高中物理常见的临界条件
- 格式:doc
- 大小:24.50 KB
- 文档页数:2
临界问题分析法临界问题的分析方法孟德飞纵观近年来各省高考物理试题,不难发现,各省都越来越重视考查学生对解决物理问题方法的掌握情况。
例如,物理模型法、整体法与隔离法、等效法、图像法、临界问题分析法等。
在问题练习中,同学们要重视解题过程的思维方法训练。
如果同学们能够熟练掌握各种解题方法的特点和技巧,对物理学习就起到事半功倍的效果。
透析近年的高考考题,本文就解决常见的临界问题解题方法进行分析和总结。
临界状态就是指物理现象从一种状态变化成另一种状态的中间过程,这时存在着一个过渡的转折点。
临界问题的分析对象正是临界状态。
与临界状态相关的物理条件则称为临界条件。
临界条件是解决临界问题的突破点,在物理解题中起着举足轻重的作用,解答临界问题的关键是找准临界条件。
临界条件一般是隐藏着的,需要同学们仔细分析题目才能找出来。
但它也有一定规律:题干含有“恰好”、“刚好”、“最小”、“最大”、“至少”、“最多”的词语认真分析找等词语时,该问题一般是临界问题。
审题时,要抓住这些关键出临界条件。
临界问题一般解题模式为:1.找出临界状态及临界条件;2.列出临界点的规3.解出临界量;4.分析临界量列出公式。
律;下面就一些典型试题进行分析总结:一、动力学中的临界问题分析方法动力学中的临界问题比较普遍,例如“物体恰好离开地面”、“物体速度达到最大值时”、“绳刚好碰到钉子”、“物体刚好通过最高点”、“两物体刚好不相撞”、“物体刚好滑出小车”等就是一些题目中常见的临界状态。
相对应的临界条件应该为:临界状态临界条件物体恰好离开(不离开)地面物体不受地面的支持力物体速度达到最大值时物体所受合力为零绳刚好碰到钉子(绳拉物体做圆周运动) 半径突然变小物体刚好通过最高点只有重力提供向心力两物体刚好不相撞两物体接触时速度相等或者最终速度相等物体刚好滑出小车物体滑到小车一端时与车的速度刚好相等例题1. 一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上。
高中物理中的临界与极值问题宝鸡文理学院附中何治博一、临界与极值概念所谓物理临界问题是指各种物理变化过程中,随着条件的逐渐变化,数量积累达到一定程度就会引起某种物理现象的发生,即从一种状态变化为另一种状态发生质的变化(如全反射、光电效应、超导现象、线端小球在竖直面内的圆周运动临界速度等),这种物理现象恰好发生(或恰好不发生)的过度转折点即是物理中的临界状态。
与之相关的临界状态恰好发生(或恰好不发生)的条件即是临界条件,有关此类条件与结果研究的问题称为临界问题,它是哲学中所讲的量变与质变规律在物理学中的具体反映。
极值问题则是指物理变化过程中,随着条件数量连续渐变越过临界位置时或条件数量连续渐变取边界值(也称端点值)时,会使得某物理量达到最大(或最小)的现象,有关此类物理现象及其发生条件研究的问题称为极值问题。
临界与极值问题虽是两类不同的问题,但往往互为条件,即临界状态时物理量往往取得极值,反之某物理量取极值时恰好就是物理现象发生转折的临界状态,除非该极值是单调函数的边界值。
因此从某种意义上讲,这两类问题的界线又显得非常的模糊,并非泾渭分明。
高中物理中的临界与极值问题,虽然没有在教学大纲或考试说明中明确提出,但近年高考试题中却频频出现。
从以往的试题形式来看,有些直接在题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,要抓住这些特定的词语发掘其内含的物理规律,找出相应的临界条件。
也有一些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,周密讨论状态的变化。
可用极限法把物理问题或物理过程推向极端,从而将临界状态及临界条件显性化;或用假设的方法,假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理;也可用数学函数极值法找出临界状态,然后抓住临界状态的特征,找到正确的解题方向。
临 界 情 况临 界 条 件速度达到最大 物体所受合外力为零物体所受合外力为零刚好不相撞 两物体最终速度相等或者接触时速度相等刚好不分离两物体仍然接触、弹力为零两物体仍然接触、弹力为零原来一起运动的两物体分离时不只弹力为零且速度和加速度相等为零且速度和加速度相等 运动到某一极端位置粒子刚好飞出(飞不出)两个极板间的匀强电场的匀强电场粒子运动轨迹与极板相切粒子运动轨迹与极板相切粒子刚好飞出(飞不出)磁场粒子刚好飞出(飞不出)磁场 粒子运动轨迹与磁场边界相切粒子运动轨迹与磁场边界相切物体刚好滑出(滑不出)小车物体刚好滑出(滑不出)小车物体滑到小车一端时与小车的速度刚好相等相等刚好运动到某一点(“等效最高点”) 到达该点时速度为零到达该点时速度为零 绳端物体刚好通过最高点绳端物体刚好通过最高点 物体运动到最高点时重力(“等效重力”)等于向心力速度大小为杆端物体刚好通过最高点杆端物体刚好通过最高点 物体运动到最高点时速度为零物体运动到最高点时速度为零某一量达到极大(小)值双弹簧振子弹簧的弹性势能最大双弹簧振子弹簧的弹性势能最大 弹簧最长(短),两端物体速度为零弹簧最长(短),两端物体速度为零 圆形磁场区的半径最小圆形磁场区的半径最小磁场区是以公共弦为直径的圆磁场区是以公共弦为直径的圆 使通电导线在倾斜导轨上静止的最小磁感应强度磁感应强度安培力平行于斜面安培力平行于斜面两个物体距离最近(远)两个物体距离最近(远) 速度相等速度相等 动与静的分界点转盘上“物体刚好发生滑动”转盘上“物体刚好发生滑动” 向心力为最大静摩擦力向心力为最大静摩擦力刚好不上(下)滑刚好不上(下)滑保持物体静止在斜面上的最小水平推力拉动物体的最小力拉动物体的最小力 静摩擦力为最大静摩擦力,物体平衡静摩擦力为最大静摩擦力,物体平衡关于绳的临界问题绳刚好被拉直绳刚好被拉直 绳上拉力为零绳上拉力为零绳刚好被拉断绳刚好被拉断 绳上的张力等于绳能承受的最大拉力绳上的张力等于绳能承受的最大拉力 运动的突变天车下悬挂重物水平运动,天车突停天车下悬挂重物水平运动,天车突停重物从直线运动转为圆周运动,绳拉力增加增加绳系小球摆动,绳碰到(离开)钉子绳系小球摆动,绳碰到(离开)钉子 圆周运动半径变化,拉力突变圆周运动半径变化,拉力突变重力: G = mg (g 随高度、纬度、不同星球上不同) 弹簧的弹力:F= Kx 滑动摩擦力:F 滑= m N静摩擦力:静摩擦力: O£ f 静£ f m万有引力:万有引力: F 引=G 221r m m电场力: F电=q E =q du u库仑力:库仑力: F =K221r q q (真空中、点电荷)磁场力:(1)、安培力:磁场对电流的作用力。
高中物理临界问题引言:高中物理中,临界问题是一个重要的概念,它涉及到电流、温度、速度等多个领域。
临界问题在物理学的研究中有着广泛的应用,对于理解和解决实际问题具有重要意义。
本文将围绕高中物理临界问题展开讨论,介绍其基本概念和相关应用。
一、临界问题的基本概念临界问题是指在某种条件下,系统的一些物理性质会发生剧变或突变的问题。
具体而言,临界问题可以分为电流临界、温度临界和速度临界等。
在临界点上,系统的某个物理量会发生突变,从而导致系统的性质发生改变。
1.1 电流临界问题电流临界是指在电路中,当电流达到一定数值时,电路中的元器件或电源会发生突变或破坏,从而导致电路的性质发生改变。
举个例子,当我们连接一个电阻到电路中时,如果电流超过了电阻的最大承受电流,电阻就会发热并可能烧坏。
1.2 温度临界问题温度临界是指在物质的温度达到某个特定值时,物质的性质会发生剧变。
例如,当我们加热水至100摄氏度时,水的状态会发生改变,从液态变为气态,这是水的临界温度。
1.3 速度临界问题速度临界是指在物体运动中,当速度达到某一特定值时,物体的性质会发生剧变。
例如,当我们抛出一个物体时,物体的速度达到一定值时,会克服空气的阻力,进入自由落体状态,这是速度临界的一个实例。
二、临界问题的应用临界问题在物理学的研究和实际应用中具有重要意义,下面将分别介绍电流临界、温度临界和速度临界的应用。
2.1 电流临界的应用电流临界在电路设计和电器安全方面有着重要的应用。
例如,在电路设计中,我们需要根据电子元器件的电流承受能力来选择合适的元器件,以避免电路发生过载或短路的现象。
在电器安全方面,了解电器的电流临界值可以帮助我们正确使用和维护电器设备,避免因电流过大导致的安全事故。
2.2 温度临界的应用温度临界在材料科学和物理实验中有着广泛的应用。
例如,在材料科学中,了解材料的临界温度可以帮助我们选择合适的材料用于不同的环境和工艺要求。
在物理实验中,控制温度临界可以使实验结果更加准确和可靠,避免温度对实验结果的影响。
高中物理力学中几种常见的临界问题高中物理力学中几种常见的临界问题临界问题是高中物理中常见的一个问题,所谓临界状态是指当物体从一种运动状态(或物理现象)转变为另一种运动状态(或物理现象)的转折状态,可理解“恰好出现”或“恰好不出现”,至于出不出现要由题目的具体情况而定。
它往往是多个物理过程之间发生变化的转折点,在这个点的两侧,物体的某些物理条件一般都要发生变化。
临界问题,就是指当物体从一种状态转变为另一状态,某些物理量达到极限取值时,物体所处的状态或条件发生突变。
一、有明显临界词语的临界问题许多临界问题常在题目中出现“恰好”“刚好”“刚要”“最大”“至少”“最高”“不相撞”“不脱离”等词语,对临界问题给出了明确的提示,我们称之为临界词语,审题时只要抓住了这些特定词语其内含规律就能找到临界条件,从而找到问题的突破口。
例题:如图1所示,光滑水平面AB与竖直面内的半圆形导轨在B点相接,导轨半径为R,一个质量为m的物体将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,脱离弹簧后当它经过B点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动完成半个圆周运动恰好到达C点。
试求:物体从B点运动至C点克服阻力做的功。
对物体P由牛顿第二定律可得: F+N-mg=ma,在0.2时N=0,即mg=F,所以求得x=mg/k。
而,所以求得a=7.5m/s2。
当P开始运动时拉力最小,此时Fmin=90N;当P与盘分离时拉力F最大,此时Fmax= 210N。
授人以渔,故掌握一种方法才是最重要的,让学生学会解决问题的方法比学会知识更重要。
学生一旦归纳和熟悉了临界状态的力、运动的特征,就能更加快速、准确地找出其关系,列出方程,进而掌握解决这种题型的技巧。
1.雨水从水平长度一定的光滑斜面形屋顶流淌时间最短——屋面倾角为45°。
2.从长斜面上某点平抛出的物体距离斜面最远——速度与斜面平行时刻。
3.物体以初速度沿固定斜面恰好能匀速下滑(物体冲上固定斜面时恰好不再滑下)—μ=tgθ。
4.物体刚好滑动——静摩擦力达到最大值。
5.两个物体同向运动其间距离最大(最小)——两物体速度相等。
6.两个物体同向运动相对速度最大(最小)——两物体加速度相等。
7.位移一定的先启动后制动分段运动,在初、末速及两段加速度一定时欲使全程历时最短——中间无匀速段(位移一定的先启动后制动分段匀变速运动,在初速及两段加速度一定时欲使动力作用时间最短——到终点时末速恰好为零)8.两车恰不相撞——后车追上前车时两车恰好等速。
9.加速运动的物体速度达到最大——恰好不再加速时的速度。
10.两接触的物体刚好分离——两物体接触但弹力恰好为零。
11.物体所能到达的最远点——直线运动的物体到达该点时速度减小为零(曲线运动的物体轨迹恰与某边界线相切)12.在排球场地3米线上方水平击球欲成功的最低位置——既触网又压界13.木板或传送带上物体恰不滑落——物体到达末端时二者等速。
14.线(杆)端物在竖直面内做圆周运动恰能到圆周最高点—最高点绳拉力为零(=0v杆端)15.竖直面上运动的非约束物体达最高点——竖直分速度为零。
16.细线恰好拉直——细线绷直且拉力为零。
17.已知一分力方向及另一分力大小的分解问题中若第二分力恰为极小——两分力垂直。
18.动态力分析的“两变一恒”三力模型中“双变力”极小——两个变力垂直。
19.欲使物体在1F2F两个力的作用下,沿与1F成锐角的直线运动,已知1F为定值,则2F最小时即恰好抵消1F在垂直速度方向的分力。
20.渡河中时间最短——船速垂直于河岸,即船速与河岸垂直(相当于静水中渡河)。
21.船速大于水速的渡河中航程最短——“斜逆航行”且船速逆向上行分速度与水速抵消。
1圆周运动的临界问题一 .与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有F m =m rv 2,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。
二 与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。
【典例1】 (多选)(2014·新课标全国卷Ⅰ,20) 如图1,两个质量均为m 的小木块a 和b ( 可视为质点 )放在水平圆盘上,a 与转轴OO′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。
若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=lkg2是b 开始滑动的临界角速度 D .当ω=lkg32 时,a 所受摩擦力的大小为kmg 答案 AC解析 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F f m =km g 相同。
它们所需的向心力由F 向=mω2r知,F a < F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起2绕转轴缓慢地转动时,F 摩=mω2r ,r 不同,所受的摩擦力不同,B 项错;b 开始滑动时有kmg =mω2·2l ,其临界角速度为ωb =l kg 2 ,选项C 正确;当ω =lkg32时,a 所受摩擦力大小为F f =mω2 r =32kmg ,选项D 错误【典例2】 如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( )A .OB 绳的拉力范围为 0~33mg B .OB 绳的拉力范围为33mg ~332mg C .AB 绳的拉力范围为33mg ~332mg D .AB 绳的拉力范围为0~332mg 答案 B解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg , F 1=33mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2 =332mg ,因此OB 绳的拉力范围为33mg ~332mg ,AB 绳的拉力范围为 0~33mg ,B 项正确。
一、概念临界问题是物理现象中的常见现象。
所谓临界状态就是物理现象从一种状态变化成另一种状态的中间过程,临界状态通常具有以下特点:瞬时性、突变性、关联性、极值性等。
临界状态往往隐藏着关键性的隐含条件,是解题的切入口,在物理解题中起举足轻重的作用。
求解临界问题通常有如下方法:极限法、假设法、数学分析法(包括解析法、几何分析法等)、图象法等。
极限法:在题目中如出现“最大”、“最小”、“刚好”、“要使”等词语时,一般隐含着临界问题。
处理问题时,一般把物理问题(或过程)设想为临界状态,从而使隐藏着的条件暴露出来,达到求解的目的。
假设法:有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,解决办法是采用假设法,把物理过程按变化的方向作进一步的外推,从而判断可能出现的情况。
数学分析法;是一种很理性的分析方式,把物理现象转化成数学语言,用数学工具加以推导,从而求出临界问题,用这种分析方法一定要注意理论分析与物理实际紧密联系起来,切忌纯数学理论分析。
图象法:将物理过程的变化规律反映到物理图象中,通过图象分析求出临界问题。
下面列举的是高中物理各知识系统中典型的临界问题。
一、振动和波中的临界问题例1、把一根长度为10cm 的轻弹簧下端固定,上端连一个质量为m 的物块P ,在P 的上面再放一个质量也是m 的物块Q ,系统静止后,弹簧的长度为6cm ,如图1所示。
如果迅速撤去Q ,物块P 将在竖直方向做简谐运动,此后弹簧的最大长度是多少?分析:由题意可知在撤去Q 后物块P 将在竖直方向做简谐运动,即以平衡位置为中心做往复运动,找到平衡位置和确定振动的振幅是求解问题的关键:平衡位置在重力和弹力平衡的位置,由题设条件可知,平衡位置在弹簧长度为8cm 的位置;P 刚开始运动时,弹簧的长度是6cm ,可知振幅是2cm 。
根据对称性可知弹簧的最大长度为10cm 。
例2、质量分别为2A m kg =和3B m kg =的两物块A 、B 用轻弹簧相连后竖直放在水平面上,现用力F 把物块向下压而使之处于静止状态,如图2所示,然后突然撤去外力,要使物块B 能离开地面,则压力F 至少要为多大(设该过程在弹性限度内进行)?分析:先假设B 是不动的,则撤去压力F 后,A 将在竖直平面内做简谐运动,平衡位置在弹簧压缩量为0A m g x k =的位置;若要物体B 能被拉离地面,则弹簧至少要被拉长B m g x k=,可见A 物体的振幅为: 0()B A m m g A x x k+=+=,所以压力F 至少为: ()50B A F kA m m g N ==+=。
高中物理力学中的临界问题分析1、运动学中的临界问题例题一:一辆汽车在十字路口等待绿灯,当绿灯亮时汽车以3m/s2的加速度开始行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边超过汽车.试问:(1)汽车从路口开动后,在赶上自行车之前经过多长时间两车相距最远?此时距离是多少?(2)当两车相距最远时汽车的速度多大?例题二、在水平轨道上有两列火车A和B相距s,A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度为a的匀加速直线运动,两车运动方向相同.要使两车不相撞,求A车的初速度v0应满足什么条件?针对练习:(07海南卷)两辆游戏赛车、在两条平行的直车道上行驶。
时两车都在同一计时线处,此时比赛开始。
它们在四次比赛中的图如图所示。
哪些图对应的比赛中,有一辆赛车追上了另一辆(AC)二、平衡现象中的临界问题例题:跨过定滑轮的轻绳两端,分别系着物体A和物体B,物体A放在倾角为θ的斜面上,如图甲所示.已知物体A的质量为m,物体A与斜面的动摩擦因数为μ(μ<tanθ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量的取值范围(按最大静摩擦力等于滑动摩擦力处理).针对练习1:如图所示,水平面上两物体m1、m2经一细绳相连,在水平力F 的作用下处于静止状态,则连结两物体绳中的张力可能为( )A、零B、F/2C、FD、大于F针对练习2:(98)三段不可伸长的细绳OA、OB、OC能承受的最大拉力相同,它们共同悬挂一重物,如图所示,其中OB是水平的,A端、B端固定。
若逐渐增加C端所挂物体的质量,则最先断的绳A、必定是OAB、必定是OBC、必定是OCD、可能是OB,也可能是OC三、动力学中的临界问题例题一:如图所示,在光滑水平面上叠放着A、B两物体,已知m A=6 kg、m B=2 kg,A、B间动摩擦因数μ=0.2,在物体A上系一细线,细线所能承受的最大拉力是20N,现水平向右拉细线,g取10 m/s2,则 ( )A.当拉力F<12 N时,A静止不动B.当拉力F>12 N时,A相对B滑动C.当拉力F=16 N时,B受A的摩擦力等于4 ND.无论拉力F多大,A相对B始终静止针对练习:(2007)江苏卷如图所示,光滑水平面上放置质量分别为m和2m的四个木块,其中两个质量为m的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg。
动力学中的临界极值问题动力学中极值问题的临界条件和处理方法1.“四种”典型临界条件 (1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N =0.(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T =0.(4)加速度变化时,速度达到最值的临界条件:当加速度变为0时.2.“四种”典型数学方法 (1)三角函数法; (2)根据临界条件列不等式法;(3)利用二次函数的判别式法;(4)极限法. 【练习】1.如图所示,质量均为m 的A 、B 两物体叠放在竖直弹簧上并保持静止,用大小等于mg 的恒力F 向上拉B ,运动距离h 时,B 与A 分离.下列说法正确的是( )A .B 和A 刚分离时,弹簧长度等于原长 B .B 和A 刚分离时,它们的加速度为gC .弹簧的劲度系数等于mg hD .在B 与A 分离之前,它们做匀加速直线运动2. (多选)如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( )A .当F <2μmg 时,A 、B 都相对地面静止B .当F =52μmg 时,A的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg3.如图所示,物体A 放在物体B 上,物体B 放在光滑的水平面上,已知m A =6 kg ,m B =2 kg.A 、B 间动摩擦因数μ=0.2.A 物体上系一细线,细线能承受的最大拉力是20 N ,水平向右拉细线,下述中正确的是(g 取10 m/s 2)( )A .当拉力0<F <12 N 时,A 静止不动B .当拉力F >12 N 时,A 相对B 滑动C .当拉力F =16 N 时,B 受到A 的摩擦力等于4 ND .在细线可以承受的范围内,无论拉力F 多大,A 相对B 始终静止 4.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.(1)求物块加速度的大小及到达B 点时速度的大小. (2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少?“传送带模型”问题分析传送带问题的三步走1.初始时刻,根据v物、v带的关系,确定物体的受力情况,进而确定物体的运动情况.2.根据临界条件v物=v带确定临界状态的情况,判断之后的运动形式.3.运用相应规律,进行相关计算.【练习】5.(多选)如图所示,水平传送带A、B两端相距x=4 m,以v0=4 m/s的速度(始终保持不变)顺时针运转,今将一小煤块(可视为质点)无初速度地轻放至A端,由于煤块与传送带之间有相对滑动,会在传送带上留下划痕.已知煤块与传送带间的动摩擦因数μ=0.4,取重力加速度大小g=10 m/s2,则煤块从A运动到B的过程中()A.煤块到A运动到B的时间是2.25 s B.煤块从A运动到B的时间是1.5 sC.划痕长度是0.5 m D.划痕长度是2 m6.如图所示为粮袋的传送装置,已知A、B两端间的距离为L,传送带与水平方向的夹角为θ,工作时运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A端将粮袋放到运行中的传送带上.设最大静摩擦力与滑动摩擦力大小相等,重力加速度大小为g.关于粮袋从A到B的运动,以下说法正确的是()A.粮袋到达B端的速度与v比较,可能大,可能小或也可能相等B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将以速度v做匀速运动C.若μ≥tan θ,则粮袋从A端到B端一定是一直做加速运动D.不论μ大小如何,粮袋从Α到Β端一直做匀加速运动,且加速度a≥g sinθ7.(多选)如图所示,水平传送带A、B两端相距x=3.5 m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度v A=4 m/s,到达B端的瞬时速度设为v B.下列说法中正确的是()A.若传送带不动,v B=3 m/sB.若传送带逆时针匀速转动,v B一定等于3 m/sC.若传送带顺时针匀速转动,v B一定等于3 m/sD.若传送带顺时针匀速转动,有可能等于3 m/s8.如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,动摩擦因数μ=0.5,在传送带顶端A处无初速度地释放一个质量为m=0.5 kg的物体.已知sin 37°=0.6,cos 37°=0.8.g=10 m/s2.求:(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.9.如图所示,为传送带传输装置示意图的一部分,传送带与水平地面的倾角θ=37°,A、B两端相距L=5.0 m,质量为M=10 kg的物体以v0=6.0 m/s的速度沿AB方向从A端滑上传送带,物体与传送带间的动摩擦因数处处相同,均为0.5.传送带顺时针运转的速度v=4.0 m/s,(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)物体从A点到达B点所需的时间;(2)若传送带顺时针运转的速度可以调节,物体从A点到达B点的最短时间是多少?。
高中物理中的临界问题与极值问题精品讲学案一、临界与极值概念所谓物理临界问题是指各种物理变化过程中,随着条件的逐渐变化,数量积累达到一定程度就会引起某种物理现象的发生,即从一种状态变化为另一种状态发生质的变化(如全反射、光电效应、超导现象、线端小球在竖直面内的圆周运动临界速度等),这种物理现象恰好发生(或恰好不发生)的过度转折点即是物理中的临界状态。
与之相关的临界状态恰好发生(或恰好不发生)的条件即是临界条件,有关此类条件与结果研究的问题称为临界问题,它是哲学中所讲的量变与质变规律在物理学中的具体反映。
极值问题则是指物理变化过程中,随着条件数量连续渐变越过临界位置时或条件数量连续渐变取边界值(也称端点值)时,会使得某物理量达到最大(或最小)的现象,有关此类物理现象及其发生条件研究的问题称为极值问题。
临界与极值问题虽是两类不同的问题,但往往互为条件,即临界状态时物理量往往取得极值,反之某物理量取极值时恰好就是物理现象发生转折的临界状态,除非该极值是单调函数的边界值。
因此从某种意义上讲,这两类问题的界线又显得非常的模糊,并非泾渭分明。
高中物理中的临界与极值问题,虽然没有在教学大纲或考试说明中明确提出,但近年高考试题中却频频出现。
从以往的试题形式来看,有些直接在题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,要抓住这些特定的词语发掘其内含的物理规律,找出相应的临界条件。
也有一些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,周密讨论状态的变化。
可用极限法把物理问题或物理过程推向极端,从而将临界状态及临界条件显性化;或用假设的方法,假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理;也可用数学函数极值法找出临界状态,然后抓住临界状态的特征,找到正确的解题方向。
浅谈高中物理力学中几种常见的临界问题【摘要】高中物理力学是学生学习物理学中的重要基础课程,其中有几种常见的临界问题需要深入研究。
静摩擦力和滑动摩擦力的临界问题涉及物体开始运动的临界情况;弹簧的临界弹性形变问题探讨弹簧达到最大形变时的状态;自由落体速度的临界问题涉及物体落地时的速度;动能和势能的临界转化问题探讨能量转化的临界点;动量守恒的临界问题考察碰撞系统中动量守恒的极限情况。
通过对这些临界问题的研究,有助于学生深入理解物理规律和原理。
未来,物理教育需重视培养学生解决问题的能力,提高实践操作的机会,为学生创造更加丰富的学习环境,进一步推动物理教育的发展。
物理临界问题的讨论将促进学生对物理学的理解和兴趣,培养学生分析问题、解决问题的能力。
【关键词】高中物理力学、临界问题、静摩擦力、滑动摩擦力、弹簧、弹性形变、自由落体、速度、动能、势能、转化、动量守恒、总结、展望、物理教育、发展。
1. 引言1.1 介绍高中物理力学的重要性高中物理力学作为物理学的基础课程,对于学生的科学素养和思维能力培养具有重要意义。
它不仅能帮助学生建立起深厚的物理学基础,还可以培养学生的观察力、实验能力和逻辑思维能力。
通过学习高中物理力学,学生可以深入了解物质的运动规律和相互作用规律,使他们更好地理解周围世界的运行规律。
物理学中的数学运用也可以提高学生的数学素养,使他们在未来的学习和工作中受益匪浅。
在现代科技的发展趋势下,物理学也在不断拓展和深化,高中物理力学作为物理学的起步阶段,为学生打下坚实基础。
通过学习高中物理力学,学生可以引起对物理学的兴趣,培养他们对科学的探索精神,为未来从事科技领域的工作奠定基础。
高中物理力学的重要性不仅在于帮助学生掌握物理学的基本理论知识,更在于培养学生的科学思维和创新能力,为他们未来的发展提供坚实支撑。
1.2 解释临界问题的概念临界问题是高中物理力学中一个非常重要的概念。
在这个概念中,我们关注的是一些特定参数或条件达到某个临界数值时,系统将发生显著的变化或转变。
高中物理常见的临界问题作者:王玉力来源:《信息教研周刊》2011年第08期当物体由一种物理状态变为另一种物理状态时,或物体从某种特性变化为另一种特性时,发生质的飞跃的转折状态,或者说存在一个过渡的转折点,这时物体所处的状态通常称为临界状态,与之相关的物理条件则称为临界条件。
中学物理中的常见的临界问题和相应临界条件有:1.某一方向速度最大和最小的临界条件是该方向物体所受合力为零,即加速度为零。
2.刚好不相撞的临界条件是两物体最终速度相等或者接触时速度相等。
3.刚好不分离的临界条件是两物体仍接触,两物体的相互作用力为零(原来一起运动的两物体刚好不分离时速度和加速度均相等)。
4.一个物体在另一个物体表面能否滑落的临界条件是滑到端点时速度相同。
5.绳端物体刚好通过最高点的临界条件是物体运动到最高点(或等效最高点)时重力(或等效重力)等于向心力,速度大小为(或,g,为等效重力加速度)。
6.杆端物体刚好通过最高点的临界条件是物体运动到最高点速度为零。
7.两物体相距最近或最远的临界条件是两物体速度相等。
8.靠摩擦力连接的物体间发生相对滑动或相对静止的临界条件为摩擦力达到最大。
如:斜面上的物体刚好不下滑,保持物体在斜面上的最小水平推力,拉动物体的最小力,它们的临界条件是静摩擦力为最大静摩擦力,物体平衡。
水平转盘上“自由”物体刚好发生滑动的临界条件是向心力为最大摩擦力”。
9.绳子断与不断的临界条件为作用力达到绳能承受的最大拉力。
10.绳子由弯到直(或由直变弯)的临界条件为绳子的拉力等于零。
11.物体返回的临界条件是速度为零。
12.电路中最大电流的临界条件是各个用电器的实际电流均等于额定电流。
13.在有界磁场中做匀速圆周运动带电粒子能否射出磁场的临界条件是粒子运动到磁场边界时速度与磁场边界相切。
14.圆形磁场区域的半径最小的临界条件是以公共弦为直径的圆。
15.使通電导线在倾斜导轨上静止的最小磁感应强度的临界条件是安培力平行于斜面。
高中物理常见的“临界条件”
一、刚好不相撞
两物体最终速度相等或者接触时速度相等。
二、刚好不分离
两物体仍然接触、弹力为零,且速度和加速度相等。
三、刚好不滑动
1.转盘上“物体刚好发生滑动”:向心力为最大静摩擦力。
2.斜面上物体刚好不上(下)滑:静摩擦力为最大静摩擦力,物体平衡。
3.保持物体静止在斜面上的最小水平推力: 静摩擦力为最大静摩擦力,物体平衡。
4.拉动物体的最小力:静摩擦力为最大静摩擦力,物体平衡。
四、运动到某一极端位置
1.绳端物体刚好通过最高点(等效最高点):物体运动到最高点时重力(等效重力)等于向心力,速度大小为(gR)1/2[(gˊR)1/2].
2.杆端物体刚好通过最高点:物体运动到最高点时速度为零。
3.刚好运动到某一点:到达该点时速度为零。
4.物体刚好滑出(不滑出)小车:物体滑到小车一端时与小车速度刚好相等。
5.粒子刚好飞出(飞不出)两个极板间的匀强电场:粒子沿极板的边缘射出(粒子运动轨迹与极板相切)。
6.粒子刚好飞出(飞不出)磁场:粒子运动轨迹与磁场边界相切。
五、速度达到最大或最小时:物体所受的合外力为零,即加速度为零
1.机车启动过程中速度达最大匀速行驶:牵引力和阻力平衡。
2.导体棒在磁场中做切割运动时达稳定状态:感应电流产生的安培力和其他力的合力平衡。
六、某一量达到极大(小)值
1.两个物体距离最近(远):速度相等。
2.圆形磁场区的半径最小:磁场区是以公共弦为直径的圆。
3.使通电导线在倾斜导轨上静止的最小磁感应强度:安培力平行于斜面。
4.穿过圆形磁场区域时间最长:入射点和出射点分别为圆形直径两端点。
七、绳的临界问题
1.绳刚好被拉直:绳上拉力为零。
2.绳刚好被拉断:绳上的张力等于绳能承受的最大拉力。
3.绳子突然绷紧:速度突变,沿绳子径向方向的速度减为零。
八、运动的突变
1.天车下悬挂重物水平运动,天车突停:重物从直线运动转为圆周运动,绳拉力增加。
2.绳系小球摆动,绳碰到(离开)钉子:圆周运动半径变化,拉力突变。
3.物体运动到曲面和水平面的交界处:对支持面的压力突变。
4.稳定轨道上运行的卫星突然加速或减速:卫星变轨,做离心运动或近心运动。