第三章 静电场及其边值问题的解法
- 格式:ppt
- 大小:2.68 MB
- 文档页数:61
静电场的解法第三章静电场的解法第三章静电场的解法静电场问题的类型唯一性定理分离变量法镜像法有限差分法第三章静电场的解法静电场问题的类型分布型问题已知全空间的电荷分布利用电场强度或电位的计算公式直接计算场中各点的电场强度或电位这类问题称为分布型问题对此问题有如下几种解法。
、根据电荷分布利用场源积分式直接求解电场。
、根据电荷分布利用场源积分式直接求解电位再根据计算电场。
、若电荷分布具有某种对称性从而判断场的分布也具有某种对称性时可用高斯定理直接求解电场此法主要是要正确选取高斯面一般高斯面上的场强要保持常量并且方向与所在面的法向相同计算才可化简。
第三章静电场的解法边值型问题已知确定区域中的电荷分布和其边界上的电位或电位函数的法向导数分布求解该区域中电位的分布状况这类问题称为边值型问题或简称为边值问题边值问题根据边界条件给出的形式不同可分为以下三种类型。
第一类边值问题:给定整个边界上的电位函数求区域中电位分布这类问题又称为狄利克莱问题。
第二类边值问题:给定整个边界上电位函数的法向导数求区域中电位分布这类问题又称为诺伊曼问题。
第三类边值问题:一部分边界上的电位给定另一部分边界上的法向导数给定求区域中电位分布这类问题又称为混合型边值问题。
如果边界是导体则上述三类问题分别变为:已知导体表面的电位已知各导体的总电量已知一部分导体表面上的电位和另一部分导体表面上的电量。
第三章静电场的解法唯一性定理唯一性定理:满足边界条件的泊松方程或拉普拉斯方程的解必定唯一。
或:如果给定一个区域中的电荷分布和边界上的全部边界条件则这个区域中的解是唯一的。
格林定理格林定理是由散度定理直接导出的数学恒等式。
将散度定理用于闭合面S所包围的体积V内任一矢量场式中参量是在区域内两个任意的标量函数并要求在边界上一阶连续在区域内二阶连续。
第三章静电场的解法则有格林第一恒等式上述两式相减得格林第二恒等式第三章静电场的解法唯一性定理的证明设φφ是同一无源区域的边值问题的解。
第三章 静电场边值问题在上一章中,我们已经知道了几种从电荷分布求静电场的问题。
一种是直接积分式(2-2-1)求得已知电荷分布情况下的电场;另一种是利用式(2-2-4)高斯定理求解某些具有对称性电荷分布的静电场问题;再一种就是由式(2-2-10)求出静电势,再利用关系式ϕ=-∇E求出电场,这些问题一般都不存在边界。
然而,对于许多实际静电问题,电荷的分布是复杂的,计算积分很困难,甚至是不能积分,有些静电问题只给出了边界上的面电荷或电势。
在这种情况下,需有其它有效的方法求解静电问题,这种方法就是求解静电势所满足的偏微分方程。
这偏微分方程就是由式(2-2-10)给出的方程:2ρϕε∇=-因此,对于有边界存在的情况下,我们不得不求解给定边界条件下静电势微分方程,然后求出静电场,这一问题称为静电场边值问题错误!未找到引用源。
即求出满足给定边界条件的泊松方程的解。
在这一章中,我们首先介绍静电唯一性定理,它是解决静电场边值问题的基础。
基于静电唯一性定理,我们主要介绍两种求解静电场边值问题的方法:电像法和分离变量法。
当然,求解边值问题还有其它的方法。
值得一提的是,本章所介绍的方法不仅仅适用于静电场,它同样适用于静磁场和时变电磁场。
3-1 静电唯一性定理我们将证明,如果我们得到了满足给定边界条件的泊松方程的解,那么,这个解是唯一的。
这就是静电唯一性定理错误!未找到引用源。
下面我们证明这一定理并初步介绍它的应用。
在由边界面s 包围的求解区域V 内,若: 1) 区域V 内的电荷分布给定;2) 在边界面s 上各点,给定了电势s ϕ,或给定了电势法向偏导数snϕ∂∂,则V 内的电势唯一确定。
以上的表述就是静电唯一性定理。
下面,我们用反证法证明静电唯一性定理。
证: 假定在区域V 内的电荷密度分布为ρ(r ),且有两个不同的解φ1和φ2满足泊松方程及给定边界条件(给定的电势值s ϕ或电势法向偏导数snϕ∂∂)。
即:2212,ρρϕϕεε∇=-∇=-并有12sssϕϕϕ==或12sssnnnϕϕϕ∂∂∂==∂∂∂式中s ϕ和snϕ∂∂为给定的边界条件。
oP adq′r′OP adq′r′为常数。
对于不接地的导体球,若引入镜像电荷 q' 后,为了满足电荷守 恒原理,必须再引入一个镜像电荷q",且必须令q ′′ = − q ′P a O d q′ r′ r q f而且,为了保证球面边界是 一个等位面,镜像电荷 q′′ 必须位 于球心。
事实上,由于导体球不接地,因此,其电位不等于零。
由q 及 q‘在球面边界上形成的电位为零,因此必须引入第二个镜像电荷 q“ 以提供一定的电位。
(思考:等位线的形状是否和以前一样?)(3)线电荷与带电的导体圆柱。
P a O d f -ρl已知线电荷为rr′ρl,导体圆柱单位ρl长度的电荷量为-ρl 。
在圆柱轴线与线电荷之间,离轴线的距离d 处,平行放置一根 镜像线电荷 − ρ l 。
求d 的大小。
已知无限长线电荷产生的电场强度为E=ρl er 2πε r因此,离线电荷 r 处,以 r0 为参考点的电位为ϕ=∫r0rEdr =ρl ⎛ r0 ⎞ ln⎜ ⎟ 2πε ⎝ r ⎠若令镜像线电荷 − ρ l 产生的电位也取相同的 r0 作为参考点, 则 ρ l 及 − ρ l 在圆柱面上 P 点共同产生的电位为P a O d f -ρlr′rρlϕP =ρl ⎛ r0 ⎞ ρl ⎛ r0 ⎞ ln⎜ ⎟ − ln⎜ ⎟ 2πε ⎝ r ⎠ 2πε ⎝ r ′ ⎠ ρl ⎛ r ′ ⎞ = ln⎜ ⎟ 2πε ⎝ r ⎠已知导体圆柱是一个等位体,即 ϕ p 是一个常数,因此,为了 满足这个边界条件,必须要求比值r′ r为常数。
2a r′ a d 与前同理,可令 = = ,由此得 d = r f a f可以想象与实际导体圆柱对称位置的右侧,也存在一个圆柱等位 面,如上图,则可计算两根平行导线间的电容(P79)。
(4)点电荷与无限大的介质平面。
qq′ Enr0r0′E'E t′ Etq"ε1 ε2et en=ε1 ε1q'θ+ε2 ε2r0′′θ′ E n′E t′′EnEE"为了求解上半空间的场可用镜像电荷 q' 等效边界上束缚电 荷的作用,将整个空间变为介电常数为ε1 的均匀空间。