磁场课后作业
- 格式:doc
- 大小:1.31 MB
- 文档页数:12
[课后作业(十三)] (建议用时:40分钟)一、选择题1.(2018·浙江选考4月)在城市建设施工中,经常需要确定地下金属管线的位置,如图所示.有一种探测方法是,首先给金属长直管线通上电流,再用可以测量磁场强弱、方向的仪器进行以下操作:①用测量仪在金属管线附近的水平地面上找到磁场最强的某点,记为a ;②在a 点附近的地面上,找到与a 点磁感应强度相同的若干点,将这些点连成直线EF ;③在地面上过a 点垂直于EF 的直线上,找到磁场方向与地面夹角为45°的b 、c 两点,测得b 、c 两点距离为L .由此可确定金属管线( )A .平行于EF ,深度为L 2B .平行于EF ,深度为LC .垂直于EF ,深度为L 2D .垂直于EF ,深度为L解析:选A.由图可知磁场最强点为a 点,在导线的正上方,所以导线平行于EF ,且h =L 2. 2.如图所示,两根水平放置且相互平行的长直导线分别通有方向相反的电流I 1与I 2.且I 1>I 2,与两根导线垂直的同一平面内有a 、b 、c 、d 四点,a 、b 、c 在两根导线的水平连线上且间距相等,b 是两根导线连线的中点,b 、d 连线与两根导线连线垂直.则( )A .I 2受到的安培力水平向左B .b 点磁感应强度为零C .d 点磁感应强度的方向必定竖直向下D .a 点和c 点的磁感应强度不可能都为零解析:选D.电流I 1在I 2处的磁场方向竖直向下,根据左手定则可知,I 2受到的安培力的方向水平向右,故A 错误;电流I 1与I 2在b 处产生的磁场方向相同,所以合磁场方向向下,磁感应强度不等于零,故B 错误;两根水平放置且相互平行的长直导线分别通有方向相反、大小相等的电流I 1与I 2时,d 点的磁感应强度的方向是竖直向下,当两电流的大小不相等时,d 点的合磁场方向不是竖直向下,故C 错误;电流I 1的大小比电流I 2的大,则c 点的磁感应强度可能等于零,a 点的磁感应强度不可能等于零,故D 正确.3.如图所示,一带电塑料小球质量为m ,用丝线悬挂于O 点,并在竖直平面内摆动,最大摆角为60°,水平磁场垂直于小球摆动的平面.当小球自左方最大摆角处摆到最低点时,悬线上的张力恰为零,则小球自右方最大摆角处摆到最低点时悬线上的张力为( )A .0B .2mgC .4mgD .6mg解析:选C.设小球自左方最大摆角处摆到最低点时速度为v ,则12m v 2=mgL (1-cos 60°),此时q v B -mg =m v 2L,当小球自右方最大摆角处摆到最低点时,v 大小不变,洛伦兹力方向发生变化,此时有T -mg -q v B =m v 2L,解得T =4mg ,故C 正确. 4.(2019·浙江选考4月)在磁场中的同一位置放置一条直导线,导线的方向与磁场方向垂直,则下列描述导线受到的安培力F 的大小与通过导线的电流I 的关系图象正确的是( )答案:A5.(多选)两个质量相同,所带电荷量相等的带电粒子a 、b ,以不同的速率对准圆心O 沿着AO 方向射入圆形匀强磁场区域,其运动轨迹如图所示,若不计粒子的重力,则下列说法正确的是( )A .a 粒子带负电,b 粒子带正电B .a 粒子在磁场中所受洛伦兹力较大C .b 粒子动能较大D .b 粒子在磁场中运动时间较长解析:选AC.粒子向右运动,根据左手定则可知,b 向上偏转,带正电;a 向下偏转,带负电,故A 正确.洛伦兹力提供向心力,即q v B =m v 2r ,得r =m v qB,故半径较大的b 粒子速度大,受洛伦兹力较大,动能也大,故B 错误,C 正确.T =2πm Bq,则两粒子运动周期相等,磁场中偏转角大的运动的时间长;a 粒子的偏转角大,因此运动的时间较长,故D 错误.6.如图所示,边长为L 的正方形有界匀强磁场ABCD ,带电粒子从A 点沿AB 方向射入磁场,恰好从C 点飞出磁场;若带电粒子以相同的速度从AD 的中点P 垂直AD 射入磁场,从DC 边的M 点飞出磁场(M 点未画出).设粒子从A 点运动到C 点所用时间为t 1,由P 点运动到M 点所用时间为t 2(带电粒子重力不计),则t 1∶t 2为( )A .2∶1B .2∶3C .3∶2 D.3∶ 2 解析:选C.如图所示为粒子两次运动轨迹图,由几何关系知,粒子由A 点进入C 点飞出时轨迹所对圆心角θ1=90°,粒子由P点进入M 点飞出时轨迹所对圆心角θ2=60°,则t 1t 2=θ1θ2=90°60°=32,故选项C 正确. 7.如图,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外.一电荷量为q (q >0)、质量为m的粒子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为R 2.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)( )A.qBR 2mB.qBR mC.3qBR 2mD.2qBR m解析:选B.作出粒子运动轨迹如图中实线所示.因P 到ab 距离为R 2,可知α=30°.因粒子速度方向改变60°,可知转过的圆心角2θ=60°.由图中几何关系有⎝⎛⎭⎫r +R 2tan θ=R cos α,解得r =R .再由Bq v =m v 2r 可得v =qBR m,故B 正确. 8.如图所示,在一绝缘、粗糙且足够长的水平管道中有一带电荷量为q 、质量为m 的带电球体,管道半径略大于球体半径.整个管道处于磁感应强度为B 的水平匀强磁场中,磁感应强度方向与管道垂直.现给带电球体一个水平速度v 0,则在整个运动过程中,带电球体克服摩擦力所做的功不可能为( )A .0B.12m ⎝⎛⎭⎫mg qB 2C.12m v 20D.12m ⎣⎡⎦⎤v 20-⎝⎛⎭⎫mg qB 2 解析:选B.当q v 0B =mg 时,球不受摩擦力,摩擦力做功为零,故A 可能.当q v 0B <mg时,球做减速运动到静止,只有摩擦力做功,根据动能定理得-W =0-12m v 20,解得W =12m v 20,故C 可能.当q v 0B >mg 时,球先做减速运动,当q v B =mg ,即当v =mg qB时,不受摩擦力,做匀速直线运动.根据动能定理得-W =12m v 2-12m v 20,解得W =12m ⎣⎡⎦⎤v 20-⎝⎛⎭⎫mg qB 2,故D 可能.选不可能的,故选B.9.如图所示,三根长为L 的通电直导线在空间构成等边三角形,电流的方向垂直纸面向里,电流大小为I ,其中A 、B 电流在C 处产生的磁感应强度的大小均为B 0,导线C 位于水平面处于静止状态,则( )A .导线C 受到的静摩擦力为0B .导线C 受到的静摩擦力为3B 0IL ,水平向右C .若将导线A 中电流反向,则导线C 受到的支持力不变D .若同时将导线A 与B 中电流反向,则导线C 受到的支持力变小解析:选B.根据安培定则,导线AB 在C 点处产生的磁感应强度方向如图甲所示,总的磁感应强度竖直向下,大小为3B 0,根据左手定则,导线C 受到的安培力水平向左,静摩擦力向右,A 错误;静摩擦力大小与安培力相等,为3B 0IL ,B 正确;将导线A 中电流反向,磁感应强度如图乙所示,磁场的矢量和向右,导线C 受到的安培力向下,支持力变大,C 错误;若同时改变A 、B 的电流方向,磁感应强度如图丙所示,磁场矢量和向上,竖直方向上力未发生变化,支持力都等于重力,D 错误.10.如图所示,R 1和R 2是同种材料、厚度相同、上下表面为正方形的金属导体,但R 1的尺寸比R 2的尺寸大.将两导体同时放置在同一匀强磁场B 中,磁场方向垂直于两导体正方形表面,在两导体上加相同的电压,形成图示方向的电流;电子由于定向移动,会在垂直于电流方向受到洛伦兹力作用,从而产生霍尔电压,当电流和霍尔电压达到稳定时,下列说法中正确的是( )A .R 1中的电流大于R 2中的电流B .R 1 中的电流小于R 2中的电流C .R 1 中产生的霍尔电压小于R 2中产生的霍尔电压D .R 1中产生的霍尔电压等于R 2中产生的霍尔电压解析:选D.电阻R =ρLS ,设正方形金属导体边长为a ,厚度为b ,则R =ρa ab =ρb,则R 1=R 2,在两导体上加上相同电压,则R 1中的电流等于R 2中的电流,故A 、B 错误.根据电场力与洛伦兹力平衡,则有e v B =eU H a ,解得:U H =Ba v =Ba ·I neab =1ne ·BI b,则有R 1中产生的霍尔电压等于R 2中产生的霍尔电压,故C 错误,D 正确.二、非选择题11.如图,在0≤x ≤d 的空间,存在垂直xOy 平面的匀强磁场,方向垂直xOy 平面向里.y 轴上P 点有一小孔,可以向y 轴右侧垂直于磁场方向不断发射速率均为v 、与y 轴所成夹角θ可在0~180°范围内变化的带负电的粒子.已知θ=45°时,粒子恰好从磁场右边界与P 点等高的Q 点射出磁场,不计重力及粒子间的相互作用.求:(1)磁场的磁感应强度;(2)若θ=30°,粒子射出磁场时与磁场边界的夹角(可用三角函数、根式表示);(3)能够从磁场右边界射出的粒子在磁场中经过的区域的面积(可用根式表示).解析:(1)粒子在磁场中做匀速圆周运动,设粒子的轨道半径为R ,磁场的磁感应强度为B ,则:q v B =m v 2R如图甲所示,由几何关系得:d =2R cos 45°解得:B =2m v qd . (2)如图乙所示,由几何关系d =R cos 30°+R cos α解得:α=arccos 22-32. (3)能够从磁场右边界射出的粒子在磁场中经过的区域,如图丙中两圆弧间斜线部分所示, 由几何关系得:R 2-(d -R )2=PM 2由割补法得该区域面积为:S =d ·PM解得:S =d 22-1.答案:(1)2m v qd(2)arccos 22-32 (3)d 22-112.如图甲所示,M 、N 为竖直放置彼此平行的两块平板,板间距离为d ,两板中央各有一个小孔O 、O ′正对,在两板间有垂直于纸面方向的磁场,磁感应强度随时间的变化如图乙所示,设垂直纸面向里的磁场方向为正方向.有一群正离子在t =0时垂直于M 板从小孔O 射入磁场.已知正离子质量为m 、带电荷量为q ,正离子在磁场中做匀速圆周运动的周期与磁感应强度变化的周期都为T 0,不考虑由于磁场变化而产生的电场的影响.求:(1)磁感应强度B 0的大小;(2)要使正离子从O ′孔垂直于N 板射出磁场,正离子射入磁场时的速度v 0的可能值. 解析:(1)正离子射入磁场,由洛伦兹力提供向心力,即q v 0B 0=m v 20r① 做匀速圆周运动的周期T 0=2πr v 0② 联立两式得磁感应强度B 0=2πm qT 0. ③ (2)要使正离子从O ′孔垂直于N 板射出磁场,两板之间正离子只运动一个周期即T 0时,v 0的方向应如图所示,有r =d 4 ④当在两板之间正离子共运动n 个周期,即nT 0时,有r =d 4n (n =1,2,3,…) ⑤联立①③⑤求解,得正离子的速度的可能值为v 0=B 0qr m =πd 2nT 0(n =1,2,3,…). 答案:(1)2πm qT 0 (2)πd 2nT 0(n =1,2,3,…)。
课时作业21 几种常见的磁场 时间:45分钟 分值:100分一、选择题(每小题6分,共48分)1.对于通有恒定电流的长直螺线管,下列说法中正确的是( )A .放在通电螺线管外部的小磁针静止时,它的N 极总是指向螺线管的S 极B .放在通电螺线管外部的小磁针静止时,它的N 极总是指向螺线管的N 极C .放在通电螺线管内部的小磁针静止时,它的N 极总是指向螺线管的S 极D .放在通电螺线管内部的小磁针静止时,它的N 极总是指向螺线管的N 极 2.如上图所示ab 、cd 是两根在同一竖直平面内的直导线,在两导线中央悬挂一个小磁针,静止时在同一竖直平面内,当两导线中通以大小相等的电流时,小磁针N 极向纸面里转动,则两导线中的电流方向( )A .一定都是向上B .一定都是向下C .ab 中电流向下,cd 中电流向上D .ab 中电流向上,cd 中电流向下3.如上图所示,矩形线圈abcd 放置在水平面内,磁场方向与水平方向成α角,已知sin α=45,线圈面积为S ,匀强磁场的磁感应强度为B ,则通过线圈的磁通量为( )A .BS B.4BS 5 C.3BS 5 D.3BS44.如下图所示,a 、b 是两根垂直纸面的直导体通有等值的电流,两导线外有一点P ,P 点到a 、b 距离相等,要使P 点的磁场方向向右,则a 、b 中电流的方向为( )A .都向纸里B .都向纸外C .a 中电流方向向纸外,b 中向纸里D .a 中电流方向向纸里,b 中向纸外5.(2011·全国卷)如图,两根相互平行的长直导线分别通有方向相反的电流I1和I2,且I1>I2;a、b、c、d为导线某一横截面所在平面内的四点,且a、b、c与两导线共面;b点在两导线之间,b、d的连线与导线所在平面垂直.磁感应强度可能为零的点是()A.a点B.b点C.c点D.d点6.如上图所示,环中电流的方向由左向右,且I1=I2,则环中心O处的磁场()A.最强,垂直穿出纸面B.最强,垂直穿入纸面C.为零D.不能确定7.如下图所示,一个用毛皮摩擦过的硬橡胶环,当环绕其轴OO′匀速转动时,放置在环的右侧轴线上的小磁针的最后指向是()A.N极竖直向上B.N极竖直向下C.N极水平向左D.N极水平向右8.实验室有一旧的学生直流电源,输出端的符号模糊不清,无法辨认正、负极,某同学设计了下面的判断电源极性的方法:在桌面上放一个小磁针,在磁针东面放一螺线管,如上图所示,闭合开关后,磁针指南的一端向东偏转,下列判断中正确的是()A.电源的A端是正极,在电源内电流由A流向BB.电源的A端是正极,在电源内电流由B流向AC.电源的B端是正极,在电源内电流由A流向BD.电源的B端是正极,在电源内电流由B流向A二、解答题(共52分)9.(16分)如上图所示,大圆导线环A中通有电流I,方向如图所示,另在导线环所在的平面画一个圆B,它的一半面积在A环内,一半面积在A环外,试判断圆B内的磁通量是否为零,若是为零,为什么?若不为零,则磁通量是穿出去还是穿进去?10.(16分)完成下列两题.(1)已知螺线管内部的小磁针的N极指向如下图所示,请在图中画出螺线管上线圈的绕向.(2)已知电磁铁的两个极性如下图所示,请在电磁铁上画出线圈的绕向.11.(20分)如下图所示,匀强磁场的磁感应强度B=2.0 T,并指向x轴正方向,若ab=40cm,bc=30cm,ae=50cm,试求通过面积S1(abcd)、S2(befc)和S3(aefd)的磁通量分别为Φ1、Φ2、Φ3分别是多少?。
《磁场磁场感应强度》作业设计方案(第一课时)一、作业目标本作业旨在帮助学生进一步理解磁场的基本概念,掌握磁场感应强度的定义、单位、方向及求法,提高他们解决相关问题的能力。
二、作业内容1. 理论题:(1) 简述磁场的概念,并解释其在生活和工业中的应用。
(2) 描述磁场感应强度的定义、单位及符号。
(3) 解释磁场方向和磁感线概念,并画出几种常见磁场的磁感线示意图。
(4) 简述如何求磁场感应强度。
2. 实践题:(1) 制作一个指南针,并解释其工作原理。
(2) 分析一个电动机的工作过程,尝试解释其如何利用磁场。
(3) 搜集不同材料的金属在磁场中的反应,分析其磁性差异的原因。
三、作业要求1. 按时提交作业,并确保答案正确。
2. 理论题部分需认真阅读教材和相关资料,确保回答准确。
3. 实践题部分需动手操作或搜集相关资料,深入理解磁场在实际中的应用。
4. 作业应独立完成,禁止抄袭。
5. 请在回答问题时,附上相关的问题背景和知识链接。
四、作业评价1. 评价标准:(1) 答案是否符合逻辑,表述是否清晰。
(2) 是否能够应用所学知识解决实际问题。
(3) 实践题部分是否认真操作或搜集相关资料。
2. 评价方式:(1) 学生自评:学生根据作业目标,对自己的完成情况进行评价。
(2) 小组互评:同一班级的学生可组成小组,对彼此的作业进行评分和讨论。
(3) 教师评价:教师根据作业目标和标准,对所有提交的作业进行评分和反馈。
五、作业反馈1. 对于普遍存在的问题和疑问,将在下次课堂上进行集中解答和讲解。
2. 对于个别学生的特殊问题,将进行单独辅导和帮助。
3. 请同学们在课后积极与老师和同学交流,共同提高物理学习的水平。
通过本次作业,希望同学们能够更好地理解和掌握磁场感应强度这一重要概念,为后续的电磁学学习打下坚实的基础。
同时,也希望同学们能够积极参与作业反馈环节,提出宝贵的意见和建议,帮助我们不断改进教学方案,提高教学质量。
作业设计方案(第二课时)一、作业目标:1. 进一步理解和掌握磁场的概念及磁场强度;2. 练习磁场强度的计算与应用;3. 通过作业实践,提高学生对物理知识的应用能力。
1、如图所示,半圆形线圈半径为R ,通有电流I ,在磁场B 的作用下从图示位置转过30°时,它所受磁力矩的大小和方向分别为( (4))(1)214R IB π,沿图面垂直向下;(2)214R IB π,沿图面垂直向上; (3)234R IB π,沿图面垂直向下;(4)234R IB π。
沿图面垂直向上。
2、如图所示,载流为I 2的线圈与载流为I 1的长直导线共面,设长直导线固定,则圆线圈在磁场力作用下将( (1))(1)向左平移;(2)向右平移;(3)向上平移;(4)向下平移。
3、质子和α粒子质量之比为1:4,电量之比为1:2,它们的动能相同,若将它们引进同一均匀磁场,且在垂直于磁场的平面内作圆周运动,则它们的回转半径之比为((2) )(1)1:4; (2)1:1; (3)1:2; (4)124、如图所示,a 、c 处分别放置无限长直载流导线,P 为环路L 上任一点,若把a 处的载流导线移至b 处,则((4) )(1)L B dl •⎰变,p B 变; (2)L B dl •⎰变,p B 不变; (3)L B dl •⎰不变,p B 不变; (4)LB dl •⎰不变,p B 变5、如图所示,ab 导线与无限长直导线GE 共面,ab 延长线与GE 交于O 点成45°,若分别通以电流I 1=20 A ,I 2=10 A ,ab 长92L = cm ,a 端距GE 为d=1 cm ,求ab 在图示位置时所受GE 产生的磁场作用力F 。
解答:此题直接运用无限长直导线磁场公式以及通电直导线和磁场作用公式即可。
2F I dl B =⨯⎰,其方向为垂直于ab 向左上,其大小如下计算:设ab 上dl 长度距GE 为r ,则有2()]2dl d r d dr =-=,r 的取值范围很明显是[0.01,0.1]。
于是有 0.10122224I F BI dl I dr r μπ==⎰⎰,代入相关数值并且积分得到, 41.310F N -=⨯。
11-1 求图中各种情况下O 点处的磁感应强度B 。
解:图a 的电流可以看成是由1、2两个电流合成的。
故合场强为 直线电流,和矩形电流产生的磁感应强度的矢量和。
直线电流1在O 点产生的磁感应强度)2/(20a I πμ,方向垂直纸面向外。
矩形电流2由两条长度为a 、两条长度为b 的直线电流组成在O 点产生的磁感应强度为:)]2/sin()2/[sin()2/(42)]2/sin()2/[sin()2/(4200ααπμϕϕπμ--+--b Ia I2202200022)2/sin(2)2/sin(2ba a bI ba b a Ib I a I +++=+=πμπμαπμϕπμ)(2220b aa b b a I++=πμ方向垂直纸面向内。
O 点的磁感应强度为:220022002)(2b a abI a I b aa b b a I a I B +-=++-=πμπμπμπμ 这里利用了载流直导线外的磁感应强度公式:]sin )[sin 4120ββπμ-=rIB电流b 由两条直线电流,和一个圆弧组成:)0sin 90(sin 42360135200-︒+=RIR I B πμμ RIR I R I 00035.02163μπμμ=+=电流c 中两条直线电流的延长线都过圆心,由毕-萨定律知道在圆心处产生的磁感应强度为0,圆弧产生的磁感应强度为RlR I R l R I B πμπμ2222220110-=由于两端的电压相同有2211I SlI S l V ρρ==带入上式得到B=0 11-2.如图所示,一扇形薄片,半径为R ,张角为θ,其上均匀分布正电荷,电荷密度为σ,薄片绕过角顶O 点且垂直于薄片的轴转动,角速度为ω,求O 点处的磁感应强度。
解答1:将扇形薄片分割成半径为r 的圆弧形面积元,电荷量为:dr r dq θσ=转动时相当于园电流,对应的电流强度为: rdr dr r T dq dI σωπθωπθσ2/2===产生的磁场为 dr rdIdB σωμπθμ0042==圆心处的磁场为R dr B Rσωμπθσωμπθ00044==⎰ 解答2:以o 为圆心,采用极坐标系将扇形薄片分割成小的面积元 dr rd ds dq θσσ==利用运动电荷产生磁场的公式 dr d rdrr rd r dqv dB θσωπμωθσπμπμ44402020===对上式积分得:πσωθμθσωπμθσωπμθ4440000Rdr d dr d B R===⎰⎰⎰⎰ 11-3 在半径cm 0.1=R 的无限长半圆柱形金属薄片中,自下而上地通有电流A I 0.5=,求圆柱轴线上任一点P 处的磁感应强度。
13.1 磁场磁感线Ⅰ. 基础达标1.关于磁场,下列说法正确的是()A.磁场是一种为研究物理问题而假想的物质B.所有磁场都是电流产生的C.磁场只有强弱没有方向D.地球是一个磁体【答案】D【详解】A.磁场看不见,摸不着,但却真实存在,故A错误;B.磁体也能产生磁场,故B错误;C.磁场不仅有强弱,而且也有方向,故C错误;D.地球周围存在地磁场,故地球是一个磁体,故D正确。
故选D。
2.(多选)关于磁感线,下列说法中正确的是()A.磁感线的疏密程度反映磁场的强弱B.磁感线是磁场中实际存在的线C.两条磁感线不可能相交D.磁感线总是不闭合的【答案】AC【详解】A.磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强,故A正确;B.磁感线是磁场中不存在的线,是假设出来描述磁场的,故B错误;C.如果两条磁感线相交,那么交点的磁场就有两个方向,不符合实际,所以两条磁感线不可能相交,故C正确;D.磁感线总是闭合的,故D错误。
故选AC。
3.磁场中某区域的磁感线如图所示,则()A.a处磁场比b处磁场强B.b处磁场和a处磁场强度一样C.小磁针N极在a处受力比b处受力大D.小磁针N极在a处受力比b处受力小【答案】D【详解】AB.根据磁感线越密的地方,磁感应强度越大,所以a处的磁感应强度小于b处的磁感应强度,故A B错误;CD.小磁针在磁感应强度大的地方受到的力大,所以小磁针N极在a处受力比b处受力小,故C 错误,D正确。
故选D。
4.关于电场线和磁感线,下列说法正确的是()A.运动的带电粒子在电场、磁场中的受力方向均和场线在一直线上B.带电粒子顺着电场线的方向运动,其电势能一定减小C.带电粒子垂直于磁感线的方向射入匀强磁场中,其速度大小不会改变D.电场线和磁感线均不相交且均为不封闭曲线【答案】C【详解】A.运动的带电粒子在电场中的受力方向和电场线的切线方向一致,运动的带电粒子在磁场中的受力方向和磁感线的方向垂直,A错误;B.带电粒子顺着电场线的方向运动,电场力做正功电势能减小,电场力做负功电势能增加,B错误;C.带电粒子垂直于磁感线的方向射入匀强磁场中,其速度大小不会改变,C正确;D.电场线为不封闭的曲线,磁感线为封闭曲线,D错误。
《磁现象磁场》作业设计方案(第一课时)一、作业目标本作业旨在通过磁现象和磁场的基础知识学习,使学生能够:1. 理解磁现象的基本概念,掌握磁铁的磁性和磁场方向。
2. 掌握磁场的基本性质,理解磁感线、磁通量等概念。
3. 培养学生的观察能力、实验能力和分析问题的能力。
二、作业内容本课时作业内容主要围绕《磁现象磁场》章节的重点知识展开,具体包括:1. 基础知识巩固:要求学生复习磁铁的磁性、磁场方向等基本概念,并完成相关填空题和选择题。
2. 实验操作:设计一个简单的磁铁实验,让学生观察并记录磁铁的磁场分布情况,加深对磁场方向和磁感线的理解。
3. 拓展应用:引导学生分析生活中的磁现象,如电磁铁的应用、指南针的原理等,并完成一篇小论文,阐述自己对磁现象的理解和感悟。
三、作业要求为确保学生能够高效完成本课时作业,特提出以下要求:1. 基础知识巩固部分:要求学生认真复习课堂所学,准确填写答案,不得抄袭他人作业。
2. 实验操作部分:学生需按照教师指导进行实验操作,认真观察并记录实验现象和数据,分析实验结果。
3. 拓展应用部分:学生需结合生活实际,分析身边的磁现象,并撰写一篇条理清晰、观点明确的论文,字数不少于500字。
论文中应包含对磁现象的基本理解、对电磁铁和指南针原理的阐述以及个人感悟等。
4. 作业提交:学生需在规定时间内将作业纸质版和电子版一并提交给教师。
纸质版需字迹工整,电子版请发送至教师指定的邮箱。
四、作业评价教师将根据以下标准对学生的作业进行评价:1. 基础知识巩固部分:评价学生是否准确掌握了磁现象的基本概念和磁场方向等知识。
2. 实验操作部分:评价学生是否按照教师指导进行了实验操作,是否认真观察并记录了实验现象和数据。
3. 拓展应用部分:评价学生的论文是否条理清晰、观点明确,是否能够结合生活实际分析身边的磁现象,并表达出自己的感悟。
4. 作业整体质量:综合学生的完成情况、准确性和规范性进行评价,给出相应的分数和评语。
课后练习
1.图中两个图分别画出了两个磁极间的磁感线。
请你在图中标出磁极的名称,并画出位于图中A点和B点的小磁针静止时北极所指的方向。
2.做实验并进行观察,地球上指南针静止时N极所指的是地理的北方还是南方?你认为地磁的北极位于地理北极附近还是地理南极附近?为什么?
【课后练习参考答案】
1.
2. 将小磁针放在桌面上,小磁针的N极指向地理的北极。
因为地球本身就是一个大磁体,地球的地磁北极位于地理的南极附近,异名磁极相互吸引。
作业27磁场对运动电荷的作用A组基础达标微练一洛伦兹力的理解与计算1.(浙江温州联考)显像管原理的示意图如图所示,当没有磁场时,电子束将打在荧光屏正中的O点,安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转。
设垂直纸面向里的磁场方向为正方向,若要使电子打在荧光屏上的位置由a点逐渐移动到b点,下列变化的磁场能够使电子发生上述偏转的是( )2.科学家曾预言,自然界存在只有一个磁极的磁单极子,磁单极子N的磁场分布如图甲所示,它与如图乙所示正点电荷Q的电场分布相似。
假设磁单极子N和正点电荷Q均固定,有相同的带电小球分别在N和Q附近(图示位置)沿水平面做匀速圆周运动,则下列说法正确的是( )A.从上往下看,图甲中带电小球沿逆时针方向运动B.从上往下看,图甲中带电小球沿顺时针方向运动C.从上往下看,图乙中带电小球沿顺时针方向运动D.从上往下看,图乙中带电小球沿逆时针方向运动微练二带电粒子在有界匀强磁场中的运动3.(多选)(浙江杭州模拟)如图所示,a、b是直线上间距为4d的两点,也是半圆直径的两个端点,c位于ab上,且l ac=d,直线上方存在着磁感应强度大小为B、垂直于半圆平面的匀强磁场(未画出),其中半圆内部没有磁场。
一群比荷为k的同种带电粒子从ac之间以相同的速率垂直于ab射入圆弧区域,所有粒子都能通过b点,不计粒子间的相互作用和粒子的重力,则( )A.粒子的速率为2dBkB.粒子的速率为dBkC.从c点射入的粒子在磁场中运动的时间为2π3kBD.从c点射入的粒子在磁场中运动的时间为4π3kB4.(浙江丽水模拟)如图所示,虚线MN的右侧有垂直纸面向里的匀强磁场,在图示平面内两比荷相同的带正电粒子a、b从MN上的同一点沿不同方向射入匀强磁场后,又从MN上的同一点射出磁场。
已知a粒子初速度的方向垂直虚线MN,粒子的重力和粒子间的相互作用忽略不计,则下列描述两粒子速度大小的关系图像正确的是( )微练三带电粒子在磁场中运动的临界和多解问题5.真空中有一匀强磁场,磁场边界为两个半径分别为a和3a的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图所示。
一、 选择题【 C 】1.(基础训练2)三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值是:(A) 7/16. (B) 5/8. (C) 7/8. (D) 5/4.【答】设导线Ⅰ、Ⅱ、Ⅲ的电流强度分别为321,,I I I ,产生的磁感应强度分别为321,,B B B ,相邻导线相距为a ,则()()0203011123110301022231227,2224222II F I l B B I l a a a I I F I l B B I l a a aμμμπππμμμπππ⎛⎫=+=+= ⎪⋅⎝⎭⎛⎫=-=-= ⎪⎝⎭式中121231, 1, I 1A, I 2A, I 3A l m l m =====,得 8/7/21=F F .【 D 】2. (基础训练6)两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) Rr I I 22210πμ. (B)Rr I I 22210μ. (C)rR I I 22210πμ. (D) 0.【答】大圆电流在圆心处的磁感应强度为,方向垂直纸面朝内2RI B 101μ=; 小圆电流的磁矩为方向垂直纸面朝内,,222r I p m π=所以,小圆电流受到的磁力矩的大小为2211sin 00m m M p B p B =⨯=︒=[ B ]3.(自测提高2)如图所示,一电子以速度v垂直地进入磁感强度为B的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C)正比于B ,反比于v . (D) 反比于B ,反比于v .【答】 电子在磁场中做匀速率圆周运动,运动平面的法向平行于磁感应强度方向,因此,磁通量为2R B πΦ=,其中半径R 可由式2v evB m R =求得:mv R eB =,所以222mv m v B eB eB ππ⎛⎫Φ== ⎪⎝⎭.F 1F 2F 31 A2 A3 A ⅠⅡⅢOrR I 1 I 2[ B ]4、(自测提高4)一个动量为p 的电子,沿图示方向入射并能穿过一个宽度为D 、磁感强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为 (A)p eBD 1cos-=α.(B)p eBD 1sin -=α. (C)epBD 1sin -=α. (D) ep BD 1cos -=α.【答】电子在磁场中的轨迹为一段圆弧,如图。
运动电荷在磁场中受到的力课后作业一、选择题考点一洛伦兹力1.大量的带电荷量均为+q的粒子在匀强磁场中运动,下列说法中正确的是()A.只要速度大小相同,所受洛伦兹力就相同B.如果把+q改为-q,速度反向但大小不变,且与磁场方向不平行,则洛伦兹力的大小方向均不变C.只要带电粒子在磁场中运动,它一定受到洛伦兹力作用D.带电粒子受到的洛伦兹力越小,则该磁场的磁感应强度就越小答案B解析带电粒子在磁场中运动时受到的磁场力不仅与其速度的大小有关,还与其速度的方向有关,当速度方向与磁场方向在一条直线上时,不受磁场力作用,所以A、C、D错误;根据左手定则,不难判断B是正确的.2.关于运动电荷和磁场的说法中,正确的是()A.运动电荷在某点不受洛伦兹力作用,这点的磁感应强度必为零B.电荷的运动方向、磁感应强度方向和电荷所受洛伦兹力的方向一定两两互相垂直C.电子射线垂直进入磁场发生偏转,这是因为洛伦兹力对电子做功的结果D.电荷与磁场没有相对运动,电荷就一定不受磁场的作用力答案D解析运动电荷的速度方向如果和磁场方向平行,运动电荷不受洛伦兹力作用,所以A错误;电荷运动方向不一定垂直于磁感应强度方向,但洛伦兹力一定垂直于磁感应强度方向,故B错误;洛伦兹力对运动电荷不做功,所以C错误;只有运动的电荷在磁场中运动方向与磁场方向不平行才受磁场力作用,所以电荷与磁场没有相对运动,电荷就一定不受磁场的作用力,故D正确.3.下列四副图关于各物理量方向间的关系中,正确的是()答案B解析由左手定则可知,安培力的方向总是与磁感应强度的方向垂直,故A错误;磁场的方向向下,电流的方向向里,由左手定则可知安培力的方向向左,故B正确;由左手定则可知,洛伦兹力的方向总是与磁感应强度的方向垂直,应为垂直纸面向外,故C错误;通电螺线管内部产生的磁场的方向沿螺线管的轴线的方向,由题图D可知电荷运动的方向与磁感线的方向平行,不受洛伦兹力,故D错误.4.两个带电粒子以相同的速度垂直磁感线方向进入同一匀强磁场,两粒子质量之比为1∶4,电荷量之比为1∶2,则两带电粒子受洛伦兹力之比为()A.2∶1 B.1∶1 C.1∶2 D.1∶4答案C解析带电粒子的速度方向与磁感线方向垂直时,洛伦兹力F=q v B与电荷量成正比,与质量无关,C项正确.考点二带电粒子(带电体)在磁场中的运动5.电视显像管原理的示意图如图1所示,当没有磁场时,电子束将打在荧光屏正中的O点,安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转.设垂直纸面向里的磁场方向为正方向,若使电子打在荧光屏上的位置由a点逐渐移动到b点,下列变化的磁场能够使电子发生上述偏转的是()图1答案A解析电子偏转到a点时,根据左手定则可知,磁场方向垂直纸面向外,对应的B-t图的图线应在t轴下方;电子偏转到b点时,根据左手定则可知,磁场方向垂直纸面向里,对应的B-t图的图线应在t轴上方,A正确.6.两个完全相同的带等量的正电荷的小球a和b,从同一高度自由落下,分别穿过高度相同的水平方向的匀强电场和匀强磁场,如图2所示,然后再落到地面上,设两球运动所用的总时间分别为t a、t b,则()图2A.t a=t b B.t a>t bC.t a<t b D.条件不足,无法比较答案C解析a球进入匀强电场后,始终受到水平向右的电场力F电=qE作用,这个力不会改变a 在竖直方向运动的速度,故它下落的总时间t a与没有电场时自由下落的时间t0相同.b球以某一速度进入匀强磁场瞬间它就受到水平向右的洛伦兹力作用,这个力只改变速度方向,会使速度方向向右发生偏转,又因为洛伦兹力始终与速度方向垂直,当速度方向变化时,洛伦兹力的方向也发生变化,不再沿水平方向.如图所示为小球b在磁场中某一位置时的受力情况,从图中可以看出洛伦兹力F洛的分力F1会影响小球竖直方向的运动,使竖直下落的加速度减小(小于g),故其下落的时间t b大于没有磁场时小球自由下落的总时间t0.综上所述,t a<t b.7. (多选)如图3所示,在一绝缘、粗糙且足够长的水平管道中有一带正电荷的小球,管道半径略大于球体半径,整个管道处于方向与管道垂直的水平匀强磁场中;现给球施加一个水平向右的初速度v0,以后小球的速度随时间变化的图象可能正确的是()图3答案 ACD解析 给小球施加一个水平向右的初速度,小球将受到向上的洛伦兹力,还受重力、可能有向后的滑动摩擦力;若重力小于洛伦兹力,小球受到向下的弹力,则受到摩擦力,做减速运动,当洛伦兹力等于重力时,做匀速运动,故C 正确.若重力大于洛伦兹力,小球受到向上的弹力,则受到摩擦力,将做减速运动,随洛伦兹力的减小,压力变大,摩擦力变大,加速度逐渐变大,最后速度为零,故D 正确.若洛伦兹力等于小球的重力,小球将做匀速直线运动,故A 正确.故选A 、C 、D.8.(多选)质量为m 、电荷量为q 的带正电小球,从倾角为θ的粗糙绝缘斜面(μ<tan θ)上由静止下滑,斜面足够长,整个斜面置于方向垂直纸面向外的匀强磁场中,其磁感应强度为B ,如图4所示.带电小球运动过程中,下面说法中正确的是( )图4A .小球在斜面上运动时做匀加速直线运动B .小球在斜面上运动时做加速度增大,而速度也增大的变加速直线运动C .小球最终在斜面上匀速运动D .小球在斜面上下滑过程中,当小球对斜面压力刚好为零时的速率为mg cos θBq答案 BD解析 据题意,小球运动过程中受到重力、支持力、摩擦力和垂直斜面向上的洛伦兹力,小球加速度为:a =g sin θ-μ(mg cos θ-q v B )m,小球做加速运动,则加速度也增加,小球最终将脱离斜面,故选项A 、C 错误,选项B 正确;当小球对斜面压力为0时,有:mg cos θ-q v B=0,速度为:v =mg cos θqB,故选项D 正确.考点三 速度选择器和磁流体发电机9.(多选)如图5所示,水平放置的平行板电容器两板间有垂直纸面向里的匀强磁场,开关S 闭合时一带电粒子恰好水平向右匀速穿过两板,重力不计.对相同状态入射的粒子,下列说法正确的是( )图5A .保持开关闭合,若滑片P 向上滑动,粒子可能从下板边缘射出B .保持开关闭合,若将磁场方向反向,粒子仍可能沿直线射出C .保持开关闭合,若A 板向上移动后,调节滑片P 的位置,粒子仍可能沿直线射出D .如果开关断开,调节滑片P 的位置,粒子可能继续沿直线射出答案 AC解析 带电粒子匀速通过两板间,电场力和洛伦兹力相等.若开关闭合,滑片P 向上滑动,两板间电压减小,电场力减小,若粒子带负电则粒子向下偏转,A 正确.若开关闭合,磁场反向,洛伦兹力也反向,粒子不能沿直线射出,B 错误.开关闭合,A 板向上移动后,调节滑片P 的位置,可使电场强度不变,粒子仍可能沿直线射出,C 正确.开关断开,电容器通过滑动变阻器放电,粒子不再受电场力作用,也就不能沿直线射出,D 错误.10.(多选)目前世界上有一种新型发电机叫磁流体发电机,如图6表示它的原理:将一束等离子体(包含正、负离子)喷射入磁场,在磁场中有两块金属板A 、B ,于是金属板上就会聚集电荷,产生电压.以下说法正确的是( )图6A .B 板带正电B .A 板带正电C .其他条件不变,只增大射入速度,U AB 增大D .其他条件不变,只增大磁感应强度,U AB 增大答案 ACD解析 根据左手定则,正离子进入磁场受到的洛伦兹力向下,A 正确,B 错误.最后,离子受力平衡有qB v =q U AB d,可得U AB =B v d ,C 、D 正确.二、非选择题11.(带电体在磁场中的运动)质量为m 、带电荷量为+q 的小球,用一长为l 的绝缘细线悬挂在方向垂直纸面向里的匀强磁场中,磁感应强度为B ,如图7所示,用绝缘的方法使小球位于能使悬线呈水平的位置A ,然后由静止释放,小球运动的平面与B 的方向垂直,小球第一次和第二次经过最低点C 时悬线的拉力F T1和F T2分别为多少?(重力加速度为g )图7答案 3mg -qB 2gl 3mg +qB 2gl解析 小球由A 运动到C 的过程中,洛伦兹力始终与v 的方向垂直,对小球不做功,只有重力做功,由动能定理有mgl =12m v C 2,解得v C =2gl . 在C 点,由左手定则可知洛伦兹力向上,其受力情况如图甲所示.由牛顿第二定律,有F T1+F 洛-mg =m v C 2l,又F 洛=q v C B ,所以F T1=3mg -qB 2gl . 同理可得小球第二次经过C 点时,受力情况如图乙所示,所以F T2=3mg +qB 2gl .12.(带电体在磁场中的运动)如图8所示,质量为m =1 kg 、电荷量为q =5×10-2 C 的带正电荷的小滑块,从半径为R =0.4 m 的光滑固定绝缘14圆弧轨道上由静止自A 端滑下.整个装置处在方向互相垂直的匀强电场与匀强磁场中.已知E =100 V /m ,方向水平向右,B =1 T ,方向垂直纸面向里,g =10 m/s 2.求:图8(1)滑块到达C 点时的速度;(2)在C 点时滑块所受洛伦兹力;(3)在C 点滑块对轨道的压力.答案 (1)2 m/s ,方向水平向左(2)0.1 N ,方向竖直向下(3)20.1 N ,方向竖直向下解析 以滑块为研究对象,自轨道上A 点滑到C 点的过程中,受重力mg ,方向竖直向下;电场力qE ,方向水平向右;洛伦兹力F 洛=q v B ,方向始终垂直于速度方向;轨道的支持力F N 的方向始终指向圆心.(1)滑块从A 到C 的过程中洛伦兹力和支持力不做功,由动能定理得mgR -qER =12m v C 2 得v C =2(mg -qE )R m=2 m/s ,方向水平向左. (2)根据洛伦兹力公式得:F 洛=q v C B =5×10-2×2×1 N =0.1 N ,方向竖直向下.(3)在C 点,由牛顿第二定律得F N -mg -q v C B =m v C 2R得:F N =mg +q v C B +m v C 2R=20.1 N 由牛顿第三定律可知,滑块对轨道的压力为20.1 N ,方向竖直向下.。
第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )。
7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π (C )αB r cos π22(D ) αB r cos π2分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。
因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( ) (A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B =(B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B =(C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠(D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )()r I μr π2/1-- (B ) ()r I μr π2/1- (C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H求得磁介质内的磁化强度,因而正确答案为(B ).7 -15 如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x [图(b)],载流长直导线的磁场穿过该面元的磁通量为x l xlμΦd π2d d 0=⋅=S B 矩形平面的总磁通量ΦΦ⎰=d解 由上述分析可得矩形平面的总磁通量⎰==211200ln π2d π2d d d d Il μx l x l μΦ 7 -16 已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求:(1) 导线内、外磁感强度的分布;(2) 导线表面的磁感强度.分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等.方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 (1) 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B在导线内r <R , 2222πππRr r R I I ==∑,因而 202πRIrμB =在导线外r >R ,I I =∑,因而rIμB 2π0=磁感强度分布曲线如图所示.(2) 在导线表面磁感强度连续,由I =50 A ,m 1078.1π/3-⨯==s R ,得T 106.52π30-⨯==RIμB 7 -25 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度. 解 依照分析m/s 63.0===dBU B E HH v 7 -29 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm ,b =8.0 cm ,l =0.12 m .分析 矩形上、下两段导线受安培力F 1 和F 2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3 和F 4 大小不同,且方向相反,因此线框所受的力为这两个力的合力. 解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为dlI I μF π22103=()b d lI I μF +=π22104故合力的大小为()N 1028.1π2π2321021043-⨯=+-=-=b d lI I μd l I I μF F F 合力的方向朝左,指向直导线.第八章 电磁感应 电磁场8 -1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( ) (A ) 线圈中无感应电流(B ) 线圈中感应电流为顺时针方向 (C ) 线圈中感应电流为逆时针方向 (D ) 线圈中感应电流方向无法确定分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).8 -2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( ) (A ) 铜环中有感应电流,木环中无感应电流 (B ) 铜环中有感应电流,木环中有感应电流 (C ) 铜环中感应电动势大,木环中感应电动势小 (D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε= (B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;tiM εd d 21212=.因而正确答案为(D ).8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( ) (A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).8 -5 下列概念正确的是( ) (A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比 (D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为()Wb π100sin 100.85t Φ⨯=,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链.解 线圈中总的感应电动势()()t tΦNξπ100cos 51.2d d =-= 当s 100.12-⨯=t 时,V 51.2=ξ.8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tId d 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦξd d -=来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=S ΦS B d 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1与B 2 之和).为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tlM E M d d -=求解. 解1 穿过面元dS 的磁通量为()x d xIμx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B因此穿过线圈的磁通量为()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd=-+==⎰⎰⎰再由法拉第电磁感应定律,有tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为43ln π20dI μΦ=线圈与两长直导线间的互感为43ln π20d μI ΦM ==当电流以tld d 变化时,线圈中的互感电动势为 tI d μt I ME d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢?此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS,1d =⋅=⎰S B ,它表现为变量I 和ξ的二元函数,将Φ代入tΦE d d -= 即可求解,求解时应按复合函数求导,注意,其中v =t ξd d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高?分析 本题可用两种方法求解.(1) 用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xIμB π20=.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰vv v I μx x μxl E ABAB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xIμΦd 2πd d 0=⋅=S B 穿过回路的磁通量为11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===SIyμx y x I μΦΦ回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iyμt y x I μt ΦE 由于静止的形导轨上电动势为零,所以V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.2.用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =t ξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为 ()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰ 相应电动势为 ()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和t I d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20= 由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.第九章 振动9-1 一个质点作简谐运动,振幅为A ,起始时刻质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为()题9-1 图分析与解(b )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向O x 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b ).9-2 已知某简谐运动的振动曲线如图(a )所示,则此简谐运动的运动方程为( )()()()()()()()()cm π32π34cos 2D cm π32π34cos 2B cm π32π32cos 2C cm π32π32cos 2A ⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=t x t x t x t x题9-2 图分析与解 由振动曲线可知,初始时刻质点的位移为 –A /2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为3/π2.振动曲线上给出质点从–A /2 处运动到+A 处所需时间为1 s ,由对应旋转矢量图可知相应的相位差3/π4Δ=,则角频率()1s 3/π4Δ/Δ-==t ω,故选(D ).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案.9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( )(A ) 落后2π (B )超前2π (C )落后π (D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ).题9-3 图9-4 当质点以频率ν 作简谐运动时,它的动能的变化频率为( )(A ) 2v (B )v (C )v 2 (D )v 4 分析与解 质点作简谐运动的动能表式为()ϕωω+=t A m E k 222sin 21,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C ). 9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( )(A ) π23 (B )π21 (C )π (D )0 分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是π(即反相位).运动方程分别为t A x ωcos 1=和()πcos 22+=t ωA x .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为t A x ωcos 21=.因而正确答案为(D ).9-7 若简谐运动方程为()()m π25.0π20cos 10.0+=t x ,求:(1) 振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1) 将()()m π25.0π20cos 10.0+=t x 与()ϕω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1s π20-=ω,初相ϕ=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v .(2)s 2=t 时的位移、速度、加速度分别为()m 1007.7π25.0π40cos 10.02-⨯=+=t x()-1s m 44.4π25.0π40sin π2d /d ⋅-=+-==t x v()-22222s m 1079.2π25.0π40cos π40d /d ⋅⨯-=+-==t x a9-8 一远洋货轮,质量为m ,浮在水面时其水平截面积为S .设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力F 与位移x 间的关系,如果满足kx F -=,则货轮作简谐运动.通过kx F -=即可求得振动周期k m ωT /π2/π2==.证 货轮处于平衡状态时[图(a )],浮力大小为F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点O ,竖直向下为x 轴正向,如图(b )所示.则当货轮向下偏移x 位移时,受合外力为∑'+=F P F其中F '为此时货轮所受浮力,其方向向上,大小为gSx mg gSx F F ρρ+=+='题9-8 图则货轮所受合外力为kx gSx F P F -=-='-=∑ρ式中gS k ρ=是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由∑=t x m F 22d d /可得货轮运动的微分方程为 0d d 22=+m gSx t x //ρ令m gS /ρω=2,可得其振动周期为 gS ρm πωT /2/π2==9-12 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s.当t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在x =-1.0×10-2m 处, 向负方向运动; (4) 物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅A 和周期T 已知的条件下,确定初相φ是求解简谐运动方程的关键.初相的确定通常有两种方法.(1) 解析法:由振动方程出发,根据初始条件,即t =0 时,x =x 0 和v =v 0 来确定φ值.(2) 旋转矢量法:如图(a )所示,将质点P 在Ox 轴上振动的初始位置x 0 和速度v 0 的方向与旋转矢量图相对应来确定φ.旋转矢量法比较直观、方便,在分析中常采用.9-28 已知两同方向、同频率的简谐运动的运动方程分别为()()m π75.010cos 05.01+=t x ;()()m π25.010cos 06.02+=t x .求:(1) 合振动的振幅及初相;(2) 若有另一同方向、同频率的简谐运动()()m 10cos 07033ϕ+=t x .,则3ϕ为多少时,x 1 +x 3 的振幅最大? 又3ϕ 为多少时,x 2 +x 3 的振幅最小?题9-28 图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动的合成仍为一简谐运动,其角频率不变;合振动的振幅()12212221cos 2ϕϕ-++=A A A A A ,其大小与两个分振动的初相差12ϕϕ-相关.而合振动的初相位()()[]22112211cos cos sin sin arctan ϕϕϕϕϕA A A A ++=/解 (1) 作两个简谐运动合成的旋转矢量图(如图).因为2/πΔ12-=-=,故合振动振幅为 ()m 1087cos 2212212221-⨯=-++=.ϕϕA A A A A 合振动初相位()()[]rad1.48arctan11cos cos sin sin arctan 22112211==++=ϕϕϕϕϕA A A A / (2) 要使x 1 +x 3 振幅最大,即两振动同相,则由π2Δk =得,...2,1,0,π75.0π2π213±±=+=+=k k k要使x 1 +x 3 的振幅最小,即两振动反相,则由()π12Δ+=k 得 (),...2,1,0,π25.1π2π1223±±=+=++=k k k题9-12 图解 由题给条件知A =2.0 ×10-2 m ,1s π4/2-==T ω,而初相φ可采用分析中的两种不同方法来求.解析法:根据简谐运动方程()ϕω+=t A x cos ,当0t =时有()ϕω+=t A x cos 0,sin 0ωA -=v .当(1)A x =0时,1cos 1=ϕ,则01=ϕ;(2)00=x 时,0cos 2=ϕ,2π2±=,因00<v ,取2π2=; (3)m 100120-⨯=.x 时,50cos 3.=ϕ,3π3±= ,由00<v ,取3π3=; (4)m 100120-⨯-=.x 时,50cos 4.-=ϕ,3ππ4±= ,由00>v ,取3π44=. 旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初相分别为01=ϕ,2π2=,3π3=,3π44=. 振幅A 、角频率ω、初相φ均确定后,则各相应状态下的运动方程为(1)()m t πcos4100.22-⨯=x (2)()()m /2πt π4cos 100.22+⨯=-x (3)()()m /3πt π4cos 100.22+⨯=-x (4)()()m /3π4t π4cos 100.22+⨯=-x 第十章 波 动10-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题10-1 图(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ).10-2 机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则( )(A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播分析与解 波动方程的一般表式为⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=ϕωu x t A y cos ,其中A 为振幅,φ为初相,u 为波速.x /u 前的“-”表示波沿x 轴正向传播,“+”表示波沿x 轴负向传播.因此将原式写为()()()m 100/π6cos 05.0x t y +=和一般式比较可知(B)、(D) 均不对.而由ω=2π/T =6πs-1 可知T =(1/3)s.则λ=uT =33.3 m ,因此(A)也不对.只有(C)正确.10-3 一平面简谐波,沿x 轴负方向传播,角频率为ω,波速为u .设4T t =时刻的波形如图(a )所示,则该波的表达式为( ) ()()()()⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=πωπωπωπωu x t A y u x t A y u x t A y u x t A y cos B 2cos C 2cos B cos A题10-3 图分析与解 因为波沿x 轴负向传播,由上题分析知(A)、(B )表式不正确.找出(C )、(D )哪个是正确答案,可以有很多方法.这里给出两个常用方法.方法一:直接将t =T /4,x =0 代入方程,那么对(C )有y 0 =A 、对(D )有y 0 =0,可见(D )的结果与图一致.方法二:用旋转矢量法求出波动方程的初相位.由图(a )可以知道t =T /4 时原点处质点的位移为0,且向y 轴正向运动,则此时刻的旋转矢量图如图(b )所示.要求初相位,只要将该时刻的旋转矢量反转(顺时针转)Δφ=ω·Δt =ω·T /4 =π/2,如图(b )所示,即得φ0 =π.同样得(D )是正确答案.题10-4 图10-4 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()πλπϕϕπλπϕϕπϕϕπk r r k r r k k r r 22A 22A 2A A 211212121212=-+-=-+-=-=-// 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λr r /π2Δ1212---=,故选项(D )正确.10-5 在驻波中,两个相邻波节间各质点的振动( )(A ) 振幅相同,相位相同 (B ) 振幅不同,相位相同(C ) 振幅相同,相位不同 (D ) 振幅不同,相位不同分析与解 驻波方程为t λx A y v π2cos π2cos 2=,因此根据其特点,两波节间各点运动同相位,但振幅不同.因此正确答案为(B ).10-8 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式()ϕω+=t cos A y 进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解.解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有 s 1033.8/π23-⨯==ωT波长为λ=uT =0.25 m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A =4.0 ×10-3m ,1s π240-=ω,φ0 =0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=-10-10 波源作简谐运动,周期为0.02s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源15.0m 和5.0 m 两处质点的运动方程和初相;(2) 距波源为16.0 m 和17.0m 的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ.解 (1) 由题给条件1s m 100s 020-⋅==u T ,.,可得 m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 =15.0 m 和x 2 =5.0 m 处质点的运动方程分别为()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-15.5π和φ10 =-5.5π(若波源初相取φ0=3π/2,则初相φ10 =-13.5π,φ10 =-3.5π.)(2) 距波源16.0m 和17.0 m 两点间的相位差()π/π2Δ1212=-=-=λx x10-13 如图所示为一平面简谐波在t =0 时刻的波形图,求(1)该波的波动方程;(2) P 处质点的运动方程.题10-13 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A =0.04 m, 波长λ=0.40 m, 波速u =0.08m·s-1 ,则ω=2π/T =2πu /λ=(2π/5)s-1 ,根据分析已知φ=-π/2,因此波动方程为()m 208.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=πx t(2) 距原点O 为x =0.20m 处的P 点运动方程为 ()m 2520.04cos y ⎥⎦⎤⎢⎣⎡+=ππ10-18 有一波在介质中传播,其波速u =1.0 ×103m·s -1 ,振幅A =1.0 ×10-4 m ,频率ν =1.0 ×103Hz .若介质的密度为ρ =8.0×102 kg·m -3 ,求:(1) 该波的能流密度;(2) 1 min 内垂直通过4.0 ×10-4m 2 的总能量.解 (1) 由能流密度I 的表达式得2522222m W 10581221-⋅⨯===.v uA uA I ρπωρ (2) 在时间间隔Δt =60 s 内垂直通过面积S 的能量为J 107933⨯=∆⋅=∆⋅=.t IS t P W10-20 如图所示,两相干波源分别在P 、Q 两点处,它们发出频率为ν、波长为λ,初相相同的两列相干波.设PQ =3λ/2,R 为PQ 连线上的一点.求:(1) 自P 、Q 发出的两列波在R 处的相位差;(2) 两波在R 处干涉时的合振幅.题10-20 图分析 因两波源的初相相同,两列波在点R 处的相位差Δφ仍与上题一样,由它们的波程差决定.因R 处质点同时受两列相干波的作用,其振动为这两个同频率、同振动方向的简谐运动的合成,合振幅ϕ∆++=cos 2212221A A A A A .解 (1) 两列波在R 处的相位差为πλr 3/Δπ2Δ==(2) 由于π3Δ=,则合振幅为21212221cos32A A A A A A A -=++=π第十一章 光 学11-1 在双缝干涉实验中,若单色光源S 到两缝S 1 、S 2 距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则( )(A ) 中央明纹向上移动,且条纹间距增大(B ) 中央明纹向上移动,且条纹间距不变(C ) 中央明纹向下移动,且条纹间距增大(D ) 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程相同,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.因此正确答案为(B ).。
第21讲电与磁信息的传递磁现象磁性物体能够吸引__________类物体的性质磁体定义具有磁性的物体分类按获取方式分:_______磁体和_______磁体按磁性保持时间分:_______磁体和_______磁体性质磁体具有磁性磁极定义磁体上磁性最强的位置名称_______极和______极作用同名磁极相互_______,异名磁极相互_________磁化定义原来没有磁性的物体在或的作用下获得磁性的现象【提示】(1)一个磁体有且只有两个磁极.(2)物体与磁体相互排斥,其一定具有磁性;物体与磁体相互吸引,其不一定具有磁性.磁场基本性质对放入其中的磁体产生______的作用,磁极间的相互作用是通过磁场发生的方向规定在磁场中某点的小磁针静止时________所指的方向规定为该点的磁场方向磁感线作用用来描述磁场的分布情况,实际并不存在特征在磁体周围,磁感线从____极出发回到_____极在磁体内部,磁感线从_____极出发回到______极几种磁体分布图地磁场定义地球周围存在的磁场分布地磁南极在地理_______极附近,地磁北极在地理________极附近磁偏角最早由我国宋代学者____________记述【提示】(1)磁感线上任何一点的切线方向都与置于该点的小磁针静止时N极所指的方向一致. (2)磁感线是封闭曲线,它不会相交.(3)磁感线有疏密,磁感线的疏密程度表示磁场的强弱.电生磁奥期特实验现象结论_________周围存在磁场,磁场方向跟_______有关通电螺线管的磁场分布通电螺线管周围的磁场跟_________磁体的磁场相似判定安培定则:用右手握螺线管,让四指指向螺线管中_______________,则大拇指所指的那端就是螺线管的_____极2.电磁铁及其应用结构内部插入______的通电螺线管原理电流的______效应实验探究电磁铁磁性强弱与什么因素有关因素探究方法_________法_________法(电磁铁的强弱可通过吸引铁钉的多少来判断)结论匝数一定时,通过的______越大,磁性越强;电流一定时,_______越多,磁性越强优点磁性有无可以通过__________来控制磁性强弱可以通过线圈中__________和___________来控制磁极方向可以由电流方向和线圈绕向来控制应用:电磁继电器实质利用电磁铁来控制工作电路的一种开关工作原理图作用利用_________、弱电流控制__________、强电流工作电路【提示】电磁铁的铁芯用铁而不用钢制作的原因:铁磁化后磁性容易消失,可方便地控制电磁铁磁性的有无;钢磁化后磁性不易消失,无法控制电磁铁磁性的有无.3.磁场对通电导线的作用内容通电导体在磁场中要受到______的作用产生条件(1)有磁场(2)导线有电流通过影响力的方向因素(1)__________的方向(2)__________的方向影响导体运动快慢的因素(1)__________的大小(2)__________的强弱应用电动机磁生电1.电磁感应现象内容________电路中的______导体在磁场中做运动时,导体中产生_______的现象叫做电磁感应现象产生条件(1)________电路(2)导体做______________运动影响感应电流方向因素(1)________的方向;(2)_______的方向影响感应电流大小因素(1)导体运动的_________;(2)_________的强弱应用发电机2.发电机和电动机发电机电动机原理_____________________ ____________________结构_________和__________(线圈和磁极)示意图能的转化______能转化为______能_______能转化为________能实质电源用电器区分关键电路中无电源电路中有电源(2)我国电网以交流供电,电压为220 V,频率为50 Hz.信息的传递1.电话组成话筒:_______信号变成______信号听筒:_______信号变成______信号通信方式模拟通信:使用_______信号的通信方式数字通信:使用_______信号的通信方式2.电磁波产生当导体中有________迅速变化的电流时,就会在空间激起电磁波传播电磁波_____在真空中传播真空中电磁波传播速度约为_______m/s波速c=____________分类长波、中波、短波、微波、红外线、可见光、紫外线、X射线、γ射线应用广播、电视、移动通信微波通信靠________________转接信号卫星通信用通信卫星做微波中继站的通信方式光纤通信激光在光导纤维中传播来传递信息的方式网络通信利用因特网实现资源共享和信息传递【提示】(1)用3颗同步卫星就可以实现全球通信.(2)目前使用最频繁的网络通信形式是电子邮件.命题点1简单的磁现象(2015·杭州)甲铁棒能吸引小磁针,乙铁棒能排斥小磁针,若甲、乙铁棒相互靠近,则两铁棒()A.一定互相吸引B.一定互相排斥C.可能无磁力的作用D.可能互相吸引,也可能排斥点拨:用甲去靠近小磁针,甲能吸引小磁针,说明甲可能没有磁性,也可能具有的磁性和小磁针靠近的磁极的磁性相反;乙能排斥小磁针,说明乙一定有磁性,由此展开分析,得出结论.1.(2015·巴中)关于磁场,下列说法中正确的是()A.磁体周围的磁感线从磁体N极发出,回到磁体S极B.磁极间的相互作用不都是通过磁场发生的C.磁感线是磁场中真实存在的一些曲线D.地磁场的N极在地理北极附近,S极在地理南极附近,与地球两极并不完全重合2.(2015·枣庄)如图所示,根据小磁针静止时的指向,标出磁体的N、S极和A点的磁场方向(用箭头表示).命题点2电流的磁效应(2015·梅州)科学家的每次重大发现,都有力地推动了人类文明的进程.丹麦物理学家________首先发现了电流周围存在着磁场,第一个揭示了电和磁之间的联系.小周同学自制了一个用开关来控制电磁铁南北极的巧妙装置,如图所示.当开关S接________(填“a”或“b”)点时,电磁铁的A端是N极.点拨:知道电磁铁的A端是N极,根据安培定则判定出线圈中的电流方向,也就是判断出导线中电流的方向,即判断出电源的正负极,最后便可以判断出开关S接哪一个点.3.(2015·临沂)下列各图中,小磁针静止时N极指向正确的是()4.(2015·通辽)图中的两个线圈,套在光滑的玻璃管上,导线柔软,可以自由滑动,开关S闭合后()A.两线圈左右分开B.两线圈向中间靠拢C.两线圈静止不动D.两线圈先左右分开,然后向中间靠拢第4题图第5题图5.(2015·滨州)如图所示,通电螺线管附近的小磁针处于静止状态,则螺线管A端是________极,电源的D 端是________极.命题点3电磁铁及其应用(多选)(2015·威海)电梯为居民上下楼带来很大的便利,出于安全考虑,电梯设置了超载自动报警系统,其工作原理如图所示,电梯厢底层装有压敏电阻R1,R2为保护电阻,K为动触点,A、B为静触点,当出现超载情况时,电铃将发出报警声,电梯停止运行,下列说法正确的是()A.电梯工作时电磁铁的上端为N极B.电磁铁磁性的强弱与电流的大小有关C.电梯未超载时动触点K与静触点B接触D.电梯超载时报警说明压敏电阻的阻值随压力增大而减小点拨:R1为压敏电阻,其阻值随压力增大而减小,所以知道超载时压敏电阻的阻值变化情况,根据欧姆定律判断出电流的变化.分析电磁继电器的工作原理可按如下步骤进行:控制电路工作情况→电磁铁磁性变化→衔铁动作方向→触点接触状况→工作电路工作情况.6.(2015·烟台)如图是一种水位自动报警器的原理示意图,当水位升高到金属块A处时()A.红灯亮,绿灯灭B.红灯灭,绿灯亮C.红灯亮,绿灯亮D.红灯灭,绿灯灭第6题图第7题图7.(2015·葫芦岛)如图所示为电话机原理图,当人对着话筒说话时,如果滑动变阻器的滑片向右移动,则听筒电磁铁磁性将________(填“变强”“变弱”或“不变”),通过导体AB的电流方向为________(填“A到B”或“B到A”).命题点4电动机与发电机(2015·鄂州)如图所示,闭合开关,先将导体ab水平用力向右移动,导体cd也随之运动起来.下列说法正确的是()A.实验装置中的甲装置产生的现象在生活中的应用是电动机B.实验装置中的乙装置的原理是电磁感应现象C.实验装置中的乙装置把机械能转化为电能D.如果回路均为超导材料制成,且导体ab与cd之间距离足够大,当回路中产生感应电流后,同时撤去两蹄形磁体,则回路中电流很长时间不消失点拨:利用电磁感应和通电导体在磁场中受力的有关知识逐个分析四个选择项,从而得到答案.8.(2015·菏泽)刷卡机广泛应用于银行、超市等.如图所示的POS刷卡机读出信息的原理是:当带有磁条的信用卡在刷卡机上刷过时,刷卡机的检测头就会产生感应电流,便可读出磁条上的信息.下列装置的工作原理与刷卡机读取信息原理相同的是()9.(2015·武汉)如图是一种充电鞋.当人走动时,会驱动磁性转子旋转,使线圈中产生电流,产生的电流进入鞋面上锂聚合物电池.这种充电鞋的工作原理是()A.电磁感应现象B.电流的磁效应C.磁极间的相互作用D.通电线圈在磁场中受力转动10.(2015·烟台)如图为电动机和发电机模型,其中图________(填“甲”或“乙”)为电动机模型,其工作原理是________________________;电动机工作时,能够使线圈平稳、连续不停地转动下去是靠________实现的.命题点5信息的传递(2015·佛山)关于信息传递下列说法正确的是()A.蝙蝠是通过电磁波确定障碍物位置的B.卫星与地面通过电磁波传递信息C.电磁波和超声波可在真空中传递信息D.卫星导航是靠声呐来传递路况信息的点拨:超声波的传播需要介质.蝙蝠确定目标的方向和距离,是利用了超声波回声定位;电磁波可以在真空中传播,电磁波作为载波可以传递信息.11.(2015·娄底)WiFi无线上网是当今使用最广的一种无线网络传输技术,实际上就是把有线网络信号转换成无线信号,供支持其技术的相关电脑、手机接收.WiFi无线上网利用了()A.红外线B.紫外线C.电磁波D.超声波12.(2015·内江)在电磁波谱中,有无线电波、红外线、可见光、紫外线、X射线和γ射线等,其中,波长最长的是________,频率最高的电磁波在真空中传播的速度为________m/s.命题点电与磁的探究电流的磁场、电磁铁磁性强弱的影响因素、磁场对电流的作用、电生磁的条件是电磁探究的热点内容;试题或再现课本相关实验,或以新载体进行考查.(2015·厦门)如图所示,某小组探究导体在磁场中产生感应电流的条件,实验时保持磁体位置不变.(1)如图甲所示,电流计指针不偏转,这是因为导体ab________________.(2)如图乙所示,电流计指针也不偏转,这是因为____________.(3)如图丙所示,电流计指针仍不偏转,这是因为导体ab虽有运动,但没有________.(4)分析比较图四个实验现象,可以初步得出产生感应电流的条件:________的部分导体,在磁场中做__________运动.点拨:根据产生感应电流的条件:闭合电路的部分导体在磁场中做切割磁感线运动,对各个图示逐一分析即可.(5)探究之余,李明出示了如图所示的一款鼠标的概念设计,设计的核心是在长时间伏案工作时,因为电池消耗较快,你必须经常起身玩一下它,这样既能恢复电力,又对你的健康大有好处.请猜想鼠标电力得以恢复是________能转化为________能,其工作原理与________(填“电动机”或“发电机”)原理相同.一、选择题1.(2015·嘉兴)爱因斯坦曾说,在一个现代的物理学家看来,磁场和他坐的椅子一样实在.如图所示的磁场与实际不相符的是()A.同名磁极间的磁场B.直线电流的磁场C.通电螺线管的磁场D.蹄形磁体的磁场2.(2015·武汉)如图,小磁针静止后指向正确的是()3.(2015·长沙)法国科学家阿尔贝·费尔和德国科学家彼得·格林贝格尔由于巨磁电阻(GMR)效应而荣获2007年诺贝尔物理学奖.如图是研究巨磁电阻特性的原理示意图,实验发现,在闭合开关S1、S2且滑片P向右滑动的过程中,指示灯明显变暗,下列说法正确的是()A.电磁铁的左端为N极B.流过灯泡的电流增大C.巨磁电阻的阻值随磁场的减弱而明显减小D.巨磁电阻的阻值与磁场的强弱没有关系4.(2015·怀化)如图所示,在探究电磁铁的磁性强弱与什么因素有关实验中,下列说法中正确的是()A.把滑动片向左滑动时,磁性减弱B.把滑动片向左滑动时,磁性增强C.若增加线圈匝数,磁性将减弱D.若改变电流的方向,磁性将增强5.(2015·邵阳)如图所示的4个实验中,能说明电动机工作原理的是()6.(2015·恩施)某“迪厅”主人在地板中安装了一种“神奇”装置,给厅内炫光灯供电.当跳舞的人踩踏地板越厉害时,炫光灯就越明亮.该“神奇”装置可能利用的工作原理是()A.电磁感应现象B.电流的磁效应C.通电线圈受磁力D.摩擦起电现象7.(2015·永州)如图是关于电磁现象的四个实验,下列说法正确的是()A.图甲实验是研究同种电荷相互排斥B.图乙实验是研究通电导线周围存在磁场C.图丙实验是研究电磁感应现象D.图丁实验是研究电动机的原理8.(2015·广州)如图是电磁波家族,真空中各种电磁波的传播速度相同,某类恒星温度较低,呈暗红色;另一类恒星温度极高,呈蓝色.根据所给信息可推测()A.红外线波长比蓝光波长短B.红光与X射线都是电磁波C.恒星温度越高,发出的光频率越低 D.真空中红光比无线电波传播速度大二、填空题9.(2015·临沂)通过两年的物理学习,相信聪明的你一定学到了很多物理知识,还知道了很多物理学家及他们对物理学作出的贡献.如:奥斯特发现了________,首次揭示了电和磁的联系;法拉第发现了________现象,进一步揭示了电与磁的联系,开辟了人类的电气时代.10.(2015·德州)如图所示,电路中Rc为压敏电阻,阻值随所受压力增大而减小,开关S闭合后,螺线管的上端相当于电磁铁的________极,当压力增大时,电磁铁的磁性会________.11.(2015·莆田)如图是一种“闯红灯违规证据抓拍模拟器”的工作原理图,光控开关接收到红光时会自动闭合,压敏电阻受到压力时其阻值会变小.当红灯亮后,且车辆压到压敏电阻上时,电磁铁的磁性因电路中电流的改变而变________(填“强”或“弱”),吸引衔铁与触点________(填“1”或“2”)接触,电控照相机工作,拍摄违规车辆.12.(2015·漳州)小梅把家里的小电风扇从插座上拔下,如图所示,将小灯泡与电风扇插头的两金属片相连接,用手快速拨动风扇叶片,发现灯泡发光,电风扇发电的原理是________,发电过程是把________能转化为电能.13.(2015·平凉)电磁波家族成员很多:无线电波、红外线、可见光、紫外线、X射线、γ射线等.它们与人类生活息息相关,例如:电视机的遥控器就是利用________来工作的;某电台发射的电磁波波长为 3 m,其频率________MHz.三、作图题14.(2015·娄底)请在图中标出小磁针a静止时的N、S极.15.(2015·茂名)在图中,根据闭合开关后小磁针N极静止时的指向,标出电源的正负极,并用箭头标出磁感线的方向.四、实验探究题16.(2015·郴州)法国科学家阿尔贝·费尔和德国科学家彼得·格林贝尔由于发现巨磁电阻(GMR)效应,荣获了2007年诺贝尔物理学奖.这一发现大大提高了磁、电之间信号转换的灵敏度.如图是说明巨磁电阻特性原理的示意图:(1)通电螺线管的右端是________极;(2)闭合开关S2,指示灯不亮,再闭合开关S1,指示灯发光,由此可知:巨磁电阻的大小与________有关;(3)若滑片P向左移动,电磁铁的磁场________(填“增强”或“减弱”),观察到指示灯变得更亮,由此实验可得出结论:________________________________________________________________________;(4)请举出一个应用巨磁电阻效应相关的实例:____________.17.(2015·济宁)如图所示是“探究导体在磁场中运动时产生感应电流的条件”的实验装置.闭合开关后,导体棒、灵敏电流计、开关、导线组成闭合电路.(1)要使灵敏电流计的指针发生偏转,可行的操作是________________.(2)要使灵敏电流计的指针偏转方向发生改变,可以采取两种方法.方法一:____________________;方法二:____________________.第十单元电与磁信息的传递第21讲电与磁信息的传递考点解读考点1铁、钴、镍天然人造软硬南(S) 北(N) 排斥吸引磁体电流考点2磁力北极N S S N 北南沈括考点3 1.通电导体电流的方向条形电流的方向N 2.铁芯磁控制变量转换电流线圈匝数电流的通断电流大小线圈匝数低压高压 3.力(1)电流(2)磁感线(1)电流(2)磁场考点4 1.闭合一部分切割磁感线感应电流(1)闭合(2)切割磁感线(1)磁感线(2)导体运动(1)快慢(2)磁场 2.电磁感应现象磁场对电流的作用定子转子机械电电机械(1)电流方向考点5 1.声电电声模拟数字 2.方向、大小可以3×108λf 3.微波中继站各个击破例1D题组训练1.A2.例2奥斯特 a题组训练3.A4.A5.S正例3BD题组训练6.A7.变强A到B例4D题组训练8.C9.A10.甲通电线圈在磁场中受力转动换向器例5B题组训练11.C12.无线电波3×108实验突破例(1)没有切割磁感线运动(2)没有闭合开关(3)切割磁感线(4)闭合电路切割磁感线拓展训练(5)机械电发电机整合集训1.C 2.C 3.A 4.B 5.A 6.A7.B8.B9.电生磁电磁感应10.S增强11.强 2 12.电磁感应机械13.红外线10014.15.16.(1)S(2)磁场强弱(3)增强磁场越强巨磁电阻阻值越小(4)电磁继电器17.(1)导体棒水平左右运动(2)调换N极S极位置改变导体棒运动方向。