piez oe l e ctric cera m ics ,introduces several latest preparation methods briefl y ,and ana l y zes the development trend of lead 2free p iezoelectric cera m ics .K ey w ord s :n i o bate ;l e ad 2free p iezoelectric cera m ics ;doped ;mod ified0 引言压电陶瓷材料在压电材料中的用途最广、最频繁,是一类极为重要的国际竞争激烈的高技术新型功能材料,在当今信息工业时代,压电陶瓷材料在电子学、光电子学等诸多高科技领域应用甚广,如在超声换能、传感器、无损检测和通讯技术等领域已获得了广泛的应用,其销售额在整个电子功能陶瓷材料的世界贸易市场中的份量多于1/3[1,2]。
无铅压电陶瓷一、引言压电陶瓷是一种能够实现机械能和电能相互转换的功能陶瓷材料。
与压电单晶材料相比,具有机电耦合系数高,压电性能可调节性好,化学性质稳定,易于制备且能制得各种形状、尺寸和任意极化方向的产品,价格低廉等优点,被广泛应用于卫星广播、电子设备、生物以及航空航天等高新技术领域。
然而,目前所使用的压电陶瓷体系主要是铅基压电陶瓷,这些陶瓷材料中PbO(或Pb3O4)的含量约占原料总质量的70%左右。
由于PbO、Pb3O4等含铅化合物在高温时的挥发性,这些陶瓷在生产、使用及废弃过程中都会对人类健康和生态环境造成很大的危害。
如果对含铅陶瓷器件回收实施无公害处理,所需成本也会很高。
另一方面,PbO的挥发也会造成陶瓷的化学计量比偏离配方中的化学计量比,造成产品的一致性和重复性降低。
因此,研制和开发对环境友好的无铅压电陶瓷成为一项紧迫且具有重大实用意义的课题。
二、压电陶瓷及其特性、应用2.1 压电陶瓷压电陶瓷属于无机非金属材料。
它是指把氧化物混合(氧化锆、氧化铅、氧化钛等)高温烧结固相反应后而成的多晶体并通过直流高压极化处理使其具有压电效应的铁电陶瓷的统称,这是一种具有压电效应的材料。
在能量转换方面,利用压电陶瓷将机械能转换成电能的特性,可以制造出压电点火器、移动X光电源、炮弹引爆装置。
电子打火机中就有压电陶瓷制作的火石,打火次数可在100万次以上。
用压电陶瓷把电能转换成超声振动。
可以用来探寻水下鱼群的位置和形状对金属进行无损探伤以及超声清洗、超声医疗还可以做成各种超声切割器、焊接装置及烙铁对塑料甚至金属进行加工。
无铅压电陶瓷,又被称为环境友好压电陶瓷,其直接表层含义指不含铅、又具有满意的高的压电性能的压电陶瓷材料。
目前国内外研究的无铅压电陶瓷体系主要包括:BaTiO3基无铅压电陶瓷,(Bi0.5Na0.5)TiO3(BNT)基无铅压电陶瓷,铋层状结构无铅压电陶瓷及铌酸盐基无铅压电陶瓷(包括钙钛矿结构的碱金属铌酸盐和钨青铜结构铌酸盐)。
北京科技大学科技成果——高性能铌酸盐基无铅压电陶瓷项目简介压电陶瓷是实现各类机电耦合元器件的一种重要功能材料,广泛应用于各种电子信息产品中,其应用已遍及日常生活中的每个角落,小到打火机、煤气灶、热水器的点火器,大到音响喇叭、超声清洗机的振子、医用B超的探头、军用声纳元件等,用途广泛。
但目前使用的压电陶瓷都含铅,对环境有害。
本项目提供一种铌酸盐基无铅压电陶瓷的成分配方与制备技术,压电性能国际领先,不含任何有毒有害元素,是完全环境友好型新材料。
制备方法简单、时间短、成本低、适用于工业大规模生产。
目前申请的发明专利有:(1)一种铌酸钠钾锂基无铅压电陶瓷及其制备方法,中国专利,公开号:CN101062864;(2)一种低温合成镁掺杂铌酸钾钠基无铅压电陶瓷及制备工艺,中国专利,公开号:CN101066868A。
在当今社会中,压电材料的应用已遍及日常生活的每个角落。
例如点燃香烟用的打火机、做饭用的煤气炉、手机的震动马达、汽车发动机的点火器、电子手表的压电谐振器、自动门上的声控门、报警器以及儿童玩具上用的压电蜂鸣器;银行、商店、超净厂房和安全保密场所的管理,以及侦察、破案等要用能验证每个人笔迹和声音特征的压电力敏传感器等。
家用电气产品要用压电器件,如电视机要用压电陶瓷滤波器、压电变压器和压电风扇;收录机要用压电微音器、压电扬声器和压电马达;收音机要用压电陶瓷滤波器和高保真压电喇叭;电唱机要用压电拾音器和压电马达;闪光灯要用压电高压发生器等。
经济效益及市场分析近几年来,压电陶瓷在全球每年销售量按15%左右的速度增长,据资料统计,2000年全球压电陶瓷产品销售额约达30亿美元以上。
2000年中国压电陶瓷专业生产单位150个以上,压电陶瓷年产量超过300吨,各类元器件的总量达5亿件。
在2000-2005年间仅美国就保持每年8.4%的增长速率,2005年美国的压电陶瓷销售29.4亿美元。
随着IT技术的快速发展,压电陶瓷在电子信息﹑移动通讯、计算机及电子医疗器件等领域的应用将不断扩大。
铌酸钾钠基无铅压电陶瓷的研究现状本文主要讨论了铌酸钾钠基无铅压电陶瓷材料的发展过程,研究了铌酸钾钠基无铅压电陶瓷材料的特点及其目前的研究现状。
标签:NKN;压电陶瓷;钙钛矿目前研究的无铅压电陶瓷的材料按结构大致可分为以下几类:钨青铜结构、含铋层状结构和钙钛矿结构等。
无铅压电陶瓷属于铌酸盐系的钙钛矿结构。
1.铌酸钾钠无铅压电陶瓷的发展碱性铌酸盐作为一种无铅压电材料目前备受关注,而对碱性铌酸盐的压电性能的研究集中在了(K、Na)NbO3陶瓷的性能研究上。
铌酸盐基压电陶瓷的压电性能虽不如PZT系陶瓷优越,但它有较高的居里温度,低的介电常数,较低的机械品质因数Qm值以及高的声传播速度,因此它应用在高频换能器方面,就显得比PZT效果好,而得到广泛应用。
NaNbO3室温下是类钙钛矿结构的反铁电体,存在复杂的结构相变,具有强电场诱发铁电性,类似于PbZrO3。
如果加以某种化学助剂改性,也可以使NaNbO3变成铁电相,成为铁电陶瓷。
KNbO3陶瓷室温下是钙钛矿型结构的铁电体,其性能与PbTiO3相似。
从晶体相变的情况看,KNbO3从高温到低温经历立方→四方转变(435℃),四方→正交转变(225℃),正交→三方转变(-10℃)等相变。
立方相是顺电相,而其他三种都是铁电相,居里温度为435℃。
KNbO3陶瓷的压电活性较低(kp < 0.30),而对烧结工艺要求却很严,所以不能适应实际生产和使用。
如果在KNbO3中添加一定量的NaNbO3,使之形成KNbO3-NaNbO3二元系固溶体陶瓷,则在一定组成范围内,可以得到较低的介电常数和高的耦合系数,使得这种材料具有实用价值[1]。
2.铌酸钾钠无铅压电陶瓷的特点铌酸钾钠二元系固溶体,化学式可写成(Kl-xNax)NbO3。
通过X射线衍射技术和反应热测量表明:NKN陶瓷的相变化非常复杂,这种固溶体Na与K 的比例可以在任何范围内连续变化,晶格仍然是钙钛矿结构。
对于不同的钾钠比例,由于结构不同,性能也不同。
铌酸钾钠基无铅压电材料微结构研究压电材料是功能材料的重要一员,通过机械能与电能之间的转换,它被广泛应用与微机电系统、医学超声诊断和自动化工业等领域。
多年以来,以锆钛酸铅(PZT)为代表的铅基压电材料一直占据着主要市场,但是其含有大量的铅,会对自然环境和人类健康带来很大的危害。
所以很多国家都开始研究可以替代PZT的无铅压电陶瓷。
在众多无铅体系中,铌酸钾钠(KNN)体系因其居里温度高、自发极化大和相对较高的压电系数成为最有希望的研究对象。
本文与相关课题组开展合作,对三类具有代表性的KNN基材料的相结构和微结构进行细致的表征,为工艺改良提供指导,为理解和优化性能提供基础。
对于传统工艺制备的KNLN陶瓷,提高其性能最为有效的方法就是将多晶型相界(PPT)调节到室温。
但是,纯相的陶瓷很难获得,总是不可避免的出现第二相。
通过对不同Li含量陶瓷的相结构和微结构进行细致分析,我们发现第二相的结构为四方钨青铜结构,由Li、Na、K、Nb和O五种元素组成。
第二相主要分布在陶瓷内部,陶瓷表面没有。
并且,第二相的存在会使PPT调节失败,因此压电性能得不到提高。
对于固相制备KNLN单晶,我们利用电子背散射衍射、压电力显微镜和透射电镜研究了单晶内部微结构特点。
单晶内出现周期平行排列的δ边界和周期性畴结构。
δ边界两侧每一层的厚度为2-3μm,两侧的取向关系为1.4°/[12 3 2]。
与取向的变化相对应,两种畴结构也呈交替排列。
一种畴结构平行的薄片状,畴壁的指数为{100},这种畴结构对应四方相中180°畴或者正交相中90°畴;另一种畴结构为楔形状,畴壁的指数为{11l},指数l是无理数,并随着畴壁与δ边界的夹角变化而改变,这种畴结构对应正交相中的60°或120°畴。
在KNLN单晶中观察到的特殊微结构主要和固相法中单晶所受的独特应力场有关。
对于反应模板法制备的KNLNTS织构化陶瓷,为了弄清反应机理,我们对烧结过程中四个温度的样品(800°C、1100°C、1140°C和1190°C)进行了细致的结构和成份分析。