九年级数学下册21相似三角形的判定学案人教版
- 格式:doc
- 大小:1.44 MB
- 文档页数:6
27.2.1 相似三角形的判定(一)一、教学目标1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.2.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.二、重点、难点1.重点:相似三角形的定义与三角形相似的预备定理.2.难点:三角形相似的预备定理的应用.3.难点的突破方法(1)要注意强调相似三角形定义的符号表示方法(判定与性质两方面),应注意两个相似三角形中,三边对应成比例,每个比的前项是同一个三角形的三条边,而比的后项分别是另一个三角形的三条对应边,它们的位置不能写错;(2)要注意相似三角形与全等三角形的区别和联系,弄清两者之间的关系.全等三角形是特殊的相似三角形,其特殊之处在于全等三角形的相似比为1.两者在定义、记法、性质上稍有不同,但两者在知识学习上有很多类似之处,在今后学习中要注意两者之间的对比和类比;(3)要求在用符号表示相似三角形时,对应顶点的字母要写在对应的位置上,这样就会很快地找到相似三角形的对应角和对应边;(4)相似比是带有顺序性和对应性的(这一点也可以在上一节课中提出):如△ABC∽△A′B′C′的相似比,那么△A′B′C′∽△ABC的相似比就是,它们的关系是互为倒数.这一点在教学中科结合相似比“放大或缩小”的含义来让学生理解;(5)“平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似”定理也可以简单称为“三角形相似的预备定理”.这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.三、例题的意图本节课的两个例题均为补充的题目,其中例1是训练学生能正确去寻找相似三角形的对应边和对应角,让学生明确可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素:即(1)对顶角一定是对应角;(2)公共角一定是对应角;最大角或最小的角一定是对应角;(3)对应角所对的边一定是对应边;(4)对应边所对的角一定是对应角;对应边所夹的角一定是对应角.例2是让学生会运用“三角形相似的预备定理”解决简单的问题,这里要注意,此题两次用到相似三角形的对应边成比例(也可以先写出三个比例式,然后拆成两个等式进行计算),学生刚开始可能不熟练,教学中要注意引导.四、课堂引入1.复习引入(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形.在△ABC与△A′B′C′中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且.我们就说△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′,k就是它们的相似比.反之如果△ABC∽△A′B′C′,则有∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且.(3)问题:如果k=1,这两个三角形有怎样的关系?2.教材P42的思考,并引导学生探索与证明.3.【归纳】三角形相似的预备定理平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.五、例题讲解例1(补充)如图△ABC∽△D CA,AD∥B C,∠B=∠DCA.(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6.求AD、DC的长.分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD与D C的长.解:略(AD=3,DC=5)例2(补充)如图,在△ABC中,DE∥BC, AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长.分析:由DE∥BC,可得△ADE∽△ABC,再由相似三角形的性质,有,又由AD=EC可求出AD的长,再根据求出DE的长.解:略().六、课堂练习1.(选择)下列各组三角形一定相似的是()A.两个直角三角形 B.两个钝角三角形C.两个等腰三角形 D.两个等边三角形2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有()A.1对 B.2对 C.3对 D.4对3.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.(CD= 10)七、课后练习1.如图,△ABC∽△AED,其中DE∥BC,写出对应边的比例式.2.如图,△ABC∽△AED,其中∠ADE=∠B,写出对应边的比例式.3.如图,DE∥BC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055 B.6056 C.6057 D.6058【答案】D【解析】设第n个图形有an 个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"an=1+3n(n为正整数)",再代入a=2019即可得出结论【详解】设第n个图形有a n个〇(n为正整数),观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴a n=1+3n(n为正整数),∴a2019=1+3×2019=1.故选:D.【点睛】此题考查规律型:图形的变化,解题关键在于找到规律2.-2的倒数是()A.-2 B.12C.12D.2【答案】B【解析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握3.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米【答案】A【解析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A.12B.13C.14D.16【答案】D【解析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.5.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B 的大小是()A.27°B.34°C.36°D.54°【答案】C【解析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【详解】解:∵AB与⊙O相切于点A,∴OA⊥BA.∴∠OAB=90°.∵∠CDA=27°,∴∠BOA=54°.∴∠B=90°-54°=36°.故选C.考点:切线的性质.6.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.252πB.10πC.24+4πD.24+5π【答案】A【解析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S 扇形OCD+S扇形ODG=S半圆,即可求解.【详解】作直径CG,连接OD、OE、OF、DG.∵CG是圆的直径,∴∠CDG=90°,则DG=2222106CG CD-=-=8,又∵EF=8,∴DG=EF,∴DG EF=,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=12π×52=252π,故选A.【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.7.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6 m【答案】D【解析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴,即,解得:AB=6,故选:D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.8.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=2x(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C. 4 D.6【答案】B【解析】作BD⊥x轴于D,CE⊥x轴于E,∴BD∥CE,∴CE AE AC BD AD AB==,∵OC是△OAB的中线,∴12 CE AE ACBD AD AB===,设CE=x,则BD=2x,∴C的横坐标为2x,B的横坐标为1x,∴OD=1x,OE=2x,∴DE=OE-OD=2x﹣1x=1x,∴AE=DE=1x,∴OA=OE+AE=213x x x +=,∴S△OAB=12OA•BD=12×32xx⨯=1.故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.9.在数轴上到原点距离等于3的数是( )A.3 B.﹣3 C.3或﹣3 D.不知道【答案】C【解析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.10.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-1【答案】C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.二、填空题(本题包括8个小题)11.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.【答案】3.1或4.32或4.2【解析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴22AB BC+,S△ABC=12AB•BC=1.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=APAC•S△ABC=35×1=3.1;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD=·342.45AB BCAC⨯==,∴223 2.4-,∴AP=2AD=3.1,∴S等腰△ABP=APAC•S△ABC=3.65×1=4.32;③当CB=CP=4时,如图3所示,S等腰△BCP=CPAC•S△ABC=45×1=4.2;综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为:3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.12.一个正多边形的一个外角为30°,则它的内角和为_____.【答案】1800°【解析】试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.考点:多边形内角与外角.13.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.【答案】1【解析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.故填1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.14.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.【答案】22.5°【解析】四边形ABCD是矩形,AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∴∠EAO=∠AOE,AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.15.因式分解:4x2y﹣9y3=_____.【答案】y(2x+3y)(2x-3y)【解析】直接提取公因式y,再利用平方差公式分解因式即可.【详解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.16.规定用符号[]m表示一个实数m的整数部分,例如:23⎡⎤=⎢⎥⎣⎦,[]3.143=.按此规定,101⎤+⎦的值为________.【答案】4101的整数部分即可.【详解】∵1034,∴104<5∴整数部分为4.【点睛】本题考查无理数的估值,熟记方法是关键.17.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为____cm.【答案】20310 (140)33cmπ-+【解析】试题解析:如下图,画出圆盘滚动过程中圆心移动路线的分解图象.可以得出圆盘滚动过程中圆心走过的路线由线段OO1,线段O1O2,圆弧23O O,线段O3O4四部分构成.其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.∵BC与AB延长线的夹角为60°,O1是圆盘在AB上滚动到与BC相切时的圆心位置,∴此时⊙O1与AB和BC都相切.则∠O1BE=∠O1BF=60度.此时Rt△O1BE和Rt△O1BF全等,在Rt△O1BE中,103cm.∴OO1=AB-BE=(103)cm.∵103cm,∴O1O2=BC-BF=(40-33)cm.∵AB∥CD,BC与水平夹角为60°,∴∠BCD=120度.又∵∠O2CB=∠O3CD=90°,∴∠O2CO3=60度.则圆盘在C点处滚动,其圆心所经过的路线为圆心角为60°且半径为10cm的圆弧23O O.∴23O O 的长=60360×2π×10=103πcm . ∵四边形O 3O 4DC 是矩形, ∴O 3O 4=CD=40cm .综上所述,圆盘从A 点滚动到D 点,其圆心经过的路线长度是: (60-1033)+(40-1033)+103π+40=(140-2033+103π)cm . 18.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.【答案】4或8【解析】由平移的性质可知阴影部分为平行四边形,设A′D=x ,根据题意阴影部分的面积为(12−x)×x ,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA′=8或AA′=4。
相似三角形的判定课题相似三角形的判定(1)授课类型新授课标依据掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例。
教学目标知识与技能1.了解相似三角形及相似比的概念;2.掌握平行线分线段成比例定理和推论;过程与方法类比全等三角形的判定方法探究相似三角形的判定,体会特殊与一般的关系,从而掌握相似三角形的判定方法.情感态度与价值观发展学生的探究能力,渗透类比思想,体会特殊与一般的关系.教学重点难点教学重点掌握相似三角形的概念,能运用相似三角形的判定方法判定两个三角形相似.教学难点能运用相似三角形的判定方法判定两个三角形相似。
教学师生活动设计意图过程设计一、复习引入1.什么是相似多边形?2.三角形也属于多边形吗?相似三角形属于相似多边形吗?3.相似三角形的定义.学习三角形全等时,我们知道,除了可以验证所有的角和边分别相等来判定两个三角形全等外,还有判定的简便方法(SSS,SAS,ASA,AAS).类似地,判定两个三角形相似时,是不是也存在简便的判定方法呢?二、探究新知(一)平行线分线段成比例定理及其推论课本29页探究平行线分线段成比例定理分析:1.线段AB,BC,DE,EF的长度随着直线5,43,lll的位置的变化而变化吗?2.猜测BCAB与EFDE相等吗?3.通过画图,测量,计算验证你的猜想.4.用数学语言描述你的发现.得到:平行线分线段成比例定理教师点拨:其它成比例的线段还有哪些?实际上,线段左上、左下、左全,右上、右下、右全只要写在对应位置,所得比就是相等的.教师组织学生按照探究要求进行活动,并回答教师设计的问题,逐步完善探究到的结论.平行线分线段成比例定理的推论1.定理图形中的直线21,ll交点在直线43,ll上时,对应线段还成比例吗?2.擦去四周的部分,只留下△ABC和△ADE,原来的对应线段还成比例吗?你可以得到什么结论?得到:平行线分线段成比例定理的推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的通过实践,建立感性认识,再通过语言描述建立理性认识(定理).学生进行观察,分析,探究,得到结论,培养学生的观察能力,再次体会由一般到特殊的思想方法.对应线段成比例.教师利用图形的变化自然将教学内容过渡到推论的探究,引导学生思考问题,逐步认识到定理内容在三角形中体现,从而得到推论,学生尝试叙述,教师引导完善,规范.(二)相似三角形的判定方法平行线法在上面的两幅图形中,△ABC和△ADE相似吗?你能用学过的知识说明吗?教师点拨:利用相似三角形的定义,说明△ABC和△ADE的三边对应成比例,三角对应相等.得到:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.三、巩固练习课本P31页:练习1、2.学生独立分析解决练习,教师巡视指导,学生回答问题并说明原。
九年级下册数学教案《相似三角形的判定》教材分析本节教材是初中数学九年级第二十七章第二节的内容,是初中数学四大板块中空间与图形的一部分,是相似一章的重要内容之一。
既是全等三角形的延续,也为测量相似三角形的应用和研究三角函数做铺垫,还是研究圆中比例线段的重要工具,同时也是相似三角形性质的研究基础,更为其它学科和今后高中的学习打下基础,重要的是它还是中考必考的知识点。
因此,必须熟练掌握三角形相似的判定,并能灵活运用,显得尤为重要。
相似三角形的判定起着承前启后的作用。
学情分析初三的学生逻辑思维从经验型逐步向理论型发展,学生的观察能力、记忆能力和想象能力也随之迅速发展,但同时,这一阶段的学生与高中生不同,他们好动、好奇、好表现,注意力容易分散,爱发表见解,希望得到老师的表扬,所以在教学中应该抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
学生在此之前已经学习了相似三角形的判定预备定理,这为学生本节课探究三角形相似的条件做好了知识上的准备,使学生能主动参与本节课的操作研究。
教学目标1、了解相似比的概念,掌握判定两个三角形相似的方法;平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
2、培养学生的观察、发现、比较、归纳能力,感受两个三角形相似的判定方法与全等三角形判定方法的区别与联系,体验事物间特殊与一般的关系。
3、让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。
教学重点两个三角形的相似的判定定理。
教学难点探究判定定理、判定方法的过程。
教学方法讲授法、演示法、讨论法、练习法 教学过程一、复习提问,引入新课相似多边形是如何定义的?两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形。
《相似三角形的判定》说课稿尊敬的各位评委老师,大家好!今天我说课的内容是人教版初中数学九年级下册《相似三角形的判定》第二课时的内容。
我将从教材分析、教法分析、学法指导、教学程序四个方面来对本课进行说明。
一、教材分析1、教材的地位和作用在这之前,学生学习了全等三角形的相关知识,相似三角形是全等三角形的拓广和发展,而相似三角形的判定是相似三角形的主要内容之一,相似三角形的判定是进一步对相似三角形的本质和定义进行的的全面研究,也是学习《锐角三角函数》和《投影与视图》的重要工具,可见这部分内容在教材中具有承上启下的地位。
2、教学目标知识与技能:掌握“三组对应边的比相等的两个三角形相似”的判定定理,并会运用它们解决相关问题数学思考:经历探索两个三角形相似条件的过程,体验画图操作、观察猜想、分析归纳的过程;在定理论证中,体会转化思想的应用解决问题:会运用“三组对应边的比相等的两个三角形相似”的方法进行简单推理情感目标:通过画图、观察猜想、度量验证等实践活动,培养学生获得数学猜想的经验,激发他们探索知识的兴趣,体验数学探索与创造的快乐二、说教学重、难点重点:掌握判定定理并学会应用定理判定两个三角形相似难点:探究三角形相似的条件和运用判定定理解决问题三、说教学方法针对初三学生的年龄特点和心理特征,以及他们的知识水平,根据教学目标,本节课采用探究发现式教学法和参与式教学法为主,利用多媒体引导学生始终参与到学习活动的全过程中,处于主动学习的状态。
四、说学法这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程。
在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想。
五、说教学过程本课我遵循“教学、学习、探究”同步协调的原则,教学过程将按如下流程展开:一、复习引入1、复习提问:我们已掌握的判定三角形相似的方法有哪些?2、回顾三角形全等的判定方法,然后教师拿出两个大小不等的,但其中一个三角形各边与另一个三角形各边的比相等的三角板,让学生来观察并提问,用前面两种方法能否判定这两个三角形相似呢?学生讨论,教师点评后指出,根据定义所涉及的条件多,根据预备定理要求图形特殊,因此,我们能否探求出条件更简单的判定方法呢?引入课题。
27.2 相似三角形27.2.1相似三角形的判定(第1课时)一、教学目标【知识与技能】1.理解相似三角形的概念,并会用以证明和计算;2.体会用相似符号“∽”表示的相似三角形之间的边,角对应关系;3.掌握平行线分线段成比例的基本事实及其推论的应用,会用平行线判定两个三角形相似并进行证明和计算.【过程与方法】经历平行线分线段成比例的基本事实及其推论的发现过程,增强学生发现问题,解决问题的能力.【情感态度与价值观】学生在充分经历自学、探究、交流、当堂练习等活动中,获得成功的体验,调动主动学习的积极性,感受数学学习的乐趣.二、课型新授课三、课时第1课时共4课时四、教学重难点【教学重点】平行线分线段成比例基本事实及判定两个三角形相似的定理.【教学难点】判定三角形相似的定理的证明.五、课前准备教师:课件、刻度尺、三角板.学生:刻度尺、三角板.六、教学过程(一)导入新课(出示课件2)教师问:1.相似多边形的特征是什么?2.怎样判定两个多边形相似?3.什么叫相似比?4.相似多边形中,最简单的就是相似三角形.如果∠A =∠A 1,∠B =∠B 1,∠C =∠C 1,,那么△ABC 与△A 1B 1C 1相似吗?我们还有其他方法判定两个三角形相似吗?学生集体口答,教师订正.(二)探索新知知识点1 平行线分线段成比例定理请分别度量l 3,l 4,l 5.在l 1上截得的两条线段AB,BC 和在l 2上截得的两条线段DE,EF 的长度,AB :BC 与DE :EF 相等吗?任意平移l 5,再量度AB,BC,DE,EF 的长度,它们的比值还相等吗?除此之外,还有其他对应线段成比例吗?(出示课件4、5)111111C B BC C A AC B A AB ==学生动手操作后可发现:DFEF AC BC DF DE AC AB DE EF AB BC EF DE BC AB l l l 543====,,,时,∥∥当 教师归纳:(出示课件6)一般地,我们有平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.符号语言:若a ∥b ∥c ,则12122323A A B B A A B B =,23231212A AB B A A B B =, 12121313A A B B A A B B =,23231313A A B B A A B B =…教师问:1.如何理解“对应线段”?2.“对应线段”成比例都有哪些表达形式?(出示课件7) 小组合作交流,再进行全班性的问答.出示课件8,学生独立思考后口答,教师订正.知识点2 平行线分线段成比例定理的推论出示课件9~11:如图,直线l3∥l4∥l5,由平行线分线段成比例的基本事实,我们可以得出图中对应成比例的线段,把直线l1向左或向右任意平移,这些线段依然成比例.如果把图1中l1,l2两条直线相交,交点A刚好落到l3上,如图2(1),所得的对应线段的比会相等吗?依据是什么?如果把图1中l1,l2两条直线相交,交点A刚好落到l4上,如图2(2)所得的对应线段的比会相等吗?依据是什么?学生分组讨论后,选代表口答,教师加以订正后归纳.(出示课件12)平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.出示课件13,学生独立解答,一生板演,教师订正.考点 利用平行线分线段成比例定理及推论求线段长度出示课件14,例 如图,在△ABC 中,DE ∥BC ,AC=4,AB=3,EC=1.求AD 和BD.学生思考后,师生共同解答如下:解:∵AC=4,EC=1,∴AE=3.∵ DE ∥BC , ∴. AD AE AB AC∴AD=2.25,∴BD=0.75.出示课件15,学生独立解答,教师订正.知识点3 相似三角形的判定定理如图,在△ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.(出示课件16~17)教师问:1.△ADE与△ABC的三个角分别相等吗?2.分别度量△ADE与△ABC的边长,它们的边长是否对应成比例?3.你认为△ADE与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?学生分组讨论,动手操作后达成共识:通过度量,我们发现△ADE ∽△ABC,且只要DE∥BC,这个结论恒成立.教师问:1.我们通过度量三角形的边长,知道△ADE∽△ABC,但要用相似的定义去证明它,我们需要证明什么?(出示课件18)2.由前面的结论,我们可以得到什么?还需证明什么?学生讨论后,带着疑问解决证明△ADE∽△ABC问题.(出示课件19)已知:如图,在△ABC中,DE//BC,且DE分别交AB,AC于点D、E.求证:△ADE∽△ABC.师生共同分析:直观告诉我们:△ADE ∽△ABC ,根据三角形相似的概念,要想证明两个三角形相似,必须证明三个角对应相等,三条边对应边对应成比例.由平行线分线段成比例定理,可知:AC AE AB AD =,还需证明ABAD AC AE BC DE ==BC DE 或所以要将DE 平移到BC 上,使得BF=DE(如图),再证明:ACAE BC DE =即可. 证明:在△ADE 与△ABC 中,∠A=∠A.∵DE//BC,∴∠ADE=∠B,∠AED=∠C ,过E 作EF//AB 交BC 于F,则,∵四边形DBFE 是平行四边形,∴DE=BF ,∴,∴, ∴△ADE ∽△ABC.归纳:定理:平行于三角形一边的直线和其他两边相交,所构成 的三角形与原三角形相似.(出示课件20)符号语言:∵DE//BC,∴△ADE ∽△ABC .,AC AE AB AD =BC BF AC AE =BC DE AC AE =BC DE AC AE AB AD ==教师问:过点D作与AC平行的直线与BC相交,可否证明△ADE ∽△ABC?如果在三角形中出现一边的平行线,那么你应该联想到什么?(出示课件21)学生分组讨论后,教师归纳:过点D作与AC平行的直线与BC相交,仍可证明△ADE∽△ABC,这与教材第31页证法雷同.题目中有平行线,可得相似三角形,然后利用相似三角形的性质,可列出比例式.出示课件22,学生独立思考后口答,教师订正.(三)课堂练习(出示课件23-29)引导学生练习课件23-29题目,巩固本课知识点,约用时20分钟。
27.2相似三角形第3课时相似三角形的判定〔3〕【知识与技能】1.掌握“两角对应相等的两个三角形相似〞的判定方法以及直角三角形中特有的判定相似的方法.2.能运用相似三角形的判定方法解决具体问题.【过程与方法】在观察、动手探究等活动中,掌握判定三角形相似的方法,体会转化思想.【情感态度】经历从实验探究到归纳证明的过程,开展学生的探究、交流能力和推理能力.【教学重点】掌握相似三角形的判定定理3及直角三角形中特有的相似判定方法. 【教学难点】探究两个判定定理的过程及其证明方法.一、情境导入,初步认识观察展示教师用的大三角板〔45°和45°) 及学生用小三角尺〔45°和45°),请学生们观察这样的两个三角形相似吗?对应相等,这样的两个三角形相似吗?【教学说明】教师简要回忆学过的相似三角形的判定方法1,2后,提出“还有没有其它的 方法来判定两个三角形相似呢?〞,进而展示所准备好的三角尺,让学生获得感性认识,顺理成章地提出思考,激发学生求知欲望.二、思考探究,获取新知问题1 作△ABC 和△A ′B ′C ′,使∠A=∠A ′,∠B=∠B ′,分别度量这两个三角形的边长,计算C A AC C B BC B A AB '''''',,的值,你有什么发现? 由此你能作出一个怎样的猜测?【教学说明】让全班同学动手画图,并按要求独立完成探索过程,获得结论后,与同伴交流;只要画图和测量尽可能准确,那么会得到它们 的比值相等,从而初步了解“有两个角对应相等的两个三角形相似〞的结论.教师巡视,对出现偏差的结论应予以帮助,查找问题,尽量让他们也能获得正确结论.问题2 如图,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,∠B=∠B ′,那么△ABC ~△A ′B ′C ′吗?说说你的理由.【教学说明】教师应引导学生论证上述结论,在学生动笔前给予适当点拨,让学生能独立完成说理.在巡视时,对有困难的学生给予指导,并给出足够的时间,锻炼学生的合情推理能力.对应相等,那么这两个三角形相似.试一试如图,点D是AB边上一点,且∠ACD=∠B,试问:图中是否存在能够相似的二角形?如果存在,请指出来,并说明理由. 【教学说明】现学现用,稳固所学新知识.问题3对于直角三角形,我们知道“有一条直角边和斜边对应相等的两个直角三角形是全等的〞,那么如果两个直角三角形中,有一条直角边与斜边的比对应相等,这样的两个直角三角形相似吗?【教学说明】教师应先与学生一道交流,找出两个直角三角形的条件有哪些〔用图形和符号语言来表述〕,从这些条件到所探讨的结论之间还缺少什么条件,能否通过推理计算获得相应条件,从而引出利用勾股定理来探讨第三条对应边之间关系而获得结论.然后让学生独立完成,或相互交流获得论证过程.直角三角形相似的特殊判定方法:斜边和直角边对应成比例的两个直角三角形相似.三、典例精析,掌握新知例1教材P35例2.例2如图,Rt△ABC中,CD是斜边AB边上的高线.求证:〔1〕△ABC~△CBD;〔2〕CD2=AD•DB.【教学说明】例1可让学生自主探究,独立完成,再相互交流.例2那么需师生共同探讨,利用直角三角形及高线定义找出图中能够相等 的角,从而获得相似的三角形有哪些,进而可解决问题.但它的证明过程仍可由学生自己完成,教师再挑选两至三份作业予以展示,共同评析,到达掌握本节知识的目的.四、运用新知,深化理解1.底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角 形呢?证明你的结论.2.如图,AD 、BE 是AABC 的高线,它们相交于点 F.求证:AF • DF=BF • EF.3. 如图,△ABC 中,CD 是边AB 上的高,且BD CD CD AD ,试求∠ACB 的大小.【教学说明】1,3两题分别应用本节的两种三角形相似的判定方法来获得结论,是对本节知识较好的理解与掌握的表达,而第2题那么是用一般三角形相似的判定方法来解决直角三角形中的相似问题,具有代表性.这些练习可根据实际情况选做,要求学生自主完成或相互交 流来得到结论.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学〞局部.五、师生互动,课堂小结1.本节学习两种判定三角形相似的方法,它们分别是什么?2.总结一下判定两个直角三角形相似的方法.【教学说明】釆用师生互动方式进展,教师设问,学生抢答,进展必要的知识梳理.1.布置作业:从P42〜44习题27.2中选取.2.完成创优作业中本课时的“课时作业〞局部.本课时应强调学生自主探究的原那么,让学生通过观察、实验、动手探究等方式掌握判定三角形相似的方法.整堂课应注重转化思想的运用,本课时难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.第3课时相似三角形的判定〔3〕——相似三角形的判定3和直角三角形相似的判定一、新课导入1.课题导入情景:拿一个含30°角的三角尺,让学生判断其内、外轮廓构成的两个含30°角的直角三角形是否相似.问题1:你是怎么判定的?能用前面学习的判定定理判定它们相似吗?问题2:我们由三角形全等的SSS和SAS的判定方法类似地得到了三角形相似的判定定理,那么能否同样地由三角形全等的ASA或AAS类比得到相应的三角形相似的判定方法呢?〔板书课题〕2.学习目标(1)知道两角分别相等的两个三角形相似;知道斜边、直角边成比例的两个直角三角形相似.(2)能证明结论“斜边、直角边成比例的两个直角三角形相似〞.(3)能灵活选择适当的方法证明两个三角形相似.3.学习重、难点重点:相似三角形的判定方法3以及直角三角形相似的判定方法.难点:定理的证明.二、分层学习1.自学指导〔1〕自学内容:教材P35.〔2〕自学时间:8分钟.〔3〕自学方法:仿照上课时探究1,2完成探究提纲.〔4〕探究提纲:①探究:与同伴合作,一人先画△ABC,另一人再画△A′B′C′,使得∠A=∠A′,∠B=∠B′.a.操作判断:分别测量这两个三角形的边长,计算,,AB AC BC A B A C B C ''''''的值,你有什么发现?∠C=∠C′ 吗?由此你得到一个什么样的猜测?b.交流比拟:把你的结果跟你周围的同学比拟,你们的结论一样吗?c.归纳猜测:两角分别相等的两个三角形相似.d.推理证明:△ABC 和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC ∽△A′B′C′.证明:在A′B′上截取A′D=AB,过D 作DE ∥B′C′交A′C′于点E.∵DE ∥B′C′,∴△A′DE ∽△A′B′C′.又∵∠A=∠A′,∠B=∠B′,DE ∥B′C′,AB=A′D,∴∠A′DE=∠B′=∠B.∴△ABC ≌△A′DE.∴△ABC ∽△A′B′C′.e.推理格式:∵∠A=∠A′,∠B=∠B′,∴△ABC ∽△A′B′C′.②教材P35例2:如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB,垂足为D,求AD 的长.a.AB,AC,AE,AD 分别是哪两个三角形的边?这两个三角形相似吗?b.怎样证明这两个三角形相似?由此可以得到关于AB,AC,AE,AD 的一个怎样的比例式?c.写出你的解答过程.AB,AC 是△ABC 的边,AE,AD 是△AED 的边,这两个三角形相似.∵ED⊥AB,∴∠EDA=90°, 又∵∠C=90°,∠A=∠A, ∴△AED∽△ABC.∴AD AEAC AB=.∴AD=·AC AEAB=4.③如图,假设∠B=∠AED,那么△ADE∽△ACB吗?为什么?△ADE∽△ACB.理由:∵∠B=∠AED,∠A=∠A,∴△ADE∽△ACB.④底角相等的两个等腰三角形相似吗?顶角相等的两个等腰三角形相似吗?证明你的结论.〔相似,证明略〕2.自学:学生参照自学指导进展自学.3.助学〔1〕师助生:①明了学情:了解学生对三角形相似的判定定理3的掌握情况.②差异指导:根据学情进展指导.〔2〕生助生:小组内相互交流、研讨.4.强化:∠A=∠A′,∠B=∠B′△ABC∽△A′B′C′.1.自学指导〔1〕自学内容:教材P36.〔2〕自学时间: 6分钟.〔3〕自学方法:注意怎样根据条件选择适宜的定理.(4)自学参考提纲:①由∠C=∠C′=90°,AB ACA B A C='''',能根据定理“两边成比例且夹角相等的两个三角形相似〞证明两个三角形相似吗?为什么?〔不能,∠C和∠C′并非对应两边的夹角〕②选择定理“三边成比例的两个三角形相似〞证明两个三角形相似,还差什么条件?AB BC A B B C=''''③能否像前面三个判定定理的证明一样,构造一个与的一个三角形全等而与的另一个三角形相似的中间三角形的方法来证明呢?④如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:a.△ACD∽△ABC;b.△CBD∽△ABC.证明:∵CD⊥AB,∴∠ADC=∠CDB=90°.∴∠ADC=∠ACB=∠CDB.a.在△ACD和△ABC中,∵∠A=∠A,∠ADC=∠ACB,∴△ACD∽△ABC.b.在△CBD和△ABC中,∵∠B=∠B,∠CDB=∠ACB,∴△CBD∽△ABC.⑤如果Rt△ABC的两条直角边分别为3和4,那么以3k和4k(k>0)为直角边的直角三角形一定与Rt△ABC相似吗?为什么?〔相似,理由:两边成比例且夹角相等的两个三角形相似〕2.自学:学生参照自学指导进展自学.3.助学〔1〕师助生:①明了学情:直角三角形相似判定定理的归纳与证明.②差异指导:根据学情进展指导.〔2〕生助生:生生互动交流、研讨.4.强化〔1〕直角三角形相似的判定方法.〔2〕点学生口答后,点3位学生板演,并点评.三、评价1.学生学习的自我评价:这节课你学到了些什么?有哪些收获和缺乏?2.教师对学生的评价:〔1〕表现性评价:从学习态度、参与程度、思维状况等方面进展评价.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕.本课时应以学生自主探究为原那么,让学生通过观察、实验、动手操作等方式探究并掌握判定三角形相似的方法.在这节课中,通过设计问题和启发、引导,让学生悟出学习方法和途径,培养学生独立学习的能力.整堂课应注重转化思想的运用,难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.一、根底稳固〔70分〕1.(10分)如图,当∠ADE=∠C〔答案不唯一〕时,△ABC∽△AED(填写一个条件).第1题图第2题图2.(10分)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC ∽△EPD,那么点P所在的格点为〔C〕A.P1B.P2C.P3D.P43.(10分)如图,△ABC中,AB=AC,∠A=36°,∠ABC的平分线交AC于点D,求证:△ABC∽△BDC.证明:∵AB=AC,∠A=36°,BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠DBC.在△ABC和△BDC中,∠A=∠DBC,∠C=∠C.∴△ABC∽△BDC.4. (10分)如图,AD是Rt△ABC的斜边上的高.假设AB=4 cm,BC=10 cm,求BD的长.解:∵AD⊥BC,∠BAC=90°,∴∠ADB=∠CAB.∴△ABD∽△CBA,∴BD BA AB CB,人教版数学九年级人教版数学九年级即4410BD =,BD=1.6(cm). 5.(30分)从下面这些三角形中,选出相似的三角形.①、⑤、⑥相似,③、④、⑧相似,②和⑦相似.二、综合应用〔20分〕6.(20分)如图,△ABC 中,D 在线段BC 上,∠BAC=∠ADC ,AC=8,BC=16. 〔1〕求证:△ABC ∽△DAC;〔2〕求CD 的长.〔1〕证明:∵∠BAC=∠ADC,∠C=∠C,∴△ABC ∽△DAC.(2)解:∵△ABC ∽△DAC ,∴CD AC CA BC =,即8816CD =, ∴CD=4.三、拓展延伸〔10分〕7.(10分)如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一个定点,过M 点作直线截△ABC ,使截得的三角形与△ABC 相似,这样的直线共有〔C 〕A.1条B.2条C.3条D.4条。
27.2 相似三角形27.2.1相似三角形的判定(第2课时)一、教学目标【知识与技能】掌握“三边成比例的两个三角形相似”的判定方法;能够运用三角形相似的条件解决简单的问题.【过程与方法】经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.【情感态度与价值观】培养学生敢于实践、勇于发现、大胆探索、合作创新的精神.二、课型新授课三、课时第2课时共4课时四、教学重难点【教学重点】三边成比例的两个三角形相似.【教学难点】三角形相似的判定方法的证明及运用.五、课前准备教师:课件、刻度尺、量角器、三角板.学生:刻度尺、量角器、三角板.六、教学过程(一)导入新课(出示课件2)教师提出问题:学习三角形全等时,我们知道,除了可以通过证明对应角相等.对应边相等来判定两个三角形全等外,还有判定的简便方法(SSS 、SAS 、ASA 、AAS ).类似地,判定两个三角形相似时,是不是也存在简便的判定方法呢?类似于判定三角形全等的SSS 方法,我们能不能通过三边来判断两个三角形相似呢?(二)探索新知知识点1 三边对应成比例的两三角形相似教师问:如何判断两个三角形是否相似?(出示课件4)学生答:1.定义法:对应角相等,对应边的比相等的两个三角形相似.2.平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.教师问:还有没有其他简单的判断方法呢?如图,在△ABC 与△,如果满足A'B'B'C'A'C'AB BC AC==,那么能否判定这两个三角形相似?(出示课件5)学生在教师引导下通过测量得到∠A=∠A′,∠B=∠B′,∠C=∠C′,又因为两个三角形的边对应成比例,所以△ABC∽△A′B′C′.教师问:怎样证明这个命题是正确的呢?出示课件7:已知:如图,在△ABC和△A′B′C′中,A′B′:AB=A′C′:AC=B′C′:BC.求证:△ABC∽△A′B′C′.学生独立思考后,师生共同写出证明过程:证明:在△ABC的边AB(或延长线)上截取AD=A′B′,过点D作DE ∥BC交AC于点E.∴AD:AB=AE:AC=DE:BC,△ADE∽△ABC.∵AD=A′B′,∴AD:AB=A′B′:AB.又∵A′B′:AB=B′C′:BC=C′A′:CA,∴DE:BC=B′C′:BC,EA:CA=C′A′:CA.因此DE=B′C′,EA=C′A′.∴△ADE≌△A′B′C′.∴△A ′B ′C ′∽△ABC.师生共同归纳:由此我们得到利用三边判定三角形相似的定理: 三边成比例的两个三角形相似.(出示课件8)符号语言:在△ABC 与△中,∵ ∴△ABC ∽△教师问:在用三边的比判定两个三角形相似时,如何寻找对应边?(出示课件9)学生讨论后教师总结:利用三边的比判定两个三角形相似时,应先将两个三角形的三边按大小顺序排列,然后分别计算它们对应边的比,最后由比值是否相等来确定两个三角形是否相似.考点1 利用三边成比例判断三角形相似例 已知AB=4cm ,BC=6cm ,AC=8 cm ,A ′B ′=12cm ,B ′C ′=18 cm ,A ′C ′=24cm ,试说明△ABC ∽△A ′B ′C ′.(出示课件10)学生独立思考后,一生板演,教师订正并强调解题书写格式. 解:∵41123==''AB ,A B 81243==AC ,A'C'61183==''BC ,B C'''C B A ''''''C A AC C B BC B A AB =='''C B A∴∴△ABC∽△A′B′C′.教师强调:判定三角形相似的方法之一:如果题中给出了两个三角形的三边的长,分别算出三条对应边的比值,看是否相等,计算时最大边与最大边对应,最短边与最短边对应.(出示课件11)出示课件12,学生独立思考后口答,教师订正.考点2 判断三角形相似例如图,在Rt△ABC 与 Rt△A′B′C′中,∠C=∠C′=90°,且12A'B'A'C'.AB AC==求证:△A′B′C′∽△ABC.(出示课件13)师生共同完成证明过程:证明:由已知条件得AB=2A′B′,AC=2A′C′,∴BC2=AB2-AC2=(2A′B′)2-(2A′C′)2=4A′B′2-4A′C′2 =4(A′B′2-A′C′2)=4B′C′2=(2B′C′)2.∴ BC=2B′C′,''1''''.2B C A B A CBC AB AC===∴△A′B′C′∽△ABC.出示课件14,学生独立思考后一生板演,教师订正.考点3 利用三角形相似说明角相等''''''CAACCBBCBAAB==例 如图已知:.AB BC AC AD DE AE==试说明:∠BAD=∠CAE.(出示课件15)学生独立思考后,师生共同解答: 解:∵AB BC AC AD DE AE==, ∴ΔABC ∽ΔADE.∴∠BAC=∠DAE.∴∠BAC -∠DAC=∠DAE -∠DAC ,即∠BAD=∠CAE.出示课件16,学生独立思考后一生板演,教师订正.(三)课堂练习(出示课件17-23)引导学生练习课件17-23相关题目,约用时15分钟(四)课堂小结(出示课件24)本节课你有哪些收获?你还有什么困惑吗?(引导学生思考答复)师生一起提炼本节课的重要知识和必须掌握的技能:1.三两个三角形相似.2.利用三边的比判定两个三角形相似时,应先将两个三角形的三边按大小顺序排列,然后分别计算它们对应边的比,最后由比值是否相等来确定两个三角形是否相似.(五)课前预习预习下节课(27.2.1第3课时)的相关内容.知道利用两边及夹角判定两个三角形相似的方法.七、课后作业教材第34页练习第1⑵,2⑴,3题.八、板书设计27.2.1相似三角形的判定(第2课时)1.三边对应成比例的两个三角形相似2.例题九、教学反思因为本课时教学过程中主要是让学生采用类比的方法先猜想出命题,然后证明猜想的命题是否正确.课堂上教师主要还是以提问的形式,逐步引导学生去证明命题.在本节课中要放手给学生动脑、动手的机会,要注意面向全体学生.。
27.2《相似三角形的判定》教学设计一、课型:单一课二、教学目标:1.学生掌握相似三角形的判定方法:两角对应相等,两三角形相似。
2.学生能灵活运用相似三角形的判定方法解决问题3.通过本节课教学,让学生养成动脑思考积极回答问题的好习惯三、教学重点:掌握相似三角形的判断方法会运用判定定理判断两个三角形相似。
四、教学难点:找相似三角形的对应角并能与性质定理、定义综合应用。
五、教学难点突破的关键:准确的找出相似三角形的对应角六、教学过程:(一)情景导入:1.导入新课出示课题已知两个三角形的三组角对应相等,那么这两个三角形相似。
如果是两组角对应相等,这两个三角形是否也相似呢?这节课我们带着这个问题来学习本节课的内容(出示课题)。
(通过设疑激发学生学习的积极性,从而导入新课。
)2.出示学习目标(利用PPT展示,学生齐读。
)(1)掌握相似三角形的判定方法:两角对应相等,两三角形相似。
(2)能灵活运用相似三角形的判定方法解决问题(通过展示学习目标,让学生明确本节课的学习任务。
)(二)探究活动1.动手实践(学生活动):画∆ABC,使其中两个角为60°和75°,并将画出的三角形用剪刀剪下来,与同桌比较后,观察这两个三角形相似吗?(通过学生动手画图,不仅调动学生学习数学的积极性,同时还提高学生的作图能力。
)2.总结归纳得出相似三角形的判定定理:两角分别相等的两个三角形相似。
(通过让学生总结,归纳出相似三角形的判定方法,培养学生的语言概括能力。
)3.用几何语言表达判定定理(让学生完成)∵∠A=∠A′,∠B=∠B′∴△ABC∽△A′B′C′(通过让学生完成,进一步培养学生的几何语言表达能力。
)(三)例题分析(利用PPT展示)例2:如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB,垂足为D,求AD的长(让学生先自主完成,再板演,培养学生积极动脑,认真分析问题、解决问题的能力。
人教版数学九年级下册27.2.1《相似三角形的判定》教学设计1一. 教材分析人教版数学九年级下册27.2.1《相似三角形的判定》是本节课的主要内容。
这部分内容是在学生已经掌握了相似三角形的概念和性质的基础上进行讲解的。
教材从实际问题出发,引出了相似三角形的判定方法,并通过例题和练习题让学生加深对相似三角形判定方法的理解和应用。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的概念和性质,能够识别和判断两个三角形是否相似。
但是,对于如何用数学方法证明两个三角形相似,学生可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、思考、探究,从而得出判定相似三角形的数学方法。
三. 教学目标1.让学生理解和掌握相似三角形的判定方法。
2.培养学生观察、思考、探究的能力。
3.培养学生运用数学知识解决实际问题的能力。
四. 教学重难点1.判定相似三角形的数学方法。
2.如何运用相似三角形的判定方法解决实际问题。
五. 教学方法1.情境教学法:通过实际问题引出相似三角形的判定方法,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、思考、探究,从而得出判定相似三角形的数学方法。
3.实例教学法:通过例题和练习题,让学生加深对相似三角形判定方法的理解和应用。
4.小组合作学习:让学生在小组内讨论、交流,培养学生的合作能力和团队精神。
六. 教学准备1.准备相关的多媒体教学课件和教学素材。
2.准备例题和练习题,以便进行课堂练习和巩固。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出相似三角形的判定方法。
例如,给出一个长方形和一个平行四边形,让学生判断它们是否相似。
2.呈现(10分钟)讲解相似三角形的判定方法,引导学生观察、思考、探究,从而得出判定相似三角形的数学方法。
3.操练(10分钟)让学生进行课堂练习,运用相似三角形的判定方法判断给出的三角形是否相似。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)通过一些练习题,让学生加深对相似三角形判定方法的理解和应用。
人教版九年级数学下册教案27.2.1相似三角形的判定第一课时教学目标(一)知识与技能1、了解相似比的定义,掌握判定两个三角形相似的方法“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”;2、掌握“如果两个三角形的三组对应边的比相等,那么这两个三角形相似”的判定定理。
(二)过程与方法培养学生的观察﹑发现﹑比较﹑归纳能力,感受两个三角形相似的判定方法1与全等三角形判定方法(SSS)的区别与联系,体验事物间特殊与一般的关系。
(三)情感态度与价值观让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。
〔教学重点与难点〕教学重点:两个三角形相似的判定引例﹑判定方法1教学难点:探究判定引例﹑判定方法1的过程教学过程新课引入:1.复习相似多边形的定义及相似多边形相似比的定义相似三角形的定义及相似三角形相似比的定义2.回顾全等三角形的概念及判定方法(SSS)相似三角形的概念及判定相似三角形的思路。
提出问题:如图27·2-1,在∆ABC中,点D是边AB的中点,DE∥BC,DE交AC于点E ,∆ADE与∆ABC有什么关系?分析:观察27·2-1易知AD=12AB,AE=12AC,∠A=∠A,∠ADE=∠ABC,∠AED=∠ACB,只需引导学生证得DE=12BC即可,学生不难想到过E作EF∥AB。
∆ADE∽∆ABC,相似比为12。
延伸问题:ABD ECF改变点D 在AB 上的位置,先让学生猜想∆ADE 与∆ABC 仍相似,然后再用几何画板演示验证。
归纳:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
探究方法: 探究1在一张方格纸上任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k 倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?分析:学生通过度量,不难发现这两个三角形的对应角都相等,根据相似三角形的定义,这两个三角形相似。
相似三角形的判定教学设计思想相似三角形的概念是本节的重点也是本节的难点。
相似三角形的判定是基础,所以应重点讲解,让学生熟记判定定理,再通过实例来体会相似三角形在实际生活中的应用。
因此教学时注意知识的实践性和与“全等形”相关联的特点,突出学时探究基础上的概括,从而有利于提高学生掌握思维策略和学习能力。
教学目标知识与技能:1.能说出相似三角形的概念,会求相似比或相似系数。
2.熟记相似三角形的判定定理,并会应用证明。
3.熟记相似三角形的周长比和面积比。
过程与方法:1.重点讲解相似三角形的判定定理,并通过实例加以巩固。
2.在学习活动中,主动观察、操作和归纳,发展概况能力,提高数学思考的意识和能力。
情感态度价值观:通过相似三角形概念及判定定理的引入过程,提高联系实际的意识,增进数学应用的眼光.教学重难点重点:相似三角形的判定定理和相似三角形的周长比和面积比。
难点:相似三角形的判定定理教学方法类比学习、探索发现教学媒体多媒体教学过程一、引入新课【师】多边形中最简单的图形是什么?【生】是三角形。
【师】那在相似多边形中,最简单的相似图形是什么图形呢?【生】是相似三角形。
【师】那我们能给相似三角形下个定义吗?大家仔细对△ABC 和A B C '''V 进行观察,看看它们的角和边有什么特点?【生】角:A A '∠=∠,B B '∠=∠,C C '∠=∠, 边:===''''''AB BC CA k A B B C C A【师】如果两个三角形满足以上条件,我们就说这两个三角形相似,记作:△ABC ∽A B C '''V 。
K 就是它们的相似比。
二、利用定义,解决问题如图,在△ABC 中。
点D 是边AB 的中点,DE ∥BC ,DE 交AC 于点E ,△ADE 与△ABC 有什么关系?分析:直觉告诉我们,△ADE 与△ABC 相似,我们通过相似的定义证明这个结论。
27.2.1相似三角形的判定(一)
学习目标:1.了解相似三角形的概念,会用符号“∽”表示相似三角形(重点)
1.知道当△ABC与△的相似比为k时,△与△ABC的相似比为(重点)
3.理解掌握平行线分线段成比例定理(难点)
一、铺垫导入与自主预习
1.知识回顾(阅读教材P29页,小组合作)
(1)什么样的多边形叫做相似多边形?相似多边形有什么性质?答: .
(2)三角形是最简单的多边形,那么什么样的三角形叫做相似三角形?
答:_______________________.
2.自主预习:(阅读教科书P29的内容)
(1)在相似多边形中,最简单的是相似三角形.在△ABC与△A′B′C′中,如果△ABC∽△DEF, 那么它们的角和边的关系
(2)在△ABC和△A’B’C’中,如果∠A=∠A’, ∠B=∠B’, ∠C=∠C’,
我们就说△ABC与△A’B’C’,记作:△ABC△A’B’C’,△ABC和△A’B’C’的相似比为,△A’B’C’和△ABC相似比为。
二、新课导学
(一)【情景引入】
1.如图所示:请你用数学符号描述相似三角形的定义和性质。
(1)在相似多边形中,最简单的就是相似三角形.在△ABC与△A′B′C′中,如果
∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且我们就说△ABC与△A′B′C′,
记作,就是它们的相似比.
反之如果△ABC∽△A′B′C′,则有∠A=_____, ∠B=_____, ∠C=____, .问题:如果k=1,这两个三角形有怎样的关系?
【交流归纳】
(1)在相似多边形中,最简单的就是。
(2)用符号“∽”表示相似三角形如△ABC△;
(3)当△ABC与△的相似比为k时,△与△ABC的相似比为.
2.如图1,任意画两条直线a, b,再画三条与a, b相交的平行线c, d,e分别量度c, d e.在a上截得的两条线段AC, CE和在b上截得的两条线段BD, DF的长度, AC︰CE与BD︰DF 相等吗?任意平移d , 再量度AC, CE, BD, DF的长度, AC︰CE与BD︰DF相等吗?
结论:.(小组讨论,学生代表说出结论)
【交流归纳】
(1)两条直线被一组平行线所截,所得到的对应线段.
(2)平行于三角形一边的直线与其它两边相交(或两边的延长线),截得的对应线段.
图1 图2
(二)【应用探究】
1.已知:如图2,在△ABC中, EF∥BC,△AEF与△ABC相似吗?如何证明呢?
思考:(1)要证明△AEF与△ABC,根据定义,需要哪些条件?
(2)从角看,∠A=∠A,∠B=,∠C=
(3)从边看,由平行线分线段成比例的事实,易得到,而中,EF不在BC 上,运用什么方法将EF转化在BC边上呢?
【交流归纳】
三、随堂检测
1.如果△ABC∽△,AB=4,BC=7,A′B′=6,则B′C′=
2.要制作两个形状相同的三角形框架,其中一个三角形框架的三边为4、5、6,另一个的一边为2,它的另两边应是多少?你有几种答案?
3.如图所示,直线a∥b∥c,AB=3,DE=2,EF=4,求BC的长.
4.如图所示,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,
若AD:AB=3:4,AE=6,则AC等于
四、课堂小结
1.平行线分线段成比例的基本事实是什么?推论是什么?易错点是什么?
2.目前我们有什么方法判定两个三角形相似?
3.本课两个重要的结论在探索中主要运用了哪些数学思想方法?
五、学习反思
27.2.1相似三角形的判定(二)
学习目标:1.能运用“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”(重点)2.对“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”的判定定理的证明(难点)
一、铺垫导入与自主预习
1.旧知回顾
(1)三个角对应_________、三条边_________的两个三角形叫做相似三角形;
(2)相似三角形的对应角_________,各对应边_________;
(3)相似比等于_________的两个三角形全等;
(4)我们已经学习过哪些判别两个三角形相似的方法?类比三角形全等的判定,你认为可能还有哪些方法能判定两个三角形相似?
2.阅读教材P32—33,学生独立完成后集体订正。
(1)如果两个三角形的三组边对应成比例,那么这两个三角形。
(2)如果两个三角形的两组对应边的比相等,并且相等,那么这两个三角形相似。
二、新课导学
(一)【情景引入】
1.让学生动手实验:(小组合作)
(1)让学生任意画⊿ABC,再画⊿AˊBˊCˊ,使它的各边长是⊿ABC的K倍.(K值由各小组确定)
(2)让学生把画好的三角形剪下,比较它们的对应角相等吗?这两个三角形相似吗?
问题:如果两个三角形的三组边的比相等,那么这两个三角形相似,我们通过实验操作得到的猜想在任意情况下都成立吗?
(二)【自主探究】
1.写出“如果两个三角形的三组边的比相等,那么这两个三角形相似”命题的已知,求证,并画出图形.(小组合作交流,由一位学生代表本小组发言)
例1:已知:,求证:
证明:
【交流归纳】
结论:
2.让学生动手实验:(小组合作)
(1)每个人画一个△ABC,使∠A=45°,同组的两个同学设法比较各自画的∠B的大
小(或∠C).你们所画的△ABC相似吗?
问题:如果两个三角形的两边成比例且夹角相等的两个三角形,那么这两个三角形相似吗?我们通过实验操作得到的猜想在任意情况下都成立吗?
(2)如图所示:已知在中,,
求证:∽
证明:
AC AE
AB AD =
【交流归纳】
结论:
三、随堂检测
1.如图,小正方形的边长均为1,则下列图中的三角形与△ABC 相似的是()
2.如图,在△ABC 中,D,E 分别是边AB,AC 上的两点,在下列条件中①∠AED=∠C ② ③④ 能判断△ABC ∽△ABC 的是.
3.一个三角形的三边分别为3cm,4cm,5cm, 另一个直角三角形的两直角边分别为6cm,8cm ,
这两个三角形相似吗?为什么?
4.如图,在网格纸中画出与已知三角形相似的三角形,并使相似比为2 :2
四、课堂小结
1.请归纳目前判定相似三角形的方法有:
2.这节课你学到了什么?
五、学习反思
27.2.1相似三角形的判定(三)
学习目标:1. 能说出识别两个三角形相似的方法:有两个角分别相等的两个三角形相似;
会用这种方法判断两个三角形是否相似。
(重点)2. 掌握相似三角形的判定定理,并能熟
练地运用(难点)
一、铺垫导入与自主预习
1.旧知回顾
(1)判定两个三角形全等有哪些方法;
(2)判定两个三角形相似是否一定要知道他们的对应角相等,对应边成比例呢?
2自主导学(学生独立完成后集体订正)
BC
DE AB AD =AC AD BC DE =
(1)如果一个三角形的角分别与另一个三角形的角对应相等,那么这两个三角形相似.
(2)如图:△ABC和△A`B`C`中,∠A=40°,
∠B=80°,∠B`=80°,∠C`=60°.
△ABC和△A`B`C`,相似吗?为什么?
(3)如图,△ABC中,DE∥BC,EF∥AB,证明:△ADE∽△EFC.
二、新课导学
(一)【情景引入】
1.让学生动手实验:(小组合作)
(1)如图,观察两幅直角三角尺,其中有同样两个锐角(30与60,或45与45)的两个三
角尺大小可能不同。
问题:(1)从形状看它们相似吗?(2)它们分别满足了什么条件?(尽可能少)
2.请你画出两个三角形,其中△ABC满足:∠A=37°,∠B=65°,△A1B1C1满足
∠A1=37°,∠B1=65°,观察这两个三角形相似吗?请你度量两个三角形三边长度?
(二)【自主探究】
3.如图所示:已知在中,,求证:∽
思想引导:回顾三边法和两边夹角法是如何证明的。
证明:
【交流归纳】
结论:
问题:如果是两个直角三角形,判定相似的方法是否会更简洁呢?你能想到哪些判定两个直
角三角形相似的方法呢?(各小组合作交流,由一名学生代表发言。
)
三、随堂检测
1.下列各组三角形一定相似的是()
A.两个直角三角形 B.两个钝角三角形
C.两个等腰三角形 D.两个等边三角形
2. △ABC的两个角分别是60°和72°,和△DEF的两个角分别是
60°和48°,△ABC和△DEF
3.如图,D是△ABC的边AC 上一点,连接BD,△ABC∽△BDC,则需
要添加的条件是
4.已知:如图,在梯形ABCD中,AB∥CD,∠B=90°,以AD为直径的半圆与BC
相切于E点.
求证:AB·CD=BE·EC
5.如图,已知△ABC与△ADE的边DE、AB相交于O,
且∠1=∠2=∠3.(1)试证明△ADO∽△EBO.
(2)证明△ADE∽△ABC.
四、课堂小结
1.相似三角形的判定共有哪些方法?
2.相似三角形的判定分别对应着全等三角形的哪些判定方法?它们有怎样的区别?书写需要注意什么问题?
3.这节课你有什么收获与困惑?
五、学习反思。