大学物理磁场(作业任务讲解)
- 格式:ppt
- 大小:444.02 KB
- 文档页数:6
⼤学物理(下)⼗⼀章⼗⼆章作业与解答第⼗⼀章恒定磁场⼀. 选择题1.在⼀平⾯内,有两条垂直交叉但相互绝缘的导线,流经两条导线的电流⼤⼩相等,⽅向如图,在哪些区域中有可能存在磁感应强度为零的点?(A) 在Ⅰ、Ⅲ象限(B) 在Ⅰ、Ⅳ象限(C) 在Ⅱ、Ⅲ象限(D) 在Ⅱ、Ⅳ象限[ ]2. 载流导线在同⼀平⾯内,形状如图,在圆⼼O处产⽣的磁感应强度⼤⼩为(A)(B)(C)(D) [ ]注意见第11章课件最后的总结的那个图,半圆载流回路在圆⼼处的磁感强度是多少?3. ⼀圆形回路1及⼀正⽅形回路2,圆的直径与正⽅形边长相等,⼆者中通有⼤⼩相同电流,则它们在各⾃中⼼处产⽣的磁感应强度⼤⼩之⽐为(A) 0.90(B) 1.00(C) 1.11(D) 1.22 [ ]注意教材page304,及课件最后总结的那个图4. 在磁感应强度为的均匀磁场中做⼀半径为r的半球⾯S,S边线所在平⾯的法线⽅向单位⽮量与的夹⾓为θ,则通过半球⾯S 的磁通量(取半球⾯向外为正)为(A)(B)(C)(D)[ ]5. 如图,⽆限长载流直导线附近有⼀正⽅形闭合曲⾯S,当S向导线靠近时,穿过S的磁通量和S上各点的磁感应强度的⼤⼩B 将(A) 增⼤,B增强(B) 不变,B不变(C) 增⼤,B不变(D) 不变,B增强[ ]6. 取⼀闭合积分回路L,使若⼲根载流导线穿过它所围成的⾯,若改变这些导线之间的相互间隔,但不越出积分回路,则(A) 回路L内的电流的代数和不变,L上各点的不变(B) 回路L内的电流的代数和不变,L上各点的改变(C) 回路L内的电流的代数和改变,L上各点的不变(D) 回路L内的电流的代数和改变,L上各点的改变[ ]7. 如图,两根导线ab和cd沿半径⽅向被接到⼀个截⾯处处相等的铁环上,恒定电流I 从a端流⼊⽽从d端流出,则磁感应强度沿闭合路径L的积分等于(A)(B)(C)(D)[ ]8. ⼀电荷为q的粒⼦在均匀磁场中运动,下列说法正确的是(A) 只要速度⼤⼩相同,粒⼦所受的洛仑兹⼒就相同(B) 在速度不变的前提下,若电荷q变为 -q,则粒⼦受⼒反向,数值不变(C) 粒⼦进⼊磁场后,其动能和动量都不变(D) 洛仑兹⼒与速度⽅向垂直,所以带电粒⼦运动的轨迹必定是圆[ ]9. 质量为m、电量为q的粒⼦,以速度v垂直射⼊均匀磁场中,则粒⼦运动轨道包围范围的磁通量与磁感应强度的⼤⼩之间的关系曲线为[ b ]注意见P317,(11.30)10. 如图,长直载流导线与⼀圆形电流共⾯,并与其⼀直径相重合(两者间绝缘),设长直电流不动,则圆形电流将(A) 向上运动(B) 绕旋转(C) 向左运动(D) 向右运动(E) 不动[ ]11. 磁场中有⼀载流圆线圈,其既不受⼒也不受⼒矩作⽤,这说明(A) 该磁场⼀定均匀,且线圈的磁矩⽅向⼀定与磁场⽅向平⾏(B) 该磁场⼀定不均匀,且线圈的磁矩⽅向⼀定与磁场⽅向平⾏(C) 该磁场⼀定均匀,且线圈的磁矩⽅向⼀定与磁场⽅向垂直(D) 该磁场⼀定不均匀,且线圈的磁矩⽅向⼀定与磁场⽅向垂直[ ]注意见P325 第⼆段表述,11.36式12. ⽤细导线均匀密绕成长为l、半径为a(l >>a)、总匝数为N的螺线管,管内充满相对磁导率为的均匀磁介质,线圈中载有电流I,则管中任⼀点(A) 磁感应强度⼤⼩为(B) 磁感应强度⼤⼩为(C) 磁场强度⼤⼩为(D) 磁场强度⼤⼩为[ ]⼆. 填空题13.如图,电流元在P点产⽣的磁感应强度的⼤⼩为___________________.14. 真空中有⼀载有电流I的细圆线圈,则通过包围该线圈的闭合曲⾯S的磁通量Φ=________________. 若通过S⾯上某⾯元的磁通为,⽽线圈中电流增加为2I时,通过该⾯元的磁通为,则_______________.0 ; 1︰215. 如图,两平⾏⽆限长载流直导线中电流均为I,两导线间距为a,则两导线连线中点P的磁感应强度⼤⼩,磁感应强度沿图中环路L的线积分_______________________.0 ;16. 恒定磁场中,磁感应强度对任意闭合曲⾯的积分等于零,其数学表⽰式是____________,这表明磁感应线的特征是_________________________. ;闭合曲线17. ⼀长直螺线管是由直径的导线密绕⽽成,通以的电流,其内部的磁感应强度⼤⼩B =_____________________.(忽略绝缘层厚度)18. 带电粒⼦垂直磁感应线射⼊匀强磁场,它做______________运动;带电粒⼦与磁感应线成300⾓射⼊匀强磁场,则它做__________________运动;若空间分布有⽅向⼀致的电场和磁场,带电粒⼦垂直于场⽅向⼊射,则它做__________________运动.圆周;螺旋线;变螺距的螺旋线19. 在霍尔效应实验中,通过导电体的电流和的⽅向垂直(如图).如果上表⾯的电势较⾼,则导电体中的载流⼦带___________电荷;如果下表⾯的电势较⾼,则导电体中的载流⼦带___________电荷.正;负20. 如图,⼀载流导线弯成半径为R的四分之⼀圆弧,置于磁感应强度为的均匀磁场中,导线所受磁场⼒⼤⼩为______________,⽅向为_____________.; y轴正向注意:积分IRBdθ,θ的积分上下限?21. 如图,半径为R的半圆形线圈通有电流I,线圈处在与线圈平⾯平⾏指向右的均匀磁场中,该载流线圈磁矩⼤⼩为___________,⽅向____________;线圈所受磁⼒矩的⼤⼩为_________________,⽅向_____________.;垂直纸⾯向外;;向上22. 磁场中某点,有⼀半径为R、载有电流I的圆形实验线圈,其所受的最⼤磁⼒矩为M,则该点磁感应强度的⼤⼩为_________________.注意见教材324页三. 计算题23. 如图,两长直导线互相垂直放置,相距为d,其中⼀根导线与z轴重合,另⼀与x轴平⾏且在Oxy平⾯内,设导线中皆通有电流I,求y轴上与两导线等距的P点处的磁感应强度.解:长直载流导线在距其r处的磁感应强度为两长直载流导线在P点产⽣的磁感应强度⽅向⼀沿z轴⽅向,⼀沿x轴负⽅向且⽅向平⾏于Oxz平⾯与Oxy⾯成45o,如图⽰。
作业 10 稳恒磁场四1.载流长直螺线管内充满相对磁导率为r μ的均匀抗磁质,则螺线管内中部的磁感应强度B 和磁场强度H 的关系是[ ]。
A. 0B H μ>B. r B H μ=C. 0B H μ=D. 0B H μ< 答案:【D 】解:对于非铁磁质,电磁感应强度与磁场强度成正比关系H B r μμ0=抗磁质:1≤r μ,所以,0B H μ<2.在稳恒磁场中,关于磁场强度H →的下列几种说法中正确的是[ ]。
A. H →仅与传导电流有关。
B.若闭合曲线内没有包围传导电流,则曲线上各点的H →必为零。
C.若闭合曲线上各点H →均为零,则该曲线所包围传导电流的代数和为零。
D.以闭合曲线L 为边界的任意曲面的H →通量相等。
答案:【C 】解:安培环路定理∑⎰=⋅0I l d H L ρρ,是说:磁场强度H ρ的闭合回路的线积分只与传导电流有关,并不是说:磁场强度H ρ本身只与传导电流有关。
A 错。
闭合曲线内没有包围传导电流,只能得到:磁场强度H ρ的闭合回路的线积分为零。
并不能说:磁场强度H ρ本身在曲线上各点必为零。
B 错。
高斯定理0=⋅⎰⎰SS d B ρρ,是说:穿过闭合曲面,场感应强度B ρ的通量为零,或者说,.以闭合曲线L 为边界的任意曲面的B ρ通量相等。
对于磁场强度H ρ,没有这样的高斯定理。
不能说,穿过闭合曲面,场感应强度H ρ的通量为零。
D 错。
安培环路定理∑⎰=⋅0I l d H L ρρ,是说:磁场强度H ρ的闭合回路的线积分等于闭合回路包围的电流的代数和。
C 正确。
3.图11-1种三条曲线分别为顺磁质、抗磁质和铁磁质的B H -曲线,则Oa 表示 ;Ob 表示 ;Oc 表示 。
答案:铁磁质;顺磁质; 抗磁质。
图中Ob (或4.某铁磁质的磁滞回线如图11-2 所示,则'Ob )表示 ;Oc (或'Oc )表示 。
答案:剩磁;矫顽力。
5.螺线环中心周长10l cm =,环上线圈匝数300N =,线圈中通有电流100I mA =。
1、如图所示,半圆形线圈半径为R ,通有电流I ,在磁场B 的作用下从图示位置转过30°时,它所受磁力矩的大小和方向分别为( (4))(1)214R IB π,沿图面垂直向下;(2)214R IB π,沿图面垂直向上; (3)234R IB π,沿图面垂直向下;(4)234R IB π。
沿图面垂直向上。
2、如图所示,载流为I 2的线圈与载流为I 1的长直导线共面,设长直导线固定,则圆线圈在磁场力作用下将( (1))(1)向左平移;(2)向右平移;(3)向上平移;(4)向下平移。
3、质子和α粒子质量之比为1:4,电量之比为1:2,它们的动能相同,若将它们引进同一均匀磁场,且在垂直于磁场的平面内作圆周运动,则它们的回转半径之比为((2) )(1)1:4; (2)1:1; (3)1:2; (4)124、如图所示,a 、c 处分别放置无限长直载流导线,P 为环路L 上任一点,若把a 处的载流导线移至b 处,则((4) )(1)L B dl •⎰变,p B 变; (2)L B dl •⎰变,p B 不变; (3)L B dl •⎰不变,p B 不变; (4)LB dl •⎰不变,p B 变5、如图所示,ab 导线与无限长直导线GE 共面,ab 延长线与GE 交于O 点成45°,若分别通以电流I 1=20 A ,I 2=10 A ,ab 长92L = cm ,a 端距GE 为d=1 cm ,求ab 在图示位置时所受GE 产生的磁场作用力F 。
解答:此题直接运用无限长直导线磁场公式以及通电直导线和磁场作用公式即可。
2F I dl B =⨯⎰,其方向为垂直于ab 向左上,其大小如下计算:设ab 上dl 长度距GE 为r ,则有2()]2dl d r d dr =-=,r 的取值范围很明显是[0.01,0.1]。
于是有 0.10122224I F BI dl I dr r μπ==⎰⎰,代入相关数值并且积分得到, 41.310F N -=⨯。
第十一章 恒定电流的磁场11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。
(1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。
(2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。
…解:(1)如图11-2所示,中心O 点到每一边的距离为13OP h =,BC 边上的电流产生的磁场在O 处的磁感应强度的大小为012(cos cos )4πBC IB dμββ=-^00(cos30cos150)4π/34πI I h hμ︒︒=-=方向垂直于纸面向外。
另外两条边上的电流的磁场在O 处的磁感应强度的大小和方向都与BC B 相同。
因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即3BC B B ===方向垂直于纸面向外。
(2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。
由载流直导线的磁感强度一般公式012(cos cos )4πIB dμββ=-可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为01(cos0cos30)4cos60)IB R μ︒=︒-︒π(0(12πI R μ=031(cos150cos180)4πcos60IB B R μ︒==︒-︒0(12πI R μ= 】IB 2图11–2图11–1…B(a )AE(b )方向垂直纸面向里。
半径为R ,圆心角α的载流圆弧在圆心处产生的磁感强度的大小为04πI B Rμα=圆弧bcd 占圆的13,所以它在圆心O 处产生的磁感强度B 2的大小为00022π34π4π6II I B R R Rμμαμ=== 方向垂直纸面向里。
因此整个导线在O 处产生的总磁感强度大小为000012333(1)(1)0.212π2π6I I II B B B B R R R Rμμμμ=++=-+-+=方向垂直纸面向里。
(⼤学物理实验)磁场测量与描绘实验指导书磁场测量与描绘实验指导书在⼯业⽣产和科学研究的许多领域都要涉及到磁场测量问题,如磁探矿、地质勘探、磁性材料研制、磁导航、同位素分离、电⼦束和离⼦束加⼯装置、受控热核反应以及⼈造地球卫星等。
近三⼗多年来,磁场测量技术发展很快,⽬前常⽤的测量磁场的⽅法有⼗多种,较常⽤的有电磁感应法、核磁共振法、霍尔效应法、磁通门法、光泵法、磁光效应法、磁膜测磁法以及超导量⼦⼲涉器法等。
每种⽅法都是利⽤磁场的不同特性进⾏测量的,它们的精度也各不相同,在实际⼯作中将根据待测磁场的类型和强弱来确定采⽤何种⽅法。
本实验仪采⽤电磁感应法测量通有交流电的螺线管产⽣的交变磁场,通过这个实验掌握低频交变磁场的测量⽅法,加深对法拉第电磁感应定律和毕奥—萨伐尔定律的理解及对交变磁场的认识。
⼀、实验⽬的1.学习交变磁场的测量原理和⽅法。
2.学习⽤探测线圈测量交变磁场中各点的磁感应强度。
3.掌握载流直螺线管轴线上各点磁场的分布情况。
4.了解螺线管周围磁场的分布及其描绘⽅法。
5.加深理解磁场和电流的相互关系。
⼆、实验原理1.交变磁场的测量原理当导线中通有交变电流时,其周围空间就会产⽣交变磁场。
当直螺线管通过电流时,在螺线管内就产⽣磁场。
如果通过的电流是交变电流,则产⽣的磁场就是交变磁场。
在交变磁场中各点的磁感应强度是随时间变化的,我们⼀般⽤磁感应强度的有效值来描述磁场。
交变磁场的测量可以⽤探测线圈和交流数字毫伏表组成的闭合回路进⾏测量。
将探测线圈置于被测的磁场中,则根据法拉第电磁感应定律,通过探测线圈的交变磁通在回路中感应出电动势。
通过测量此感⽣电动势的⼤⼩,就可计算出磁感应强度B 的⼤⼩和⽅向。
2. B 的⼤⼩和⽅向确定通常为了精确测量磁场中某⼀点的磁感应强度,探测线圈都做得很⼩,因此线圈平⾯内的磁场可以认为是均匀的。
如图1所⽰,若线圈的横截⾯积为S ,匝数为N ,置于载流螺线管产⽣的待测交变磁场B 中,线圈平⾯的法线n 与磁感应强度B 的夹⾓为θ,则通过该线圈的磁通量θφcos NSB =。
#### 一、教学目标1. 知识与技能:- 理解磁场的概念及其基本性质。
- 掌握磁感应强度的定义和计算方法。
- 熟悉毕奥-萨伐尔定律及其应用。
- 理解磁场中的安培环路定理和磁场的高斯定理。
2. 过程与方法:- 通过实验观察和数据分析,培养学生的观察能力和实验操作技能。
- 通过小组讨论和课堂互动,培养学生的合作精神和探究能力。
3. 情感态度与价值观:- 激发学生对物理现象的好奇心和求知欲。
- 培养学生严谨的科学态度和勇于探索的精神。
#### 二、教学重点与难点1. 教学重点:- 磁感应强度的定义和计算。
- 毕奥-萨伐尔定律和安培环路定理的应用。
2. 教学难点:- 磁感应强度公式的推导和应用。
- 磁场中的安培环路定理和磁场的高斯定理的证明和应用。
#### 三、教学过程##### 第一部分:导入1. 提问:同学们,你们知道磁场是什么吗?磁场有哪些基本性质?2. 引导学生回顾磁场的基本概念,如磁感应强度、磁通量等。
##### 第二部分:磁场的基本性质1. 讲解磁感应强度的定义:磁感应强度是描述磁场强弱的物理量,用符号B表示。
2. 介绍磁感应强度的计算方法,包括毕奥-萨伐尔定律和安培环路定理。
3. 通过实例讲解磁感应强度的计算过程。
##### 第三部分:毕奥-萨伐尔定律1. 介绍毕奥-萨伐尔定律的内容:电流元在外部空间某点产生的磁感应强度与电流的大小、方向和距离有关。
2. 讲解毕奥-萨伐尔定律的公式及其推导过程。
3. 通过实例讲解毕奥-萨伐尔定律的应用。
##### 第四部分:安培环路定理1. 介绍安培环路定理的内容:在恒定磁场中,磁感应强度B沿闭合路径的线积分等于此闭合路径所包围的电流的代数和与真空磁导率的乘积。
2. 讲解安培环路定理的证明过程。
3. 通过实例讲解安培环路定理的应用。
##### 第五部分:磁场的高斯定理1. 介绍磁场的高斯定理:通过磁场中某一曲面的磁感线数等于穿过此面的磁通量。
2. 讲解磁场的高斯定理的证明过程。
第6章 恒定磁场习题解答1. 空间某点的磁感应强度B的方向,一般可以用下列几种办法来判断,其中哪个是错误的? ( C )(A )小磁针北(N )极在该点的指向;(B )运动正电荷在该点所受最大的力与其速度的矢积的方向; (C )电流元在该点不受力的方向;(D )载流线圈稳定平衡时,磁矩在该点的指向。
2. 下列关于磁感应线的描述,哪个是正确的? ( D )(A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。
3. 磁场的高斯定理⎰⎰=⋅0S d B说明了下面的哪些叙述是正确的? ( A )a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。
(A )ad ; (B )ac ; (C )cd ; (D )ab 。
4. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ和面上各点的磁感应强度B 将如何变化? ( D )(A )Φ增大,B 也增大;(B )Φ不变,B 也不变; (C )Φ增大,B 不变; (D )Φ不变,B 增大。
5. 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少? ( C )(A )0; (B )R I 2/0μ;(C )R I 2/20μ; (D )R I /0μ。
6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线的同轴的圆柱形闭合高斯面,则通过此闭合面的磁感应通量( A )A 、等于零B 、不一定等于零C 、为μ0ID 、为i ni q 11=∑ε7、一带电粒子垂直射入磁场B后,作周期为T 的匀速率圆周运动,若要使运动周期变为T/2,磁感应强度应变为(B )A 、B /2 B 、2BC 、BD 、–BIS IIo8 竖直向下的匀强磁场中,用细线悬挂一条水平导线。
习题题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A,方向相同,如图所示,求图中M、N两点的磁感强度B的大小和方向(图中r0 = 0.020 m)。
题10.2:已知地球北极地磁场磁感强度B的大小为6.0 105 T。
如设想此地磁场是由地球赤道上一圆电流所激发的(如图所示),此电流有多大?流向如何?题10.3:如图所示,载流导线在平面内分布,电流为I,它在点O的磁感强度为多少?题10.4:如图所示,半径为R的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面,设线圈的总匝数为N,通过线圈的电流为I,求球心O处的磁感强度。
题10.5:实验中常用所谓的亥姆霍兹线圈在局部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。
(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22=xB ) 题10.6:如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量。
题10.7:如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α,求通过该半球面的磁通量。
题10.8:已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热。
电流在导线横截面上均匀分布。
求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。
题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。
试计算以下各处的磁感强度:(1)r <R 1;(2)R 1<r <R 2;(3)R 2<r <R 3;(4)r >R 3。
习题题10.1:如图所示,两根长直导线互相平行地放置,导线电流大小相等,均为I = 10 A,方向相同,如图所示,求图中M、N两点的磁感强度B的大小和方向(图中r0 = 0.020 m)。
题10.2:已知地球北极地磁场磁感强度B的大小为6.0⨯10-5 T。
如设想此地磁场是由地球赤道上一圆电流所激发的(如图所示),此电流有多大?流向如何?题10.3:如图所示,载流导线在平面分布,电流为I,它在点O的磁感强度为多少?题10.4:如图所示,半径为R的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面,设线圈的总匝数为N,通过线圈的电流为I,求球心O处的磁感强度。
题10.5:实验中常用所谓的亥姆霍兹线圈在局部区域获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R,通过的电流均为I,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d等于线圈的半径R时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。
(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22=xB ) 题10.6:如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量。
题10.7:如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α,求通过该半球面的磁通量。
题10.8:已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热。
电流在导线横截面上均匀分布。
求:(1)导线、外磁感强度的分布;(2)导线表面的磁感强度。
题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。
试计算以下各处的磁感强度:(1)r <R 1;(2)R 1<r <R 2;(3)R 2<r <R 3;(4)r >R 3。
实验 16 用霍尔效应法测量磁场在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范围可从 10 15 ~ 103 T(特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。
常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。
一般地,霍尔效应法用于测量 10 4 ~ 10 T 的磁场。
此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。
但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。
用半导体材料制成的霍尔器件,在磁场作用下会出现显著的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型( N 型或 P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。
如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。
了解这一富有实用性的实验,对于日后的工作将有益处。
【实验目的】1.了解霍尔效应产生的机理。
2.掌握用霍尔器件测量磁场的原理和基本方法。
3.学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。
4.研究通电长直螺线管内轴向磁场的分布。
【仪器用具】TH-H/S 型霍尔效应 /螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。
【实验原理】1.霍尔效应产生的机理置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879 年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。
特别是在半导体样品中,霍尔效应更加明显。
霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。