在利用分离变量法求解定解问题的时候
- 格式:pdf
- 大小:231.98 KB
- 文档页数:23
XXX《数学物理方法》复习思考题及答案数学物理方法》复思考题一、单项选择题1、函数f(z)以b为中心的罗朗(Laurent)展开的系数公式为C.k=0的情况为f(b),k>0的情况为f(k)(b)/k。
k<0的情况为f(k)(b)(z-b)^k2、本征值问题X''(x)+λX(x)=0,X(0)=0,X(l)=0的本征函数是B.sin(nπx/l)3、点z=∞是函数cot z的B.孤立奇点4、可以用分离变量法求解定解问题的必要条件是A.泛定方程和初始条件为齐次5、设函数f(z)在单连通区域D内解析,C为D内的分段光滑曲线,端点为A和B,则积分∫Cf(z)dzC.与积分路径及端点坐标无关6、条件z<1所确定的是一个A.单连通开区域7、条件|z-1|<2所确定的是一个B.复连通开区域8、积分∫|z|=1 zcosz^2 dz=B.-19、函数f(z)=1/(1-z)在z+1>2内展成z+1的级数为D.∑(n+1)z^n10、点z=-1是函数f(z)=sinz的B.孤立奇点二、填空1、复数(1-i√3)/2的三角形式为1,其指数形式为e^(-iπ/3)。
2、复数sin(π/5)+icos(π/5)的三角形式为cos(2π/5)+isin(2π/5),其指数形式为e^(i2π/5)。
3、复数(1+i√3)/2的实部u=1/2,幅角θ=π/3,虚部v=√3/2,模r=1.4、复数-2+i2的实部u=-2,虚部v=2,模r=2√2,幅角θ=3π/4.5、z^4+1=0的解为±1±i。
6、z^4+a^4=0的解为±a±ai。
1.z4-1-i的解为,ez=1+i的解为,ii=(删除明显有问题的段落)2.对于积分∫cosz dz,z=1,积分∫z3cosz dz,对于积分∫zcosz2 dz,z=1,积分∫zsinz dz=1,需要进行小幅度的改写。
第八章 分离变量法⎪⎪⎩⎪⎪⎨⎧≤≤=∂∂=>==><<∂∂=∂∂l x x t x u x x u t t l u t u t l x x u a t u 0)()0,(),()0,(00),(,0),0(0,022222ψϕ 对于这样的定解问题,我们将介绍分离变量法求解,首先回忆高数中我们如何处理的求解的,高数中处理微分或重积分是把函数分成单元函数分离变量法的思路:对于二阶线性微分方程变换成单元函数来求解,也就是通过分离变量法把x 、t 两个变量分开来,即把常微分方程变化为两个偏微分方程来求解。
分离变量法的思想:先求出具有分离形式且满足边界条件的特解,然后由叠加原理做出这些解的线性组合,最后由其余的定解条件确定叠加系数(叠加后这些特解满足边界条件不满足初始条件,再由初始条件确定通解中的未知的数)。
叠加原理:线性偏微分方程的解的线性组合仍是这个方程的解。
特点:(1)数学上 解的唯一性来做作保证。
(2)物理上 由叠加原理作保证。
例:有界弦的自由振动1.求两端固定的弦的自由振动的规律⎪⎪⎩⎪⎪⎨⎧≤≤=∂∂=>==><<∂∂=∂∂l x x t x u x x u t t l u t u t l x x u a t u 0)()0,(),()0,(00),(,0),0(0,022222ψϕ 第一步:分离变量(建立常微分方程定解问题) 令)()(),(t T x X t x u =这个思想可从实际的物理现象可抽象出来,比如我现在说话的声音,它的振幅肯定随时间变化,但到达每个同学的位置不同,振幅又是随位置变化,可把声音分成两部分,一部分认为它随时间变化,一部分随位置变化。
第二步:代入方程(偏微分就可写成微分的形式,对于u 有两个变量,但对于X 、T 都只有一个变量))()()()(2t T x X a t T x X ''=''变形得)()()()(2t T a t T x X x X ''=''= λ- 左边与t 无关,右边与x 无关,左右两边相互独立,要想相等,必定等于一个常数。
引言在数学建模和问题求解过程中,分离参数法是一种常用的方法,用于解决恒成立问题。
本文将以分离参数法解决恒成立问题的步骤为主题,深入探讨这一方法的应用和原理。
通过对这一主题的深度分析,希望读者能更全面地了解分离参数法在解决恒成立问题中的作用和意义。
一、分离参数法的基本概念分离参数法是一种通过引入新的参数,将原方程中的变量分离的方法。
在解决恒成立问题时,我们通常会遇到一些复杂的方程或不等式,通过分离参数法可以简化问题的求解过程。
这种方法的关键在于选择合适的参数,使得原方程中的变量可以被分离或者化简成更容易处理的形式。
二、分离参数法解决恒成立问题的步骤1. 确定需要分离的参数在使用分离参数法解决恒成立问题时,首先需要确定需要引入的参数。
这一步需要观察原方程的形式,找到能够将变量分离的合适参数。
通常情况下,选择参数需要考虑到简化方程和减少求解难度的原则。
2. 将参数引入原方程确定了需要分离的参数后,接下来就是将参数引入原方程。
这一步需要仔细分析原方程的结构,选择合适的方式引入参数,并进行变形操作,使得原方程中的变量能够被成功分离。
3. 分离变量并求解引入参数后,原方程中的变量应该被分离到各自的部分,使得方程的形式更简单或者更易于处理。
在分离变量的过程中,可能会需要运用一些基本的数学技巧或变换方法。
对分离后的方程进行求解,得到恒成立条件或者特定的解。
三、分离参数法解决恒成立问题的示例分析举例来说明分离参数法解决恒成立问题的具体步骤。
假设有一个非常简单的不等式问题:证明当x>0时,恒有2x+1>0成立。
这个问题可以通过分离参数法得到简单的解。
首先我们选择参数t,使得2x+1可以被分离为2(x-1/t)+1/t,接着我们引入t后,可以得到不等式 2(x-1/t)+1/t>0。
由于x>0,所以x-1/t>0,因此不等式转化为1/t>0。
当1/t>0时,不等式2(x-1/t)+1/t>0成立。
根据1/t>0,我们知道t必须是正数,因此不等式2x+1>0在x>0时恒成立。
第一章定义和方程类型1、34233(,,)v v v xyv g x y z x x y z∂∂∂+++=∂∂∂∂ 是( D )偏微分方程 A 、 一阶 B 、二阶 C 、 三阶 D 、 四阶 1、22(,,)vxy v g x y z z∂+=∂ 是( A )偏微分方程 A 、 一阶 B 、二阶 C 、 三阶 D 、 四阶1、33232(,,)v v vv xyv g x y z x x y z ∂∂∂+++=∂∂∂∂ 是( C )偏微分方程A 、 一阶B 、二阶C 、 三阶D 、 四阶 2、2(,)txx u a u f x t -= (其中0>a ) 属于( A )型偏微分方程A 、 抛物B 、双曲C 、 椭圆D 、 混合 2、2(,)ttxx u a u x t ϕ-= (其中0>a ) 属于( B )型偏微分方程A 、 抛物B 、双曲C 、 椭圆D 、 混合2、22(,,)tt xx u a u x y t ϕ+= (其中0>a ) 属于( C )型偏微分方程 A 、 抛物 B 、双曲 C 、 椭圆 D 、 混合 2、(,)xx yy u u f x y += (其中(,)u u x y =) 属于( C )型偏微分方程A 、 抛物B 、双曲C 、 椭圆D 、 混合 4、下列方程是非线性偏微分方程的是( A )A 22()()sin u u x x y 抖+=抖 B (,)u uf x y x y抖+=抖 C 22(,)(,)cos u ua x tb x t x x t抖+=抖 D 3433(,,)v v v g x y z x x y z ∂∂∂++=∂∂∂∂ 7、下列方程是非齐次方程的是( A )A(,)(,)0u uxy f x y f x y x y 抖+=?抖, B 2,0t xx u a u a =?C 22(,)(,)0u u a x t b x t x t 抖+=抖 D 34330v v v x x y z ∂∂∂++=∂∂∂∂3、在用分离变量法求解定解问题200,0,0|0,|0|()t xx x x x l t u a u x l t u u u x ϕ===⎧=<<>⎪==⎨⎪=⎩时,得到的固有函数系为( D ) A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x ln π B 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n π C 、{},...2,1,sin =n x n π D 、 ,...2,1,2)12(sin =⎭⎬⎫⎩⎨⎧-n x ln π 3、在用分离变量法求解定解问题⎪⎩⎪⎨⎧====><<=====)(|),(|0|,0|0,0,0002x u x u u u t l x u a u t t t l x x x x xx tt ψϕ时,得到的固有函数系为( B )A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x l n πB 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n πC 、(21)cos ,1,2,...2n x n l π-⎧⎫=⎨⎬⎩⎭ D 、 ,...2,1,2)12(sin =⎭⎬⎫⎩⎨⎧-n x l n π3、在用分离变量法求解定解问题⎪⎩⎪⎨⎧===><<====)(|0|,0|0,0,002x u u u t l x u a u t l x x xx t ϕ时,得到的固有函数系为( A )A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x l n π B 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n πC 、(21)cos,1,2,...2n x n l π-⎧⎫=⎨⎬⎩⎭ D 、,...2,1,2)12(sin=⎭⎬⎫⎩⎨⎧-n x l n π7、给出未知函数 u 在区域Ω的边界Γ上的值0,),,(|≥Γ∈=Γt M t M u μ 的边界条件,称为第( A )类边界条件。
(0135)《数学物理方法》复习思考题一、单项选择题【 】1、函数()f z 以b 为中心的罗朗(Laurent )展开的系数公式为11().2()k k f A C d i b γζζπζ+=-⎰ ()().!k k f b B C k = 1().2k f C C d i b γζζπζ=-⎰ 1!().2()k k k f D C d i b γζζπζ+=-⎰【 】2、本征值问题()()0,(0)0,()0X x X x X X l λ''+===的本征函数是A .cos n x l π B .sin n x l π C .(21)sin 2n x l π- D .(21)cos 2n x lπ-【 】3、点z =∞是函数cot z 的A. 解析点B. 孤立奇点C. 非孤立奇点D. 以上都不对【 】4、可以用分离变量法求解定解问题的必要条件是A. 泛定方程和初始条件为齐次B. 泛定方程和边界条件为齐次C. 初始条件和边界条件为齐次D. 泛定方程、初始条件和边界条件为齐次 【 】5、设函数()f z 在单连通区域D 内解析,C 为D 内的分段光滑曲线,端点为A 和B ,则积分()Cf z dz ⎰A. 与积分路径及端点坐标有关B. 与积分路径有关,但与端点坐标无关C. 与积分路径及端点坐标无关D. 与积分路径无关,但与端点坐标有关 【 】6、 条件1z <所确定的是一个A .单连通开区域 B. 复连通开区域 C. 单连通闭区域 D. 复连通闭区域 【 】7、条件210<-<z 所确定的是一个A .单连通开区域 B. 复连通开区域 C. 单连通闭区域 D. 复连通闭区域 【 】8、积分2||1cos z z z dz ==⎰A .1B .12-C .12D .0 【 】9、函数1()1f z z=-在12z +>内展成1z +的级数为 A .102(1)n n n z ∞+=-+∑ B .101n n z ∞+=∑ C .1(1)2n n n z ∞+=+∑ D .0nn z ∞=∑ 【 】10、点0z =是函数11()sin f z z -⎛⎫= ⎪⎝⎭的A. 解析点B. 孤立奇点C. 非孤立奇点D. 以上都不对二、填空1、 复数231i -的三角形式为,其指数形式为.2、 复数5c o s5s i n ππi +的三角形式为,其指数形式为.3、 复数12+的实部u =,虚部v =,模r =,幅角θ=.4、 复数22i +-的实部=u ,虚部=v ,模=r ,幅角=θ .5、 z 410+=的解为.6、 z a 440+= (a >0) 的解为.7、 014=--i z 的解为. 8、 i e z +=1的解为.9、=i i .10、 积分dzzz cos ==⎰1.11、 积分⎰==++1222z z z dz. 12、 积分⎰==13cos z zdz z .13、 积分=⎰badz z z 2cos .14、 积分⎰==12cos z dz z z .15、 积分=⎰1sin zdz z .16、 幂级数nn nz ∑∞=121的收敛半径为.17、 幂级数∑∞=-1)1(n nn z 的收敛半径为.18、 0=z 为3cos 1)(z zz f -=的.(奇点的类型,极点的阶数) 19、 0=z 为3sin )(zzz f =的.(奇点的类型,极点的阶数)20、=-+-+iii i 524321 . 21、 =---)21()2(i i i . 22、(1)i i = . 23、 积分dzz z z 216--==⎰.24、 幂级数121n z n n =∞∑的收敛半径为.25、 014=-z 的解为.26、 积分⎰==-+126z z z dz.27、 积分=⎰22sin πdz z z .28、 幂级数nn nz ∑∞=131的收敛半径为.29、 幂级数nn z n∑∞=11的收敛半径为 . 30、 函数zz f -=11)(在2|1|<+z 上展成)1(+z 的泰勒级数为 . 三、已知解析函数f z u x y iv x y ()(,)(,)=+的实部u x y (,)或虚部v x y (,),求此解析函数。
分离变量法求解齐次方程和齐次边界条件的拉普拉斯方程的边值问题33 隋沆锐34 程文博29袁盼盼分离变量法又称fourier 级数法,是求解数学物理定解问题问题的一种最普遍最基本的方法之一。
从数学的角度来说,其基本的思想是降低自变量的维数,把偏微分方程问题设法变成能解的常微分问题。
● 分离变量法的主要步骤:(1) 根据区域边界的形状,适当选择坐标系。
选取的原则是使坐标面与边界面一致,这样可使边界条件简化,即使在该坐标系中边界条件的表达式最为简单。
(2) 将满足齐次偏微分方程和齐次边界的解通过变量分离,使其转化为常微分方程的定解问题。
(3) 确定特征指和特征函数。
当边界条件是齐次时,求特征值和对应的特征函数就是求一个满足常微分方程和零边界条件的非零解。
(4) 定出特征值和特征函数后,再求其他常微分方程的解,然后把该解与特征函数相乘,得到变量分离的特解。
(5) 为了得到原定解问题的解,将所有变量分离的特解叠加成级数,成为形式解,其中任意常数有其他条件确定。
(6) 为了使形式解成为古典解,必须对定解条件附加适当的光滑性要求和相容性要求,以保证微分运算得以进行,并使微分后的级数任然是收敛的。
● 用分离变量法解拉普拉斯方程的边值问题常用的结论和规律: 1.设)(),...,('),(x f x f x f n 在区间【0,L 】上连续,)0(1+m f在【0,L 】上分段连续,,22....2,0,0)()0(⎥⎦⎤⎢⎣⎡===m n L f f n n其中【x 】表示不超过x 的最大整数。
那么,如果函数f (x )在区间【0,L 】上可以张开傅里叶正弦级数)1(],,0[,sin~)(1L x Lxn b x f n n ∈∑∞=π 则级数∑∞=1||n n mb n是收敛的。
类似的,如果)(x f 在],0[L 上可以展开成傅里叶余弦级数)2(],,0[,cos 2~)(10L x Lx n a a x f n n ∈+∑∞=π则级数||1n n m a n ∑∞=是收敛的。
标题:深度剖析分离变量法解 1 维热传导方程的初边值问题在研究热传导方程的初边值问题时,分离变量法是一种常用而有效的求解方法。
本文将对分离变量法解 1 维热传导方程的初边值问题进行深度剖析,并探讨其在物理和数学领域的应用。
在数学领域,热传导方程是描述物体温度随时间和空间变化的偏微分方程。
而在物理领域,热传导方程也是研究热量传递和热平衡的重要工具。
分离变量法,作为一种常见的求解方法,其原理和应用也备受关注。
1. 分离变量法的基本原理当我们面对一个包含多个变量的偏微分方程时,为了求解方程,我们常常采用分离变量的方法,将多个变量分开处理,从而简化原方程。
在解 1 维热传导方程的初边值问题中,分离变量法被广泛应用。
2. 解初边值问题的具体步骤2.1 我们需要对热传导方程进行分离变量,假设解可以表示为两个独立变量的乘积形式。
2.2 将分离后的各部分分别求解,并根据初边值条件确定待定系数。
2.3 将各部分的解线性组合,得到原方程的通解。
3. 应用举例在实际问题中,分离变量法可以应用于多种热传导问题的求解,比如杆的温度分布、矩形板的热传导以及圆环的热传导等。
这些例子不仅帮助我们理解分离变量法的具体应用,同时也展示了这一方法的广泛适用性。
回顾本文所述内容,我们深入剖析了分离变量法解 1 维热传导方程的初边值问题。
通过从简入繁的讲解方式,我们对分离变量法有了更深入的理解,不仅在理论上得到了加强,更加清晰地掌握了其实际应用。
我们通过具体的例子,进一步巩固了对这一方法的理解和运用能力。
个人观点和理解:分离变量法作为一种求解偏微分方程的通用方法,具有普适性和实用性。
在解决热传导方程的初边值问题时,分离变量法能够有效简化问题,并得到较为清晰的解析解。
在实际工程和科学研究中,我们可以充分发挥分离变量法的优势,解决多种与热传导相关的问题。
在知识格式的文章中,我们可以用更具体的例子和实践经验来点题问题的解决,从而更好地向读者展示这一方法的魅力和应用前景。