第四章 弹性变形、塑性变形、本构方程
- 格式:ppt
- 大小:3.33 MB
- 文档页数:88
岩土类材料弹塑性力学模型及本构方程TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。
关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。
即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。
尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。
第一章岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。
岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。
岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。
正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。
归纳起来,岩土材料有3点基本特性:1.摩擦特性。
2.多相特性。
3.双强度特性。
另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。
4.土体的塑性变形依赖于应力路径。
对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。
固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。
物理学中的弹性和塑性变形弹性和塑性变形是物理学中常见的材料行为,它们在力学和材料科学研究中起着重要的作用。
本文将介绍弹性和塑性变形的基本概念、特点和应用。
一、弹性变形弹性是指物体受力后能够恢复原状的性质。
当物体受到外力作用时,原子之间的相对位置发生变化,但是在外力去除后立即恢复原来的位置,这种现象称为弹性变形。
弹性变形具有以下特点:1. 线性弹性:当外力较小,物体受到微小变形时,物体的应力与应变成正比,遵循胡克定律。
即应力等于弹性模量乘以应变。
2. 可逆性:在弹性变形中,物体受到力的作用而产生的位移是可逆的,即力去除后物体能够恢复到原来的形状和大小。
3. 弹性极限:物体受到超过一定限度的力作用时,就会超过其弹性极限,从而产生塑性变形。
弹性变形在现实生活中有着广泛的应用。
例如,弹簧是一种典型的弹性变形材料,可以用于悬挂和缓冲装置。
弹性变形还应用于构造材料、机械工程和土木工程等领域。
二、塑性变形塑性是指物体在受到外力作用后能够永久改变形状的性质。
塑性变形与弹性变形相比有以下特点:1. 非线性塑性:在塑性变形中,物体的应力与应变不再成正比,而呈现非线性关系。
这是因为物体在受到较大变形时原子之间的排列结构发生变化。
2. 不可逆性:塑性变形是不可逆的,即一旦物体经历塑性变形后,即使力被移除,物体也无法回复到原来的形状和大小。
3. 塑性极限:物体受到超过弹性极限的力作用时,就会进入塑性变形,即物体无法完全恢复到初始状态。
塑性变形在材料加工、金属加工和工程设计中起到重要作用。
例如,塑性变形可以实现金属材料的锻造、挤压和拉伸等工艺。
在建筑工程中,塑性变形可以增加结构材料的强度和稳定性。
三、弹塑性变形除了纯弹性和纯塑性变形外,还存在一种介于两者之间的情况,称为弹塑性变形。
弹塑性变形具有以下特点:1. 应力-应变曲线:弹塑性材料的应力-应变曲线通常呈现弹性和塑性的特点。
在外力较小时,材料表现出线性弹性行为,而在外力较大时则呈现非线性塑性行为。
弹性材料本构方程简易推导摘要:弹性力学问题的三大基本方程分别为平衡方程,几何方程,本构方程。
文中主要介绍弹性材料弹性阶段的本构方程简要推导过程。
关键词:本构方程;增量理论;弹性1 前言本构方程描述的是材料应力与应变之间的关系,其具有更广泛的含义,凡是描述介质的应力或应力率、应变或应变率等之间关系的物性方程,统称为本构方程。
2 弹性阶段本构方程推导2.1 方程建立弹塑性材料处于弹性阶段,即当应力小于屈服应力时,由材料力学相关知识可知应力与应变之间符合Hooke定律:,其中E为弹性常数(杨氏弹性模量)。
三维应力状态下,材料内部一点处应力状态有9个应力分量,故对应于9个应变分量。
由应力张量与应变张量的对称性,,独立的应力分量与应变分量各为6个。
对于均匀的理想弹性体,假设应力应变关系式可表达如下:(1)其中(m, n=1, 2,3, 4, 5,6)为弹性系数,由材料性质决定,与坐标x, y, z无关。
2.2 系数确定2.2.1各向同性材料本构方程对于各向同性材料,独立的弹性常数只有两个,故在最终得出的本构方程中仅使用两个系数来表示应力应变关系。
在弹性状态下主应力方向即为主应变方向。
令坐标轴Ox, Oy, Oz与主应力方向相一致,此时,各应力面无剪应力,只有正应力,故式(1)变化如下:(2)各向同性材料中,对的影响与对及对的影响相同,即有。
同理,和对的影响相同,即,类似有:,等,因而令(3)于是,对于应变主轴(用1, 2, 3代替x, y, z)来说,弹性常数有两个这里设为P和Q。
将式(3)带入式(2),并令,,(此过程作者水平有限,目前尚不能完整导出,直接借助结论)可得出下列弹性本构关系:(4)其中,常数称为拉梅弹性常数,在此可以看出主轴坐标系下,本构方程只含两个未知参数。
于是,在任意坐标系中弹性阶段本构方程为:(5)利用求和约定,式(5)可改写成(5´)以上为各向同性材料在弹性阶段本构方程,但在此,方程中λ,μ两参数仍不能直接得出,不能在后期工程计算应用中方便使用。