高考物理常见临界条件专题
- 格式:doc
- 大小:22.00 KB
- 文档页数:1
圆周运动模型中临界问题和功与能目录1.圆周运动的三种临界情况2.常见的圆周运动及临界条件3.竖直面内圆周运动常见问题与二级结论1.圆周运动的三种临界情况(1)接触面滑动临界:F f=F max。
(2)接触面分离临界:F N=0。
(3)绳恰好绷紧:F T=0;绳恰好断裂:F T达到绳子可承受的最大拉力。
2.常见的圆周运动及临界条件(1)水平面内的圆周运动水平面内动力学方程临界情况示例水平转盘上的物体F f=mω2r恰好发生滑动圆锥摆模型mg tanθ=mrω2恰好离开接触面(2)竖直面及倾斜面内的圆周运动轻绳模型最高点:F T+mg=m v2r恰好通过最高点,绳的拉力恰好为0轻杆模型最高点:mg±F=m v2r恰好通过最高点,杆对小球的力等于小球的重力带电小球在叠加场中的圆周运动等效法关注六个位置的动力学方程,最高点、最低点、等效最高点、等效最低点,最左边和最右边位置恰好通过等效最高点,恰好做完整的圆周运动倾斜转盘上的物体最高点:mg sin θ±F f =mω2r 最低点F f -mg sin θ=mω2r恰好通过最低点3.竖直面内圆周运动常见问题与二级结论【问题1】一个小球沿一竖直放置的光滑圆轨道内侧做完整的圆周运动,轨道的最高点记为A 和最低点记为C ,与原点等高的位置记为B 。
圆周的半径为R要使小球做完整的圆周运动,当在最高点A 的向心力恰好等于重力时,由mg =m v 2R可得v =gR ①对应C 点的速度有机械能守恒mg2R =12mv 2C −12mv 2A 得v C =5gR ②当小球在C 点时给小球一个水平向左的速度若小球恰能到达与O 点等高的D 位置则由机械能守恒mgR =12mv 2c 得v c =2gR ③小结:(1).当v c >5gR 时小球能通过最高点A 小球在A 点受轨道向内的支持力由牛顿第二定律F A +mg =m v 2A R④(2).当v c =5gR 时小球恰能通过最高点A 小球在A 点受轨道的支持力为0由牛顿第二定律mg =m v 2A R。
动力学中的临界和极值问题一、动力学中的临界极值问题1.“四种”典型临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力F N=0。
(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是静摩擦力达到最大值。
(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛与拉紧的临界条件是F T=0。
(4)速度达到最值的临界条件:加速度为0。
2. 解题指导(1)直接接触的连接体存在“要分离还没分”的临界状态,其动力学特征:“貌合神离”,即a相同、F N=0.(2)靠静摩擦力连接(带动)的连接体,静摩擦力达到最大静摩擦力时是“要滑还没滑”的临界状态.(3)极限分析法:把题中条件推向极大或极小,找到临界状态,分析临界状态的受力特点,列出方程(4)数学分析法:将物理过程用数学表达式表示,由数学方法(如二次函数、不等式、三角函数等)求极值.3.解题基本思路(1)认真审题,详细分析问题中变化的过程(包括分析整个过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系.4. 解题方法二、针对练习1、(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为4μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力,则木板加速度a 大小可能是( )A .0a =B .4ga μ=C .3g a μ=D .23ga μ=2、(多选)如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( ) A .当F <2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg3、如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m 。
【高三学习指导】高考物理常见临界条件汇总高考物理常见临界条件有哪些呢?正在备考的同学们赶紧来看看高考物理知识点——高考物理常见临界条件汇总,希望能够帮助到同学们。
推荐阅读:临界情况————————临界条件绳子刚拉直——绳子上的张力为零刚好不上(下)滑保持物体静止在斜面上的最小水平推力拉动物体的最小力——静摩擦力为最大静摩擦力,物体平衡“物体只是在转台上滑动”——向心力是最大静摩擦力绳刚好被拉断——绳上的张力等于绳能承受的最大拉力两个物体距离最近(远)——它们的速度相同天车下悬挂重物水平运动,天车突停——重物从直线运动转为圆周运动,绳拉力增加绳索系统球摆动,绳索接触(离开)钉子——圆周运动的半径改变,张力突然改变使通电导线在倾斜导轨上静止的最小磁感应强度——安培力平行于斜面圆形磁场区域的半径最小——磁场区域是一个以公共弦为直径的圆双弹簧振子弹簧的弹性势能最大——弹簧最长(短),两端物体速度为零最大速度-作用在物体上的综合外力为零刚好不相撞——两物体最终速度相等或者接触时速度相等只是没有分开——两个物体仍然接触,没有弹力。
当两个物体一起运动分离时,不仅弹力为零,而且速度和加速度相等粒子刚好飞出(飞不出)两个极板间的匀强电场——粒子运动轨迹与极板相切杆端的物体刚好经过最高点——当物体移动到最高点时,速度为零绳端物体刚好通过最高点——物体运动到最高点时重力(“等效重力”)等于向心力速度大小为只需移动到某个点(“等效最高点”)——到达该点时,速度为零物体刚好滑出(滑不出)小车——-物体滑到小车一端时与小车的速度刚好相等粒子只是飞出磁场——粒子的轨迹与磁场的边界相切粒子刚好飞出(飞不出)两个极板间的匀强电场——粒子运动轨迹与极板相切粒子只是飞出磁场——粒子的轨迹与磁场的边界相切粒子刚好飞出(飞不出)两个极板间的匀强电场——粒子运动轨迹与极板相切结论:向您介绍了《高考物理常见临界条件》一文。
你掌握了吗?希望你能在2022高考名单中被提名!。
高考物理8种“临界情况”总结一、刚好不相撞两物体最终速度相等或者接触时速度相等。
二、刚好不分离两物体仍然接触、弹力为零,且速度和加速度相等。
三、刚好不滑动1、转盘上“物体刚好发生滑动”:向心力为最大静摩擦力。
2、斜面上物体刚好不上(下)滑:静摩擦力为最大静摩擦力,物体平衡。
3、保持物体静止在斜面上的最小水平推力:静摩擦力为最大静摩擦力,物体平衡。
4、拉动物体的最小力:静摩擦力为最大静摩擦力,物体平衡。
四、运动到某一极端位置1、绳端物体刚好通过最高点(等效最高点):物体运动到最高点时重力(等效重力)等于向心力,速度大小为(gR)1/2[(gˊR)1/2]。
2、杆端物体刚好通过最高点:物体运动到最高点时速度为零。
3、刚好运动到某一点:到达该点时速度为零。
4、物体刚好滑出(滑不出)小车:物体滑到小车一端时与小车速度刚好相等。
5、粒子刚好飞出(飞不出)两个极板间的匀强电场:粒子沿极板的边缘射出(粒子运动轨迹与极板相切)。
6、粒子刚好飞出(飞不出)磁场:粒子运动轨迹与磁场边界相切。
五、速度达到最大或最小时物体所受的合外力为零,即加速度为零1、机车启动过程中速度达最大匀速行驶:牵引力和阻力平衡。
2、导体棒在磁场中做切割运动时达稳定状态:感应电流产生的安培力和其他力的合力平衡。
六、某一量达到极大(小)值1、两个物体距离最近(远):速度相等。
2、圆形磁场区的半径最小:磁场区是以公共弦为直径的圆。
3、使通电导线在倾斜导轨上静止的最小磁感应强度:安培力平行于斜面。
4、穿过圆形磁场区域时间最长:入射点和出射点分别为圆形直径两端点。
七、绳的临界问题1、绳刚好被拉直:绳上拉力为零。
2、绳刚好被拉断:绳上的张力等于绳能承受的最大拉力。
3、绳子突然绷紧:速度突变,沿绳子径向方向的速度减为零。
八、运动的突变1、天车下悬挂重物水平运动,天车突停:重物从直线运动转为圆周运动,绳拉力增加。
2、绳系小球摆动,绳碰到(离开)钉子:圆周运动半径变化,拉力突变。
高三物理复习指导:常见临界条件归纳【】:对高三生而言,应及时了解、掌握高考备考知识,只有这样,才能提前做好准备。
小编为您推荐高考物理复习常见临界条件归纳,希望对您有助!高考物理复习常见临界条件归纳如下:临界情况临界条件速度达到最大物体所受合外力为零刚好不相撞两物体最终速度相等或者接触时速度相等刚好不分离两物体仍然接触、弹力为零原来一起运动的两物体分离时不只弹力为零且速度和加速度相等运动到某一极端位置粒子刚好飞出(飞不出)两个极板间的匀强电场粒子运动轨迹与极板相切粒子刚好飞出(飞不出)磁场粒子运动轨迹与磁场边界相切物体刚好滑出(滑不出)小车物体滑到小车一端时与小车的速度刚好相等刚好运动到某一点(等效最高点)到达该点时速度为零绳端物体刚好通过最高点物体运动到最高点时重力(等效重力)等于向心力速度大小杆端物体刚好通过最高点物体运动到最高点时速度为零某一量达到极大(小)值双弹簧振子弹簧的弹性势能最大弹簧最长(短),两端物体速度为零圆形磁场区的半径最小磁场区是以公共弦为直径的圆使通电导线在倾斜导轨上静止的最小磁感应强度安培力平行于斜面两个物体距离最近(远)速度相等动与静的分界点转盘上物体刚好发生滑动向心力为最大静摩擦力刚好不上(下)滑静摩擦力为最大静摩擦力,物体平衡保持物体静止在斜面上的最小水平推力拉动物体的最小力关于绳的临界问题绳刚好被拉直绳上拉力为零绳刚好被拉断绳上的张力等于绳能承受的最大拉力运动的突变天车下悬挂重物水平运动,天车突停重物从直线运动转为圆周运动,绳拉力增加绳系小球摆动,绳碰到(离开)钉子圆周运动半径变化,拉力突变【总结】高考物理复习常见临界条件归纳就为大家整理到这里了,希望大家在高三期间好好复习,为高考做准备,大家加油。
物理临界问题总结
物理临界问题是指在某些物理现象或过程中,某些因素在达到一定条件时发生突变,导致物理状态发生质的变化。
解决临界问题需要找到临界状态,即物理现象或过程发生质变的转折点。
以下是一些常见的物理临界问题:
1. 速度最大或最小问题:在运动学中,物体在某些力的作用下做变速运动,当速度达到最大或最小值时,物体的加速度为零,此时是临界状态。
2. 角度问题:在分析力的合成与分解时,当两个力的夹角为90度时,合力的大小达到最大值或最小值,这是临界状态。
3. 追及问题:在运动学中,当两物体速度相等时,距离最小或最大,这是追及问题的临界状态。
4. 平衡问题:在分析受力平衡时,当某个力为零时,物体处于平衡状态,这是临界状态。
5. 折射和反射问题:在光学中,当光线经过介质交界处时,会发生折射和反射现象。
当光线垂直入射或反射角等于入射角时,折射和反射达到最大或最小值,这是临界状态。
6. 弹簧问题:在分析弹簧的弹力时,当弹簧处于原长或处于最大限度压缩或拉伸时,弹力为零或达到最大值,这是临界状态。
7. 电场和磁场问题:在电场和磁场中,当电荷或电流垂直进入电场或磁场时,电场力或洛伦兹力达到最大值或最小值,这是临界状态。
解决临界问题的关键是找到临界状态,通过分析物理现象或过程的转折点来解决问题。
在解题过程中,需要注意物理量的变化趋势和转折点,以及如何利用这些信息来解决问题。
1.雨水从水平长度一定的光滑斜面形屋顶流淌时间最短——屋面倾角为45°。
2.从长斜面上某点平抛出的物体距离斜面最远——速度与斜面平行时刻。
3.物体以初速度沿固定斜面恰好能匀速下滑(物体冲上固定斜面时恰好不再滑下)—μ=tgθ。
4.物体刚好滑动——静摩擦力达到最大值。
5.两个物体同向运动其间距离最大(最小)——两物体速度相等。
6.两个物体同向运动相对速度最大(最小)——两物体加速度相等。
7.位移一定的先启动后制动分段运动,在初、末速及两段加速度一定时欲使全程历时最短——中间无匀速段(位移一定的先启动后制动分段匀变速运动,在初速及两段加速度一定时欲使动力作用时间最短——到终点时末速恰好为零)8.两车恰不相撞——后车追上前车时两车恰好等速。
9.加速运动的物体速度达到最大——恰好不再加速时的速度。
10.两接触的物体刚好分离——两物体接触但弹力恰好为零。
11.物体所能到达的最远点——直线运动的物体到达该点时速度减小为零(曲线运动的物体轨迹恰与某边界线相切)12.在排球场地3米线上方水平击球欲成功的最低位置——既触网又压界13.木板或传送带上物体恰不滑落——物体到达末端时二者等速。
14.线(杆)端物在竖直面内做圆周运动恰能到圆周最高点—最高点绳拉力为零(=0v杆端)15.竖直面上运动的非约束物体达最高点——竖直分速度为零。
16.细线恰好拉直——细线绷直且拉力为零。
17.已知一分力方向及另一分力大小的分解问题中若第二分力恰为极小——两分力垂直。
18.动态力分析的“两变一恒”三力模型中“双变力”极小——两个变力垂直。
19.欲使物体在1F2F两个力的作用下,沿与1F成锐角的直线运动,已知1F为定值,则2F最小时即恰好抵消1F在垂直速度方向的分力。
20.渡河中时间最短——船速垂直于河岸,即船速与河岸垂直(相当于静水中渡河)。
21.船速大于水速的渡河中航程最短——“斜逆航行”且船速逆向上行分速度与水速抵消。
高考物理《平衡中的临界和极值问题》真题练习含答案1.如图所示,一工人手持砖夹提着一块砖匀速前进,手对砖夹竖直方向的拉力大小为F .已知砖夹的质量为m ,重力加速度为g ,砖夹与砖块之间的滑动摩擦因数为μ,最大静摩擦力等于滑动摩擦力.若砖块不滑动,则砖夹与砖块一侧间的压力的最小值是( )A .F 2μB .F μC .F -mg 2μD .F -mg μ答案:C解析:工人手持砖夹提着一块砖匀速前进,砖夹处于平衡状态,在竖直方向满足F =mg +2f ,砖夹与砖之间恰好达到最大静摩擦力f =μN ,联立解得,砖夹与砖块一侧间的压力的最小值为N =F -mg 2μ,C 正确. 2.(多选)如图所示,质量为m 的小球固定在一轻杆的一端,轻杆另一端通过光滑铰链固定于O 点.现给小球施加一拉力F ,使小球与轻杆在竖直平面内绕O 点缓慢转动,转动过程中拉力F 与轻杆的夹角始终为θ=60°.则从小球刚好离开地面至轻杆转过90°的过程中( )A .拉力F 有最大值,为233mg B .拉力F 有最小值,为233mg C .轻杆对小球的弹力F N 先增大后减小D .轻杆对小球的弹力F N 先减小后增大 答案:AC解析:选取小球运动过程某一状态,对其受力分析,作出支持力与拉力的合成图,如图所示,由题意知,α+β=120°在力的三角形中应用正弦定理得mg sin 60° =F sin β =F N sin α,从小球刚好离开地面至轻杆转过90°的过程中,β从90°减小到0,sin β逐渐减小,拉力F 逐渐减小,因此当β=90°时,F 最大,此时F =233mg ,α从30°增加到120°,sin α先增大后减小,弹力F N 先增大后减小,当α=90°时,F N 最大.综上所述,A 、C 正确,B 、D 错误.3.[2024·海南省白沙学校期末考试]如图所示,物体的质量为2 kg ,两根轻细绳AB 和AC 的一端固定于竖直墙上,另一端系于物体上(∠BAC =θ=60°),在物体上另施加一个方向与水平线也成θ角的拉力F ,若要使绳都能伸直,下列F 中不可能的是(取g =10 m/s 2)( )A .43 NB .83 NC .103 ND .123 N答案:A解析:由平衡条件有,水平方向有T B cos θ+T C =F cos θ,竖直方向有T B sin θ+F sin θ=mg ,整理有T B =mg sin θ -F ,T C =2F cos θ-mg cos θsin θ .若要使绳都能伸直,则T B 和T C 均大于零,所以应该有mg 2sin θ <F <mg sin θ ,解得2033 N<F <4033N ,本题选不可能的,故选A.4.[2024·山东省青岛市第一中学校考阶段练习](多选)质量为M 的木楔倾角θ为37°,在水平面上保持静止.当将一质量为m的木块放在木楔斜面上时,它正好匀速下滑.如图所示,当用与木楔斜面成α角的力F拉木块,木块匀速上升(已知木楔在整个过程中始终静止).可取sin 37°=0.6.下列说法正确的有()A.物块与斜面间的动摩擦因数为0.75B.当α=37°时F有最小值C.当α=30°时F有最小值D.F的最小值为0.96mg答案:ABD解析:物块匀速下滑时,有mg sin 37°=μmg cos 37°,解得μ=0.75,A正确;物块匀速上升时,有F cos α=mg sin θ+μ(mg cos θ-F sin α),整理得F=mg sin 2θ,当α=θ=cos (θ-α)37°时F有最小值,最小值为F=0.96mg,B、D正确,C错误.5.[2024·江苏省无锡期中考试]如图所示,倾角θ=37°的质量为m=10 kg的粗糙斜面体A,置于粗糙水平面上,A与地面间的动摩擦因数足够大,质量m2=1 kg的B物体经平行于斜面的不可伸长的轻质细线跨光滑定滑轮悬挂质量为m3的物块C.已知A、B间的动摩擦因数为0.5,视最大静摩擦力等于滑动摩擦力,g取10 m/s2,求:(1)若不悬挂物块C时,通过计算,判断B是否会自行下滑;(2)欲使B能静止在斜面A上,C的质量范围;(3)若m3=0.5 kg时,地面对A的摩擦力的大小.答案:(1)会自行下滑(2)0.2 kg≤m3≤1 kg(3)4 N解析:(1)若不悬挂物块C时,通过受力分析可知,重力沿斜面向下方向分力为G x=m2g sin θ=6 N重力沿垂直斜面向上方向分力为G y=m2g cos θ=8 NA、B间的动摩擦因数为0.5,则摩擦力大小为f=μF N=μG y=4 N明显G x>f可得B会自行下滑;(2)当悬挂物块C时,通过受力分析如图当摩擦力沿斜面向上时拉力T有最小值为T min=G x-f=2 N 解得质量m3min=0.2 kg当摩擦力沿斜面向下时拉力T有最大值为T min=G x+f=10 N 解得质量m3max=1 kg得C的质量范围为0.2 kg≤m3≤1 kg(3)当m3=0.5 kg时,拉力T大小为T=m3g=5 N地面对A的摩擦力f=T cos θ=4 N。
有关“物理”的临界与极值问题高中物理中的临界与极值问题涉及到多个知识点,包括牛顿第二定律、圆周运动、动量守恒等。
有关“物理”的临界与极值问题如下:1.牛顿第二定律与临界问题:●牛顿第二定律描述了物体的加速度与合外力之间的关系。
当物体受到的合外力为零时,物体处于平衡状态。
●在某些情况下,物体受到的合外力不为零,但物体仍然处于平衡状态,这是因为物体受到的合外力恰好等于某个临界值。
这种状态被称为“临界平衡”。
●在解决与临界平衡相关的问题时,通常需要考虑物体的平衡条件和牛顿第二定律。
通过分析物体的受力情况,可以确定物体是否处于临界平衡状态,以及需要施加多大的力才能使物体离开临界平衡状态。
2.圆周运动中的极值问题:●圆周运动中的极值问题通常涉及向心加速度和线速度的最大值和最小值。
●当物体在圆周运动中达到最大速度时,其向心加速度最小。
此时,物体的线速度最大,而向心加速度为零。
●当物体在圆周运动中达到最小速度时,其向心加速度最大。
此时,物体的线速度最小,而向心加速度为最大值。
●在解决与圆周运动中的极值问题相关的问题时,通常需要考虑向心加速度和线速度之间的关系,以及如何通过分析物体的受力情况来确定其最大速度和最小速度。
3.动量守恒与极值问题:●动量守恒定律描述了系统在不受外力作用的情况下,系统内各物体的动量之和保持不变。
●在某些情况下,系统受到的外力不为零,但系统仍然保持动量守恒。
这是因为系统受到的外力恰好等于某个临界值。
这种状态被称为“临界动量守恒”。
在解决与临界动量守恒相关的问题时,通常需要考虑系统的动量守恒条件和外力的作用。
通过分析系统的受力情况,可以确定系统是否处于临界动量守恒状态,以及需要施加多大的外力才能使系统离开临界动量守恒状态。
高考物理常见临界条件汇总
物理常见临界条件有哪些呢?
一、临界状态和临界条件
当物体由一种物理状态变为另一种物理状态时,可能存在一个过渡的转折点,这时物体所处的状态通常称为临界状态。
出现临界状态时,该状态既可理解成“恰好出现”也可理解为“恰好不出现”。
与临界状态相关的物理条件称为临界条件。
解答临界问题的关键是找出临界条件。
临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力求准确把握题目的物理情景,分析清楚物理过程,抓住临界状态的特征,找到正确的解题方向。
从而找出临界条件。
许多临界问题,题干中常用“恰好”、“最大”、“最小”、“不相碰”、“不脱离”等词语对临界状态给出了明确的暗示,审题时一定要抓住这些特定的词语发掘出内含规律,找出临界条件。
二、临界情况————————临界条件
绳刚好被拉直——绳上拉力为零
刚好不上(下)滑保持物体静止在斜面上的最小水平推力拉动物体的最小力——静摩擦力为最大静摩擦力,物体平衡
转盘上“物体刚好发生滑动”——向心力为最大静摩擦力
绳刚好被拉断——绳上的张力等于绳能承受的最大拉力
两个物体距离最近(远)——速度相等
天车下悬挂重物水平运动,天车突停——重物从直线运动转为圆周运动,绳拉力增加
绳系小球摆动,绳碰到(离开)钉子——圆周运动半径变化,拉力突变
使通电导线在倾斜导轨上静止的最小磁感应强度——安培力平行于斜面
圆形磁场区的半径最小——磁场区是以公共弦为直径的圆
双弹簧振子弹簧的弹性势能最大——弹簧最长(短),两端物体速度为零
速度达到最大——物体所受合外力为零
刚好不相撞——两物体最终速度相等或者接触时速度相等
刚好不分离——两物体仍然接触、弹力为零原来一起运动的两物体分离时不只弹力为零且速度和加速度相等
粒子刚好飞出(飞不出)两个极板间的匀强电场——粒子运动轨迹与极板相切
杆端物体刚好通过最高点——物体运动到最高点时速度为零
绳端物体刚好通过最高点——物体运动到最高点时重力(“等效重力”)等于向心力速度大小为刚好运动到某一点(“等效最高点”)——到达该点时速度为零
物体刚好滑出(滑不出)小车——-物体滑到小车一端时与小车的速度刚好相等
粒子刚好飞出(飞不出)磁场——粒子运动轨迹与磁场边界相切
粒子刚好飞出(飞不出)两个极板间的匀强电场——粒子运动轨迹与极板相切
粒子刚好飞出(飞不出)磁场——粒子运动轨迹与磁场边界相切
粒子刚好飞出(飞不出)两个极板间的匀强电场——粒子运动轨迹与极板相切。