八下第2章四边形练习
- 格式:pdf
- 大小:4.13 MB
- 文档页数:60
1D CB A xO y 一、一次几何综合1、如图:在平面直角坐标系中,A 、B 两点的坐标分别为(1,5)、(3,3),一次函数y=kx+b 的图象与x 轴、y 轴分别交于点M 、N ,如果以点A 、B 、M 、N 为顶点的四边形是平行四边形,则一次函数y=kx+b 的关系式为 .2、如图,在平面直角坐标系xOy 中,矩形ABCD 的边AD =3,A (12,0), B (2,0),直线y =kx +b 经过B ,D 两点. (1)求直线y =kx +b 的解析式;(2)将直线y =kx +b 平移,若它与矩形有公共点,直接写出b 的取值范围.3、已知直线334y x =+分别交x 轴、y 轴于点A 、B . (1)求BAO ∠的平分线的函数关系式;(写出自变量x 的取值范围)(2)点M 在已知直线上,点N 在坐标平面内,是否存在以点M 、N 、A 、O 为 顶点的四边形为菱形,若存在,请直接写出点N 的坐标;若不存在,说明理由.O11yxO11yx二、勾股定理:1、已知:点P 为正方形ABCD 内一点,连接PA 、PB 、PC ,若AP 2+CP 2=2PB 2, 求证:A 、P 、C 三点共线2、 请阅读下列材料:问题:如图1,点A ,B 在直线l 的同侧,在直线l 上找一点P ,使得BP AP +的值最小.小明的思路是:如图2,作点A 关于直线l 的对称点'A ,连接B A ',则B A '与直线l 的交点P 即为所求.P BAll图2图1AB请你参考小明同学的思路,探究并解决下列问题:(1)如图3,在图2的基础上,设'AA 与直线l 的交点为C ,过点B 作l BD ⊥,垂足为D . 若1=CP ,2=PD ,1=AC ,写出BP AP +的值为 ; (2)将(1)中的条件“1=AC ”去掉,换成“AC BD -=4”,其它条件不变,写出此时BP AP +的值 ;图3lCABPA'D(3)1)32(2+-m +4)28(2+-m 的最小值为.3. 勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:222.a b c+=证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+a b.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴222.a b c+=请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:222.a b c+=FCDBAE4. 有一块直角三角形纸片,两直角边AC = 6cm ,BC = 8cm .①如图1,现将纸片沿直线AD 折叠,使直角边AC 落在斜边AB 上,则CD = _________ cm .图1 图2②如图2,若将直角∠C 沿MN 折叠,点C 与AB 中点H 重合,点M 、N 分别在AC 、BC 上,则2AM 、2BN 与2MN 之间有怎样的数量关系?并证明你的结论.三、正方形压轴:1.设E 、F 分别在正方形ABCD 的边BC ,CD 上滑动保持且∠EAF =45°.若AB =5,求△ECF的周长.2.如图,P 是正方形ABCD 对角线AC 上一点,点E 在BC 上,且PE=PB .(1)求证:PE=PD ;(2)连接DE ,试判断∠PED 的度数,并证明你的结论.APABHM N AC BD3.如图,正方形ABCD 的边长为6,点O 是对角线AC ,BD 的交点, 点E 在CD 上,且DE =2CE ,连接BE .过点C 作CF ⊥BE ,垂足为点F , 连接OF .求(1)CF 的长; (2)OF 的长.4. (1)如图1,将∠EAF 绕着正方形ABCD 的顶点A 顺时针旋转,∠EAF 的两边交BC 于E ,交CD 于F ,连接EF .若∠EAF=45°,BE 、DF 的长度是方程2560x x -+=的两根,请直接写出EF 的长;(2)如图2,将∠EAF 绕着四边形ABCD 的顶点A 顺时针旋转,∠EAF 的两边交CB 的延长线于E ,交DC 的延长线于F ,连接EF .若AB=AD ,∠ABC 与∠ADC 互补,∠EAF=21∠BAD ,请直接写出EF 与DF 、BE 之间的数量关系,并证明你的结论;(3)在(2)的前提下,若BC=4,DC=7,CF=2,求△CEF 的周长.图1(1)EF 的长为: ; (2)数量关系: ; 证明:EDB DC5、如图,已知正方形ABCD 和正方形AEFG ,连结BE 、DG . (1)求证:BE =DG ,BE ⊥DG ;(2)连接BD 、EG 、DE ,点M 、N 、P 分别是BD 、EG 、DE 的中点,连接MP,PN,MN ,求证:MPN ∆是等腰直角三角形;(3)若AB =4,EF,45DAE ∠=o,直接写出MN = .6、如图,在正方形ABCD 外侧作直线DQ ,点C 关于直线DQ 的对称点为P ,连接DP 、AP ,AP 交直线DQ 于点F ,交BD 于点E . (1)依题意补全图形;(2)若25QDC ∠=︒,求DPA ∠的度数;(3)探究线段AE 、EF 、FP 的等量关系并加以证明.7.已知,如图,正方形ABCD 的边长为6,菱形EFGH 的三个顶点E ,G ,H 分别在正方形ABCD的边AB ,CD ,DA 上,AH=2,连接CF . (1)当DG=2时,求证:菱形EFGH 是正方形; (2)设DG=x ,用含x 的代数式表示FCG △的面积; (3)判断FCG △的面积能否等于1,并说明理由.A DH QDCBAGFEDCBA8、操作,将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线上滑动,直角的一边始终经过B点,另一边与射线DC相交于点Q. 设AP =x.(1)当Q点在CD上时,线段PQ与线段PB的大小关系怎样?并证明你的结论;(2)当Q在CD上时,设四边形PBCQ面积为y,求y与x之间的函数关系,并写出x的取值范围;(3)当点P在线段AC上滑动,且Q在DC延长线上时,△PCQ能否为等腰三角形?若能,求出x的值;若不能,说明理由.(1)结论:PQ_____PB 证明:(2)解:(3)解:图1图2(备用)图3(备用)9.如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点....,连接AM 、CM .其中BN=BM ,∠MB N=60°,连接 EN . (1)证明:△A BM ≌△EBN(2)当M 点在何处时,AM +BM +CM 的值最小,并说明理由;(3)当AM +BM +CM 1时,求正方形的边长.五、涉及中点类:1.在中,∠A =∠DBC , 过点D 作DE =DF , 且∠EDF =∠ABD , 连接EF 、 EC , M 、N 、P 分别为EF 、EC 、BC 的中点,连接NP .请你发现∠ABD 与∠MNP 满足的等量关系,并证明.2.如图1,在△ACB 和△AED 中,AC=BC ,AE=DE ,∠ACB =∠AED =90°,点E 在AB 上,点D 在AC 上.(1)若F 是BD 的中点,求证:CF=EF ;(2) 将图1中的△AED 绕点A 顺时针旋转,使AE 恰好在AC 上(如图2).若F 为BD 上一点,且CF=EF ,求证:BF= DF ;(3)将图1中的△AED 绕点A 顺时针旋转任意的角度(如图3).若F 是BD 的中点.探究CE 与EF 的数量关系,并证明你的结论.附加题(本题10分,每小题5分)26.Rt△ABC 中,∠BAC=90°,AB=AC=2,以AC 为一边,在△ABC 外部作等腰直角三角形 ACD ,则线段BD 的长为 .3. 在△ABC 中,D 为BC 中点,BE 、CF 与射线AE 分别相交于点E 、F (射线AE 不经过点D ). (1)如图①,当BE ∥CF 时,连接ED 并延长交CF 于点H . 求证:四边形BECH 是平行四边形;(2)如图②,当BE ⊥AE 于点E ,CF ⊥AE 于点F 时,分别取AB 、AC 的中点M 、N ,连接ME 、MD 、NF 、ND . 求证:∠EMD =∠FND .图① 图②FHDBEN MFDBE4.如图,在矩形ABCD 中,AB =3,BC =4,点M 、N 、分别在BC 、AB 上,将矩形ABCD 沿MN 折叠,设点B 的对应点是点E . (1)若点E 在AD 边上,BM =27,求AE 的长; (2)若点E 在对角线AC 上,请直接写出AE 的取值范围:_________.5. 阅读下列材料:问题:如图1,在□ABCD 中,E 是AD 上一点,AE =AB ,∠EAB =60°,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB =∠EAB ,连接AG .求证:EG =AG +BG .小明同学的思路是:作∠GAH =∠EAB 交GE 于点H ,构造全等三角形,经过推理解决问题.参考小明同学的思路,探究并解决下列问题: (1)完成上面问题中的证明;(2)如果将原问题中的“∠EAB =60°”改为“∠EAB =90°”,原问题中的其它条件不变(如图2),请探究线段EG 、AG 、BG 之间的数量关系,并证明你的结论. (1)证明:(2)解:线段EG 、AG 、BG 之间的数量关系为____________________________.M NEDCBA 图1图26.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在四边形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是四边形ABCD的和谐线;(2)图2和图3中有三点A、B、C,且AB=AC,请分别在图2和图3方框内...作一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形(要求尺规作图,保留作图痕迹,不写作法..................);(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD 的度数.(1)证明:(2)在方框内用尺规作图,..........保留作图痕迹,不写作法...........(3)解:图1图3图27、如图,菱形ABCD 的对角线长分别为2和5,动点P 在对角线AC 上运动(不与点A 或C 重合),且PE ∥BC 交AB 于点E ,PF ∥CD 交AD 于点F.请问:阴影部分的面积是否随点P 的运动而变化?若变化,说明理由;若不变,求出相应的值。
八年级下册数学前两章练习题第一章《三角形的证明》部分一、选择题1.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是A.7㎝ B.9㎝C.12㎝或者9㎝ D.12㎝2. 如图,在△ABC和△DEF中,已知AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件是A.∠A=∠DB.∠ACB=∠FC.∠B=∠DEFD.∠ACB=∠D3.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为A.30°B.36°C.45°D.70°4.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正确结论的个数是A.1个B.2个C.3个D.4个BC A5. 到三角形三个顶点的距离相等的点是三角形的交点.A. 三个内角平分线B. 三边垂直平分线C. 三条中线D. 三条高二、填空题1.如果等腰三角形的有一个角是80°,那么顶角是度.2.如图,△ABC中,∠C=90°,∠A=30° ,BD平分∠ABC交AC于D,若CD=2cm,则AC= .3.已知⊿ABC中,∠A =0,角平分线BE、CF交于点O,则∠4.在△ABC中,∠A=40°,AB=AC ,AB的垂直平分线交AC与D,则∠DBC的度数为.05.等腰三角形一腰上的高与另一腰的夹角为30,腰长为6,则其底边上的高是。
三.解答题1.如图,DC⊥CA,EA⊥CA, CD=AB,CB=AE.求证:△BCD≌△EAB.ECB A2.如图,△ABC中,∠B=90°,AB=BC,AD是△ABC的角平分线,若BD=1, A求DC.3.如图,∠A=∠D=90°,AC=BD.求证:OB=OC;1 04.如图,在△ABD和△ACE中,有下列四个等式:①AB=AC ②AD=AE ③∠1=∠ ④BD=CE.以其中三个条件为已知,填入已知栏中,一个为结论,填入下..面求证栏中,使之组成一个真命题,并写出证明过程。
平行四边形知识点一、四边形相关1、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。
四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n 边形的内角和等于•-)2(n 180°;多边形的外角和定理:任意多边形的外角和等于360°。
2、多边形的对角线条数的计算公式设多边形的边数为n ,则多边形的对角线条数为2)3(-n n 。
二、平行四边形1.定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义既是平行四边形的一条性质,又是一个判定方法.2.平行四边形的性质:平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的.(1)角:平行四边形的对角相等,邻角互补;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S ==⨯底高ah ; ②平行四边形的对角线将四边形分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形 ②方法1:两组对边分别相等的四边形是平行四边形③方法2:一组对边平行且相等的四边形是平行四边形 ④方法3:两组对角分别相等的四边形是平行四边形⑤方法4: 对角线互相平分的四边形是平行四边形三、矩形1. 矩形定义:有一个角是直角的平行四边形是矩形。
2. 矩形性质 ①边:对边平行且相等; ②角:对角相等、邻角互补,矩形的四个角都是直角; ③对角线:对角线互相平分且相等; ④对称性:轴对称图形(对边中点连线所在直线,2条).3. 矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形; ②对角线相等的平行四边形; ③四个角都相等 识别矩形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的任意一个角为直角.② 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的对角线相等.③ 说明四边形ABCD 的三个角是直角.4. 矩形的面积① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab .四、菱形1. 菱形定义:有一组邻边相等的平行四边形是菱形。
八年级数学下册平行四边形的性质练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.在平行四边形ABCD 中,AB =3,BC =4,则平行四边形ABCD 的周长等于 _____.2.如图,等腰△ABC 中,△BAC =120°,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转30°后,点D 落在边AB 上,点E 落在边AC 上,若AE =2cm ,则四边形ABDE 的面积是__________.3.定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.4.如图,已知DG △BC ,AC △BC ,CD △AB ,EF △AB ,则DG 与AC 间的距离是线段________的长,CD 与EF 间的距离是线段________的长.5.如图,平行四边形的中心在原点,AD BC ∥,D (3,2),C (1,﹣2),则A 点的坐标为________,B 点的坐标为________.6.如图,在平面直角坐标系中,点()1,2A -,4OC =,将平行四边形OABC 绕点O 旋转90°后,点B 的对应点B '坐标是______.7.如图,菱形ABCD 中,∠ABD=30°,AC=4,则BD的长为_______.8.如图,在直角坐标系中,平行四边形ABCD的BC边在x轴上,点A(0,3),B(−1,0),若直线y=−2x+4恰好平分平行四边形ABCD的面积,则点D的坐标是______.二、单选题9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于().A.1cm2B.2cm2C.0.5cm2D.1.5cm210.已知三角形的三边长分别为2、x、8,则x的值可能是()A.4B.6C.9D.1011.已知A、B、C三点不在同一条直线上,则以这三点为顶点的平行四边形共有()A .1个B .2个C .3个D .4个12.已知某点阵的第△△△个图如图所示,按此规律第( )个点阵图中,点的个数为2022个.A .1009B .2018C .2022D .2048三、解答题13.如图,PBD △和PAC △都是直角三角形,90DBP CAP ∠=∠=︒.(1)如图1,PA ,PB 与直线MN 重合,若45BDP ∠=︒,30ACP ∠=︒,求DPC ∠的度数;(2)如图2,若45BDP ∠=︒,30ACP ∠=︒,PBD △保持不动,PAC △绕点P 逆时针旋转一周.在旋转过程中,当PC BD ∥时,求APN ∠的度数;(3)如图3,()90180BPA a α∠=︒<<︒,点E 、F 分别是线段BD 、AC 上一动点,当PEF 周长最小时,直接写出EPF ∠的度数(用含α的代数式表示).14.在四边形ABCD 中,BAD ∠的平分线AF 交BC 于F ,延长AB 到E 使BE FC =,G 是AF 的中点,GE 交BC 于O ,连接GD .(1)当四边形ABCD 是矩形时,如图,求证:△GE GD =;△BO GD GO FC ⋅=⋅.(2)当四边形ABCD 是平行四边形时,如图,(1)中的结论都成立,请给出结论△的证明.15.如图,已知,AF DE AE FD ==,点B 、C 在AD 上,AB CD =,BF CE =.(1)图中共有__________对全等三角形;分别是__________;(2)我会说明__________≌△__________.(写出证明过程)参考答案:1.14【分析】由平行四边形的对边相等即可求得其周长.【详解】解:△四边形ABCD是平行四边形,△AB=CD,BC=AD,△平行四边形的周长为=2(AB+BC)=2×(3+4)=14,故答案为:14.【点睛】本题考查平行四边形的性质,熟知平行四边形的对边相等是解答的关键.22.【分析】如图,作AH△BC于H.证明四边形ABDE是平行四边形即可解决问题.【详解】解:如图,作AH△BC于H.由题意得:△EAD=△BAC=120°,△EAC=△C=30°,△AE△BC,△△ADH=△B+△BAD,△B=△BAD=30°,△△ADH=60°,BD=AD=AE=2cm,△AHcm),△BD=AE,BD△AE,△四边形ABDE是平行四边形,△SABCD=BD•AH cm2).2.故答案为【点睛】本题考查旋转变换,等腰三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.3.6【分析】分类讨论:AB =AC =2BC 或BC =2AB =2AC ,然后根据三角形三边关系即可得出结果.【详解】解:△△ABC 是等腰三角形,底边BC =3△AB =AC当AB =AC =2BC 时,△ABC 是“倍长三角形”;当BC =2AB =2AC 时,AB +AC =BC ,根据三角形三边关系,此时A 、B 、C 不构成三角形,不符合题意; 所以当等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为6.故答案为6.【点睛】本题考查等腰三角形,三角形的三边关系,涉及分类讨论思想,结合三角形三边关系,灵活运用分类讨论思想是解题的关键.4. CG DE【分析】根据平行线间的距离等于平行线间任意一条垂线段的长度即可解题.【详解】解:由题可知:DG△AC,CD△EF,△DG 与AC 间的距离是线段CG ,CD 与EF 间的距离是线段DE.【点睛】本题考查了平行线之间的距离,属于简单题,找到平行线之间的垂线段是解题关键.5. (﹣1,2) (﹣3,﹣2)【分析】根据“关于原点对称的点横坐标互为相反数,纵坐标也互为相反数”即可解答.【详解】解:因为平行四边形是中心对称图形,而平行四边形的中心在原点,则A 点的坐标为(﹣1,2),B 点的坐标为(﹣3,﹣2).故答案为:(﹣1,2),(﹣3,﹣2).【点睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握关于原点对称的点横坐标互为相反数,纵坐标也互为相反数是解题的关键.6.()2,3-或()2,3-【分析】根据旋转可得: BM = B 1M 1 = B 2M 2 = 3,△AOA 1 =△AOA 2 = 90°,可得B 1和B 2的坐标,即是B '的坐标.【详解】解:△A (-1,2), OC = 4,△ C (4,0),B (3,2),M (0,2), BM = 3,AB//x轴,BM= 3.将平行四边形OABC绕点O分别顺时针、逆时针旋转90°后,由旋转得:OM=OM1=OM2=2,△AOA1=△AOA2=90°BM=B1M1=B2M2=3,A1B1△x轴,A2B2△x轴,△B1和B2的坐标分别为:(-2,3),(2,-3),△B'即是图中的B1和B2,坐标就是,B' (-2,3),(2,-3),故答案为:(-2,3)或(2,-3).【点睛】本题考查了平行四边形的性质,坐标与图形的性质,旋转的性质,正确的识别图形是解题的关键.7.【分析】根据菱形的性质可得△ABO=30°,AO=12AC=2,根据含30°角的直角三角形的性质及勾股定理即可求得BO的长,从而得到结果.【详解】如图:在菱形ABCD中,AC、BD是对角线,设相交于O点,△ABD=30°,AC=4,△AC△BD,AO=12AC=2,△AB=2AO=4,△BO,22BD BO∴==⨯=故答案为:【点睛】本题考查的是菱形的性质,解答本题的关键是熟练掌握菱形的对角线互相垂直平分,对角线平分对角.8.(72,3)【分析】连接BD,设D(m,3),BD的中点为T.求出点T的坐标,利用的待定系数法,可得结论.【详解】解:连接BD,设D(m,3),BD的中点为T.△B(−1,0),△T(12m-,32),△直线y=−2x+4平分平行四边形ABCD的面积,△直线y=−2x+4经过点T,△32=−2×12m-+4,△m=72,△D(72,3),故答案为:(72,3).【点睛】本题考查中心对称,平行四边形的性质,一次函数的性质等知识,解题关键是理解题意,灵活运用所学知识解决问题.9.A【分析】根据三角形中线的性质可得S△EBC=12S△ABC,1124BEF BEC ABCS S S==,结合已知条件即可求解.【详解】解:△点D ,E 分别为边BC , AD 中点, 111,,222ABD ABC BED ABD CED ABD SS S S S S ∴===, 12BED DEC BEC ABC S S S S ∴+==,△F 是EC 的中点, 12BEF BEC S S =, 14BEF ABCS S ∴=, △ABC 的面积等于4cm 2,△S △BEF =1cm 2,即阴影部分的面积为1cm 2,故选:A .【点睛】本题主要考查了三角形的中线的性质,掌握三角形的中线的性质是解题的关键.10.C【分析】根据三角形任意两边的和大于第三边,进而得出答案.【详解】解:三角形三边长分别为2,8,x ,8282x ∴-<<+,即:610x <<,只有9符合,故选:C .【点睛】此题主要考查了三角形三边关系,解题的关键是正确把握三角形三边关系定理.11.C【详解】分析:由已知条件可知,顺次连接A 、B 、C 三点可得△ABC ,在分别以AB 、BC 和AC 为对角线各作出一个以点A 、B 、C 为顶点的平行四边形,如下图,由此即可得到本题答案了.详解:△点A 、B 、C 不在同一条直线上时,△顺次连接A 、B 、C 三点可得△ABC ,△分别以AB 、BC 和AC 为对角线各作出一个以点A 、B 、C 为顶点的平行四边形,如下图所示:△当A 、B 、C 三点不在同一条直线上,则以这三点为顶点的平行四边形共有3个.故选C.点睛:知道以三角形的每一条边为一条对角线都可以画出一个以该三角形的三个顶点为顶点的平行四边形,是解答本题的关键.12.A【分析】仔细观察图形变化,找到图形变化的规律,利用规律求解.【详解】解:第1个图里有6个点,6=4+2;第2个图有8个点,8=4+2×2;第3个有10个点,10=4+3×2;…则第n 个图中点的个数为4+2n ,令4+2n =2022, 解得n =1009.故选:A .【点睛】本题主要考查图形的变化规律,解题的关键是根据图形得出每往后一个图形,点的个数相应增加2个.13.(1)75DPC ∠=︒(2)30APN ∠=︒或150︒(3)2180α-︒【分析】(1)先算出9045DPB BDP ∠=︒-∠=︒,9060CPA ACP ∠=︒-∠=︒,然后根据平角的定义,求出75DPC ∠=︒即可;(2)分点C 在MN 上方和点C 在MN 下方两种情况进行讨论,根据平行线的性质,求出结果即可;(3)延长PB 截取BG =PB ,在MN 上截取AH =AP ,连接GH ,交BD 于点E ,交AC 于点F ,连接PE 、PF ,此时△PEF 的周长最小,根据三角形外角的性质和垂直平分线的性质,求出EPF ∠的度数即可.(1)解:△90DBP CAP ∠=∠=︒,45BDP ∠=︒,30ACP ∠=︒,△9045DPB BDP ∠=︒-∠=︒,9060CPA ACP ∠=︒-∠=︒,△PA ,PB 与直线MN 重合,△18075DPC DPB CPA ∠=︒-∠-∠=︒.(2)当点C 在MN 上方时,如图所示:PC BD ∥,45BDP ∠=︒,△45CDP BDP ∠=∠=︒,△45DPB ∠=︒,60CPA ∠=︒,△18030APN BPD CPD CPA ∠=︒-∠-∠-∠=︒;当点C 在MN 下方时,如图所示:△PC BD ∥,90DBP ∠=︒,△90BPC DBP ∠=∠=︒,18090CPN BPC ∴∠=︒-∠=︒,△6090150APN APC CPN ∠=∠+∠=︒+︒=︒;综上分析可知,30APN ∠=︒或150︒.(3)延长PB 截取BG =PB ,在MN 上截取AH =AP ,连接GH ,交BD 于点E ,交AC 于点F ,连接PE 、PF ,此时△PEF 的周长最小,如图所示:△90DBP CAP ∠=∠=︒,△DB GP ⊥,CA PH ⊥,△DB 垂直平分PG ,CA 垂直平分PH ,△EG =EP ,FP =FH ,△EGP EPG ∠=∠,PHF HPF ∠=∠,△△MPG 是△PGH 的外角,△MPG EGP PHF EPG FPH ∠=∠+∠=∠+∠,180MPG α∠=︒-,△180EPG FPH MPG α∠+∠=∠=︒-,△()EPF APB EPG FPH ∠=∠-∠+∠()180αα=-︒-2180α=-︒【点睛】本题主要考查了平行线的性质,垂直平分线的性质,等腰三角形的性质,直角三角形两锐角互余,根据题意作出图形,并进行分类讨论,是解题的关键.14.(1)证明见详解(2)证明见详解【分析】(1)△证明ADG AEG ≌△即可;△连接BG ,CG ,证明ADG BCG ≌△,BOE GOC ∽△△即可证明;(2)△的结论和(1)中证明一样,证明ADG AEG ≌△即可;△的结论,作DM BC GM ⊥,连接,证明BOE GOM ∽△△即可.(1)证明:△证明过程:四边形ABCD 为矩形,90ABC BAD ∴∠=∠=︒AF 平分BAD ∠45BAF DAF ∴∠=∠=︒ABF ∴为等腰直角三角形AB BF ∴=BE FC =AB BE BF CF AE BC AD ∴+=+==,即AG AG =∴ADG AEG ≌△∴GE GD =△证明:连接BG ,CG ,G 为AF 的中点,四边形ABCD 为矩形,90ABC BAD AD BC ∴∠=∠=︒=,BG AG FG ∴==AF 平分BAD ABF ∠,为等腰直角三角形,45BAF DAF ABG CBG ∴∠=∠=︒=∠=∠∴ADG BCG ≌△∴ADG BCG ∠=∠ADG AEG ≌△E ADG ∴∠=∠E BCG ∴∠=∠BOE GOC ∠=∠BOE GOC ∴∽△△BO GO GO BOBE GC GD CF ∴===∴BO GD GO FC ⋅=⋅(2)作DM BC BC M GM GN DM DM N ⊥⊥交于,连接,作交于点,如图所示90DMB GNM GND DMC ∴∠=︒=∠=∠=∠由(1)同理可证:ADG AEG ≌△E ADG ∴∠=∠四边形ABCD 为平行四边形AD BC ∴∥90ADM DMC ∴∠=∠=︒BC GN AD ∴∥∥G 为AF 的中点,由平行线分线段成比例可得DN MN =DG MG ∴=,,GDM GMDADG BMG EBOE GOM ∠=∠BOE GOM ∴∽△△BO GO GO BO BE GM GD CF∴=== ∴BO GD GO FC ⋅=⋅【点睛】本题考查了以矩形与平行四边形为桥梁,涉及全等三角形的证明,相似三角形的证明,正确作出辅助线并由此得到相应的全等三角形和相似三角形是解题的关键.15.(1)3对;,,AED DFA AEC DFB AFB DEC ≌≌≌;(2)AED DFA ≌,证明见解析.【分析】根据已知条件,结合三角形全等的判定定理,推理即可得到正确答案.【详解】解:(1)3对;,,AED DFA AEC DFB AFB DEC ≌≌≌;(2)我会说明AED DFA ≌.证明:在AED 和DFA 中,△,,,DE AF DA AD AE DF =⎧⎪=⎨⎪=⎩△()AED DFA SSS ≌.【点睛】本题考查三角形全等的判定定理,根据定理内容找到全等条件是解题关键.。
人教版八年级下册专题训练(二)中点四边形(146) 1.如图,在四边形ABCD中,AC=BD=6,E,F,G,H分别是AB,BC,CD,DA的中点,求EG2+FH2的值.2.四边形ABCD为边长等于1的菱形,顺次连接它的各边中点组成四边形EFGH(四边形EFGH称为原四边形的中点四边形),再顺次连接四边形EFGH的各边中点组成第二个中点四边形……则按上述规律组成的第八个中点四边形的边长等于.3.如图所示,E,F,G,H分别是四边形ABCD的边AB,BC,CD,AD的中点.(1)当四边形ABCD是矩形时,四边形EFGH是形,并说明理由;(2)当四边形ABCD满足什么条件时,四边形EFGH是正方形?并说明理由.4.如图,在四边形ABCD中,E,F,G,H分别是BC,AD,BD,AC的中点.(1)求证:EF与GH互相平分;(2)当四边形ABCD的边满足条件时,EF⊥GH.5.顺次连接对角线相等的四边形的各边中点,所得四边形是()A.矩形B.平行四边形C.菱形D.任意四边形6.顺次连接菱形各边中点所得到的四边形是()A.梯形B.矩形C.菱形D.正方形7.若四边形的对角线互相垂直,则顺次连接这个四边形各边中点所得的四边形是()A.平行四边形B.矩形C.菱形D.正方形8.如图,顺次连接任意四边形ABCD各边中点,所得的四边形EFGH是中点四边形.下列四个叙述:①中点四边形EFGH一定是平行四边形;②当四边形ABCD是矩形时,中点四边形EFGH也是矩形;③当中点四边形EFGH是菱形时,四边形ABCD是矩形;④当四边形ABCD是正方形时,中点四边形EFGH也是正方形.其中正确的是(填序号).9.如图,在四边形ABCD中,AD=CD,AB=CB,E,F,G,H分别是AD,AB,CB,CD的中点.求证:四边形EFGH是矩形.10.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形11.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.正方形C.对角线相等的四边形D.对角线互相垂直的四边形12.如图,在四边形ABCD中,E,F,G,H分别是BC,AC,AD,BD的中点,要使四边形EFGH是菱形,四边形ABCD的边AB,CD应满足的条件是.13.如图所示,E,F,G,H为四边形ABCD各边的中点,若对角线AC,BD的长都为20,则四边形EFGH的周长是()A.80B.40C.20D.1014.如图,已知E,F,G,H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60∘,则四边形EFGH的面积为cm2.15.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为.16.如图,在四边形ABCD中,AC=8,BD=6,且AC⊥BD,E,F,G,H分别是AB,BC,CD,DA 的中点,则EG2+FH2=.参考答案1.【答案】:如图,连接EF ,FG ,GH ,EH ,∵E ,H 分别是AB ,DA 的中点,∴EH 是△ABD 的中位线,∴EH =12BD =3. 同理可得EF ,FG ,GH 分别是△ABC ,△BCD ,△ACD 的中位线, ∴EF =GH =12AC =3,FG =12BD =3,∴EH =EF =GH =FG =3,∴四边形EFGH 为菱形,∴EG ⊥HF ,且垂足为O ,∴EG =2OE ,FH =2OH .在Rt △OEH 中,根据勾股定理得:OE 2+OH 2=EH 2=9,等式两边同时乘4得4OE 2+4OH 2=9×4=36,∴(2OE)2+(2OH)2=36,即EG 2+FH 2=36.【解析】:连接EH,HG,GF,FE ,根据题目条件提供的四个中点,结合中位线的性质,证明四边形EFGH 为菱形,再根据菱形的性质及勾股定理求出结果.2.【答案】:116【解析】:根据题意,结合图形寻找规律:第二、四、六、八个中点四边形为菱形,第一个菱形边长为12,第二个菱形边长为14,第三个菱形边长为18,第四个菱形边长为116,即为第八个菱形的边长3(1)【答案】当四边形ABCD 是矩形时,四边形EFGH 是菱形.理由:∵四边形ABCD 是矩形,∴AC =BD .∵E ,F ,H 分别是AB ,BC ,AD 的中点,∴EF=12AC,EH=12BD,∴EF=EH.同理可得EF=GH=GF,∴四边形EFGH是菱形【解析】:利用矩形及中位线的性质,结合菱形的判定方法进行推导证明.(2)【答案】当四边形ABCD满足AC=BD且AC⊥BD时,四边形EFGH是正方形.理由:∵E,F分别是四边形ABCD的边AB,BC的中点,∴EF∥AC,EF=12AC,同理,EH∥BD,EH=12BD,GF=12BD,GH=12AC.∵AC=BD,∴EF=EH=GH=GF,∴四边形EFGH是菱形.∵AC⊥BD,∴EF⊥EH,∴菱形EFGH是正方形【解析】:根据三角形的中位线平行于第三边并等于第三边的一半,先判断出AC=BD,又正方形的四个角都是直角,可以得到正方形的邻边互相垂直,然后证出AC与BD垂直,得到四边形ABCD满足的条件.4(1)【答案】证明:连接GE,GF,HF,EH.∵E,G分别是BC,BD的中点,∴EG=12CD.同理FH=12CD,FG=12AB,EH=12AB,∴EG=FH,GF=EH,∴四边形EHFG是平行四边形.∴EF与GH互相平分【解析】:根据题中提供的四个中点,得到几组中位线,利用中位线的性质,及平行四边形的判定方法,推导出四边形EHFG是平行四边形,进而推导出结论(2)【答案】当四边形ABCD的边满足条件AB=CD时,EF⊥GH.【解析】:理由如下:当EF⊥GH时,四边形EGFH是菱形,此时GF=EG.∵EG=12CD,FG=12AB,∴AB=CD.∴当四边形ABCD的边满足条件AB=CD时,EF⊥GH5.【答案】:C【解析】:顺次连接对角线相等的四边形的各边中点,所得四边形是菱形.如图,∵E,F,G,H分别为四边形ABCD各边的中点,∴EH为△ABD的中位线,FG为△CBD的中位线,∴EH∥BD,EH=12BD,FG∥BD,FG=12BD,∴EH∥FG,EH=FG=12BD,∴四边形EFGH为平行四边形.又∵EF为△ABC的中位线,∴EF=12AC.又∵EH=12BD,且AC=BD,∴EF=EH,∴平行四边形EFGH为菱形.故选C.6.【答案】:B【解析】:利用菱形的性质、矩形的判定方法及中位线的性质推导出结果.7.【答案】:B【解析】:如图,在四边形ABCD中,AC⊥BD,连接各边的中点E,F,G,H,则EH∥AC,FG∥AC,EF∥BD,GH∥BD.又因为对角线AC⊥BD,所以GH⊥EH,EH⊥EF,EF⊥FG,FG⊥HG.故可判定该四边形是矩形.故选B.8.【答案】:①④【解析】:如图四边形ABCD,连接AC,BD.∵E,F,G,H分别是四边形各边的中点,∴EF∥AC,HG∥AC,EH∥BD,GF∥BD,∴EF∥GH,EH∥FG,∴四边形EFGH是平行四边形,故①正确.若四边形ABCD是矩形,则AC=BD.∵EF=12AC,EH=12BD,∴EF=EH,∴平行四边形EFGH是菱形,故②错误.若四边形EFGH是菱形,则AC=BD,但四边形ABCD不一定是矩形,故③错误.若四边形ABCD是正方形,则AC=BD,AC⊥BD,∴四边形EFGH是正方形,故④正确.∴正确的叙述是①④.9.【答案】:连接AC,BD,交于点O,如图.∵E,F,G,H分别是AD,AB,CB,CD的中点,∴EF∥BD∥GH,EH∥AC∥FG,EF=GH=12BD,EH=FG=12AC,∴四边形EFGH是平行四边形.∵AD=CD,AB=CB,∴点D,B都在线段AC的垂直平分线上,∴DB垂直平分AC,∴DB⊥AC,OA=OC.∵EF∥DB,∴EF⊥AC.∵FG∥AC,∴EF⊥FG,∴四边形EFGH是矩形【解析】:利用三角形的中位线解题.10.【答案】:D【解析】:若得到的四边形是矩形,那么邻边互相垂直,根据三角形中位线定理,故原四边形的对角线必互相垂直,由此得解.11.【答案】:C【解析】:若得到的四边形是菱形,那么四条边都相等,根据三角形中位线定理,故原四边形的对角线必相等,由此得解.12.【答案】:AB=CD【解析】:若四边形EFGH是菱形,则GH=EH,又根据题中条件所给的四个中点,利用中位线的性质推导出AB=2GH,CD=2EH,所以AB=CD.13.【答案】:B【解析】:∵E,F,G,H是四边形ABCD各边的中点,∴HG=EF=12AC,GF=HE=12BD,∴四边形EFGH的周长=HG+EF+GF+HE=12(AC+AC+BD+BD)=12×(20+20+20+20)=40 14.【答案】:9√3【解析】:连接AC,BD,相交于点O,如图所示, ∵点E,F,G,H分别是菱形四边的中点,∴EH=12BD=FG,EH∥BD∥FG, EF=12AC=HG,∴四边形EHGF是平行四边形.∵菱形ABCD中,AC⊥BD,∴EF⊥EH,∴平行四边形EFGH是矩形.∵四边形ABCD是菱形,∠ABC=60∘,∴∠ABO=30∘.∵AC⊥BD,∴∠AOB=90∘,∴AO=12AB=3cm,∴AC=6cm.在Rt△AOB中,由勾股定理,得OB=√AB2−OA2=3√3cm, ∴BD=6√3cm.∵EH=12BD,EF=12AC,∴EH=3√3cm,EF=3cm,∴矩形EFGH的面积=EF·EH=9√3cm2. 故答案为9√315.【答案】:12【解析】:∵E,F,G,H分别为边AD,AB,BC,CD的中点,∴HE=12AC=4,HE∥AC,GF∥AC,∴HE∥GF.同理,HG∥EF,HG=12BD=3,∴四边形EFGH是平行四边形.∵AC⊥BD,∴∠EHG=90∘,∴四边形EFGH是矩形,∴四边形EFGH的面积为3×4=1216.【答案】:50【解析】:连接HG,EH,EF,FG,∵E,F,G,H分别是AB,BC,CD,DA的中点,∴HG=EF=12AC=4,EH=FG=12BD=3,∵E,H分别是AB,AD的中点,∴HE∥BD,HE=12BD,同理FG∥BD,FG=12BD,∴四边形HEFG是平行四边形.∵AC⊥BD,∴HG⊥EH,∴四边形HEFG为矩形,∴EG2+FH2=EF2+FG2+EF2+EH2=52+52=50。
湘教版八年级下册数学第2章四边形含答案一、单选题(共15题,共计45分)1、如图,矩形ABCD中,G是BC的中点,过A,D,G三点的圆O与边AB,CD 分别交于点E,点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0B.1C.2D.32、下列图形既是轴对称图形又是中心对称图形的是().A. B. C. D.3、如图所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15mB.25mC.30mD.20m4、如图,ABCD中,CE⊥AB,E为垂足,如果∠D=65°,则∠BCE等于()A.25°B.30°C.35°D.55°5、已知四边形ABCD是平行四边形,下列结论错误的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当时,它是矩形 D.当时,它是菱形6、如图,在中,,,,点,,分别是三边中点,则的周长为()A. B. C. D.7、如图,▱ABCD中,E为AB中点,CE交BD于F,若△CBE的面积为S,则△DCF的面积为()A. B.S C. D.2S8、如图,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3cmB.6cmC.9cmD.12cm9、如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E 作EF∥BC,分别交BD、CD于G、F两点.若M、N分别是DG、CE的中点,则MN 的长为()A.3B.C.D.410、如图,在平行四边形ABCD中,,,,E、F 是BC、CD边上点,且,,AE、AF分别交BD于点M,N,则MN的长度是()A. B. C. D.11、边长相等的正方形与正六边形按如图方式拼接在一起,则的度数为()A. B. C. D.12、如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:b=()A.2:1B. :1C.3:D.3:213、下列图形中,即是轴对称图形又是中心对称图形的是()A. B. C. D.14、平行四边形ABCD与等边△AEF如图放置,如果∠B=45°,则∠BAE的大小是()A.75°B.70°C.65°D.60°15、如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则的长为()A. πB. πC. πD. π二、填空题(共10题,共计30分)16、如图,把一张长方形的纸沿对角线BD折叠后,顶点A落在A′处,已知∠CDA′=28°,则∠CBD=________.17、如图,在矩形ABCD中,AB=9,BC=12,F是边AD上一点,连接BF,将△ABF沿BF折叠使点A落在G点,连接AG并延长交CD于点E,连接GD.若△DEG 是以DG为腰的等腰三角形,则AF的长为________.18、如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长________cm.19、一个多边形的每个内角都等于150°,则这个多边形是________边形.20、已知,矩形连接,将绕点旋转得到线段,若与矩形一边交于点,且,则的值为________.21、如图,在中,,分别以、、为边向外作正方形,面积分别记为、、,若,,则________.22、如图,在矩形ABCD中,AB=3,AD=4.过点A作AG⊥BD于G,则AG等于________.23、如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD= BD,连接DM、DN、MN.若AB=6,则DN=________.24、如图,P是矩形的边AD上一个动点,AB、BC的长分别为3和4,那么点P 到矩形的两条对角线AC和BD的距离之和是________25、在平行四边形ABCD中,若与的度数之比为,则的度数为________.三、解答题(共5题,共计25分)26、如图,方格纸上每个小正方形的面积为1.⑴在方格纸上,以线段AB为边画正方形ABCD,并计算所画正方形ABCD的面积.⑵请你在图上分别画出面积为5正方形A1B1C1D1和面积为10的正方形A 2B2C2D2,正方形的各个顶点都在方格纸的格点上.27、已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF,求证:AF=CE.28、如图,ABCD为任意四边形,依次为各边中点,证明:四边形EFGH为平行四边形.29、如图,菱形ABCD中,E为AB边上的一点,F为BC延长线上的一点,且求证:DE=DF.30、已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,且AO=CO.求证:四边形ABCD是平行四边形.参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、A5、D6、A7、C8、B9、C10、B11、B12、B13、B14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、28、。
湘教版八年级下册数学第2章四边形含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,AB=5,AC=12,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为()A.10B.12C.13D.172、如图,在菱形ABCD中,∠B=60°,AB=1,延长AD到点E,使DE=AD,延长CD到点F,使DF=CD,连接AC、CE、EF、AF,则下列描述正确的是()A.四边形ACEF是平行四边形,它的周长是4B.四边形ACEF是矩形,它的周长是2+2C.四边形ACEF是平行四边形,它的周长是4D.四边形ACEF是矩形,它的周长是4+43、如图,在四边形ABCD中,∠A=65°,∠D=105°,∠B的外角是60°,则么∠C等于( )A.110°B.90°C.80°D.70°4、下列图形中,是中心对称图形的是()A. B. C. D.5、下列交通标志中,是中心对称图形的是( )A. B. C. D.6、如图四边形ABCD中,∠ABC=3∠CBD,∠ADC=3∠CDB,∠C=128°,则∠A 的度数是()A.60°B.76°C.77°D.78°7、下列四个图形中属于中心对称图形的是()A. B. C. D.8、如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE 交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正确结论的个数为()A.1B.2C.3D.49、一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.710、下列命题正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线互相垂直的四边形是菱形 C.对角线相等的四边形是矩形 D.对角线互相垂直平分且相等的四边形是正方形11、如图,将长方形ABCD沿直线EF折叠,使顶点C恰好落在顶点A处,已知AB=4cm,AD=8cm,则折痕EF的长为( )A.5cmB. cmC. cmD. cm12、如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4B.8C.10D.1213、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.14、能判定四边形ABCD为平行四边形的是().A.AB∥CD,AD=BCB.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD15、如图是一个多边形飞镖游戏盘,则该游戏盘的内角和比外角和多( )A.1080°B.720°C.540°D.360°二、填空题(共10题,共计30分)16、如下图1是二环三角形,可得S=∠A1+∠A2+ … +∠A6=360°,下图2是二环四边形,可得S=∠A1+∠A2+ … +∠A7=720°,下图3是二环五边形,可得S=1080°,……聪明的同学,请你根据以上规律直接写出二环n边形(n≥3的整数)中,S=________度(用含n的代数式表示最后结果).17、六边形的外角和等于________度.18、如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为,则点E的坐标为________.19、如图,矩形ABCD的对角线AC与BD相交于点O,,.若,,则四边形OCED的面积为________.20、菱形中,过点A作直线BC的垂线,垂足为E,且,若,则菱形的面积为________.21、己知一个菱形的边长为2,较长的对角线长为2 ,则这个菱形的面积是________.22、如图所示矩形ABCD中,AB=4,BC=3,P是线段BC上一点(P不与B重合),M是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为________.23、如图,在矩形中,,将沿射线平移得到,连接,则的最小值是________.24、一个正多边形的每个外角为60°,那么这个正多边形的内角和是________。
第2章四边形测试题总分数 100分时长:90分钟一、选择题(共10题 ,总计30分)1.(3分)如图,菱形ABCD中,AC=8,BD=6,则菱形的周长为()A. 20B. 24C. 28D. 402.(3分)平行四边形一边长为12 cm,那么它的两条对角线的长度可能是()A. 10 cm和34 cmB. 18 cm和20 cmC. 10 cm和14 cmD. 8 cm和14 cm3.(3分)当一个n边形的边数增加1时,它的外角和增加()A. 180°B. 0°C. n·180°D. 360°4.(3分)将一张长方形纸片按如图所示的方式折叠,则∠CBD的度数为()A. 60°B. 75°C. 90°D. 95°5.(3分)菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=,则点B的坐标为()A.B.C.D.6.(3分)下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②一组对边平行,一组对角相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形,其中正确的是()A. ①②B. ①③C. ②③D. ①②③7.(3分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A. 53°B. 37°C. 47°D. 123°8.(3分)将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A. 1B. 2C.D.9.(3分)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AD10.(3分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A. 10°B. 15°C. 20°D. 25°二、填空题(共8题 ,总计24分)11.(3分)若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是____1____度.12.(3分)如图,在▱ABCD中,BD为对角线,E,F分别是AD,BD的中点,连接EF.若EF=3,则CD的长为____1____.13.(3分)已知菱形两条对角线的长分别为5 cm和8 cm,则这个菱形的面积是____1____cm2.14.(3分)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为____1____.15.(3分)若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为____1____.16.(3分)平行四边形ABCD的周长为20 cm,对角线AC,BD相交于点O,若△BOC的周长比△AOB的周长大2 cm,则CD=____1____cm.17.(3分)如图所示,菱形ABCD的边长为4,∠B=60°,则菱形的面积为____1____.18.(3分)如图,延长正方形ABCD的边AB到E,使BE=AC,则∠E=____1____度.三、解答题(共5题 ,总计46分)19.(8分)如图,AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.20.(8分)如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.21.(10分)如图,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.22.(10分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角∠ACD的平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由.23.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?参考答案与试题解析一、选择题(共10题 ,总计30分)1.(3分)如图,菱形ABCD中,AC=8,BD=6,则菱形的周长为()A. 20B. 24C. 28D. 40【解析】略【答案】A2.(3分)平行四边形一边长为12 cm,那么它的两条对角线的长度可能是()A. 10 cm和34 cmB. 18 cm和20 cmC. 10 cm和14 cmD. 8 cm和14 cm【解析】略【答案】B3.(3分)当一个n边形的边数增加1时,它的外角和增加()A. 180°B. 0°C. n·180°D. 360°【解析】略【答案】B4.(3分)将一张长方形纸片按如图所示的方式折叠,则∠CBD的度数为()A. 60°B. 75°C. 90°D. 95°【解析】略【答案】C5.(3分)菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=,则点B的坐标为()A.B.C.D.【解析】略【答案】D6.(3分)下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②一组对边平行,一组对角相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形,其中正确的是()A. ①②B. ①③C. ②③D. ①②③【解析】略【答案】C7.(3分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A. 53°B. 37°C. 47°D. 123°【解析】略【答案】B8.(3分)将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A. 1B. 2C.D.【解析】略【答案】D9.(3分)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AD【解析】略【答案】D10.(3分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A. 10°B. 15°C. 20°D. 25°【解析】略【答案】B二、填空题(共8题 ,总计24分)11.(3分)若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是____1____度.【解析】【答案】3012.(3分)如图,在▱ABCD中,BD为对角线,E,F分别是AD,BD的中点,连接EF.若EF=3,则CD的长为____1____.【解析】略【答案】613.(3分)已知菱形两条对角线的长分别为5 cm和8 cm,则这个菱形的面积是____1____cm2.【解析】【答案】2014.(3分)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为____1____.【解析】略【答案】2815.(3分)若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为____1____.【解析】【答案】16.(3分)平行四边形ABCD的周长为20 cm,对角线AC,BD相交于点O,若△BOC的周长比△AOB的周长大2 cm,则CD=____1____cm.【解析】略【答案】417.(3分)如图所示,菱形ABCD的边长为4,∠B=60°,则菱形的面积为____1____.【解析】略【答案】18.(3分)如图,延长正方形ABCD的边AB到E,使BE=AC,则∠E=____1____度.【解析】略【答案】22.5三、解答题(共5题 ,总计46分)19.(8分)如图,AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.【解析】证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,BE∥CF.∵AB∥CD,∴∠A=∠D.又∵AE=DF,∴△AEB≌△DFC.∴BE=CF.∴四边形BECF是平行四边形【答案】见解析20.(8分)如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.【解析】证明:(1)∵AB=AC,∴∠B=∠ACB.∵∠FAC=∠B+∠ACB=2∠ACB,AD平分∠FAC,∴∠FAC=2∠CAD.∴∠CAD=∠ACB.在△ABC和△CDA中,∴△ABC≌△CDA.(2)∵∠FAC=2∠ACB,∠FAC=2∠DAC,∴∠DAC=∠ACB.∴AD∥BC.∵∠BAC=∠ACD,∴AB∥CD.∴四边形ABCD是平行四边形.∵∠B=60°,AB=AC,∴△ABC是等边三角形.∴AB=BC.∴平行四边形ABCD是菱形【答案】见解析21.(10分)如图,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.【解析】证明:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.∵AB=AC,∴∠B=∠C.∵D是BC的中点,∴BD=CD.∴△BED≌△CFD.(2)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.∵∠A=90°,∴四边形DFAE为矩形.由(1)知△BED≌△CFD,∴DE=DF,∴四边形DFAE为正方形.【答案】见解析22.(10分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角∠ACD的平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由.【解析】解:(1)OE=OF.理由如下:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF.∵CE,CF分别平分∠BCA,∠ACD,∴∠BCE=∠OCE,∠DCF=∠OCF.∴∠OEC=∠OCE,∠OFC=∠OCF.∴OE=OC=OF.(2)当点O运动到AC的中点时,四边形AECF是矩形.由(1)知,OE=OC=OF.∵O是AC的中点,∴OA=OC.∴OE=OC=OF=OA,∴四边形AECF是矩形.【答案】见解析23.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【解析】解:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)解:GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°.又∵∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD【答案】见解析。
八年级数学下《四边形》培优练习卷一、选择题1.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形2.如图,在△ABC,∠ACB=90°中,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形A CEB的周长。
A.4 B.10+ 4 C. 10+2 D. 23.在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE= ( )A.30° B.22.5° C.15° D.以上都不对4.如图,将矩形ABCD沿AE折叠,若∠BAD'=30°,则∠AED' 等于 ( )A.30° B.45° C.60° D.75°第6题5.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE的长是 ( ) A.1.6 B.2.5 C.3 D.3.46.平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD五等分点,点B1,B2和D1,D2分别是BC和DA三等分点,若四边形A4B2C4D2面积为1.则平行四边形ABCD面积为 ( )A.2 B.35C.53D.157.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EB的长为()A.1 B.4C.4﹣2D.4﹣4第7题二、填空题8.在□ABCD中,一角的平分线把一条边分成3 cm和4 cm两部分,则□ABCD的周长为______.9.矩形的两条对角线的夹角为60°,一条对角线与较短边的和为15,则较长边的长为_______.10.已经△ABC中,∠C=90°,C=10,a:b=3:4 ,则a= b=11.如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE、BF.当∠ACB为度时,四边形ABFE为矩形.第11题第12题第13题第14题12.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F.连接CE,则CE的长是_______.13.如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是_______厘米.14.如图,△ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E,F,下面四个结论:①∠AFE=∠AEF;②AD垂直平分EF;③CEBFSSCEDBFD=∆∆;④EF∥BC.其中正确的是_______.15.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,7=∆ABCS,DE=2,AB=4,则AC长为.三、解答题16.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.17.已知△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D为BC边上一点.(1)求证:△ACE≌△ABD;(2)若AC=8,CD=1,求ED的长.18.如图,四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM、CD分别交于点E、F.求证:∠BEN=∠NFC. (提示:连结AC并取中点)19.如图,在Rt⊿ABC中,∠B=90°,AC=100cm,BC=80cm,点P从点A开始沿边AB向点B以1cm/s的速度运动,同时,另一点Q由点B开始沿边BC向点C以1.5cm/s的速度运动.(1)20s后,点P与点Q相距 cm.(2)在(1)的条件下,若P、Q两点同时在直线PQ上相向而行,多少秒后,两点相遇?(3)多少秒后,AP=CQ?20.△ABC中,∠ACB=90°,AC=BC,AB=2.现将一块三角板的直角顶点放在AB的中点D处,两直角边分别与直线..AC、直线..BC相交于点E、F.我们把DE⊥AC时的位置定为起始位置(如图1),将三角板绕点D顺时针方向旋转一个角度α (0°<α<90°).(1)在旋转过程中,当点E在线段AC上,点F在线段BC上时(如图2),①试判别△DEF的形状,并说明理由;②判断四边形ECFD的面积是否发生变化,并说明理由.(2)设直线..ED交直线..BC于点G,在旋转过程中,是否存在点G,使得△EFG为等腰三角形?若存在,求出CG的长,若不存在,说明理由;D DEADEDA。
平行四邊形知識點一、四邊形相關1、四邊形的內角和定理及外角和定理四邊形的內角和定理:四邊形的內角和等于360°。
四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內角和定理:n 邊形的內角和等于•-)2(n 180°; 多邊形的外角和定理:任意多邊形的外角和等于360°。
2、多邊形的對角線條數的計算公式設多邊形的邊數為n ,則多邊形的對角線條數為2)3(-n n 。
二、平行四邊形1.定義:兩組對邊分別平行的四邊形是平行四邊形. 平行四邊形的定義既是平行四邊形的一條性質,又是一個判定方法.2.平行四邊形的性質:平行四邊形的有關性質和判定都是從 邊、角、對角線 三個方面的特征進行簡述的.(1)角:平行四邊形的對角相等,鄰角互補;(2)邊:平行四邊形兩組對邊分別平行且相等;ABDO C(3)對角線:平行四邊形的對角線互相平分;(4)面積:①S ==⨯底高ah ; ②平行四邊形的對角線將四邊形分成4個面積相等的三角形.3.平行四邊形的判別方法①定義:兩組對邊分別平行的四邊形是平行四邊形 ②方法1:兩組對邊分別相等的四邊形是平行四邊形③方法2:一組對邊平行且相等的四邊形是平行四邊形 ④方法3:兩組對角分別相等的四邊形是平行四邊形⑤方法4: 對角線互相平分的四邊形是平行四邊形三、矩形1. 矩形定義:有一個角是直角的平行四邊形是矩形。
2. 矩形性質①邊:對邊平行且相等; ②角:對角相等、鄰角互補,矩形的四個角都是直角;③對角線:對角線互相平分且相等; ④對稱性:軸對稱圖形(對邊中點連線所在直線,2條).3. 矩形的判定:滿足下列條件之一的四邊形是矩形①有一個角是直角的平行四邊形; ②對角線相等的平行四邊A DB CO形; ③四個角都相等識別矩形的常用方法① 先說明四邊形ABCD 為平行四邊形,再說明平行四邊形ABCD 的任意一個角為直角.② 先說明四邊形ABCD 為平行四邊形,再說明平行四邊形ABCD 的對角線相等.③ 說明四邊形ABCD 的三個角是直角.4. 矩形的面積① 設矩形ABCD 的兩鄰邊長分別為a,b ,則S 矩形=ab .四、菱形1. 菱形定義:有一組鄰邊相等的平行四邊形是菱形。