2020 年深圳市普通高中高三年级第二次线上统一测试理科数学答案
- 格式:pdf
- 大小:451.31 KB
- 文档页数:10
2020年深圳市高三年级第二次调研考试数学(理科)2020.6一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题 目要求的。
1.设21(1)iz i +=-则|z|=( )A .12B C .1D2.已知集合{}{}023,22<+-===x x x B y y A x ,则( ) A .A∩B=AB .A ∪B=RC .A ⊆BD .B ⊆A3.设α为平面,m ,n 为两条直线,若m ⊥α,则“m ⊥n ”是”n ⊂α”的 A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.已知双曲线2222:10,0)(y x C a b a b-=>>的两条渐近线互相垂直,则C 的离心率为( )A B .2 C D .35.已知定义在R 上的函数f(x)满足()()2,f x f x +=当01x ≤≤时,13()f x x =,则178f ⎛⎫⎪⎝⎭= A .12 B .2 C.18D .8 6.若x 1,x 2,…,x n 的平均数为a ,方差为b ,则1223,23,23n x x x +++L 的平均数和方差分别为 A .2a ,2bB .2a ,4bC .2a+3,2bD .2a+3,4b7.记等差数列{a n }的前n 项和为S n ,若244,2,S S ==则6S = A .-6B .-4C .-2D .08.函数()()14sin 2xxx f x -=的部分图象大致为9已知椭圆C :22213x y a +=的右焦点为F ,O 为坐标原点,C 上有且只有一个点P 满足|OF|=|FP|,则C 的方程为A .221123x y += B.22183x y += C .22163x y += D.22143x y += 10.下面左图是某晶体的阴阳离子单层排列的平面示意图其阴离子排列如下面右图所示,右图中圆的半径均为1,且相邻的圆都相切,A ,B ,C ,D 是其中四个圆的圆心,则AB CD ⋅=u u u r u u u rA .24B .26C .28D .3211.意大利数学家斐波那契(1175年—1250年)以兔子繁殖数量为例,引入数列:1,1,2,3,5,8,…,该数列从第三项起,每一项都等于前两项之和,即()21,n n n a a a n +++=+∈N 故此数列称为斐波那契数列,又称“兔子数列”,其通项公式为.n n n a ⎡⎤=-⎥⎦(设n是不等式(1211x x x ->+的正整数解,则n 的最小值为A .10B .9C .8D .712.已知直线y ω=与函数()()()sin 01x f x ϕωω=+<<的图象相交,将其中三个相邻交点从左到右依次记为A ,B ,C ,且满足()*.N AC nBC n =∈u u u r u u u r 有下列结论:①n 的值可能为2②当n=3,且|φ|<π时,f(x)的图象可能关于直线x=-φ对称③当φ=6π时,有且仅有一个实数ω,使得(),11f x ππωω⎡⎤-⎢⎥++⎣⎦在上单调递增; ④不等式n ω>1恒成立 其中所有正确结论的编号为 A .③B .①②C .②④D .③④二、填空题:本大题共4小题,每小题5分,共20分. 13.曲线y=xlnx 在点(1,0)处的切线方程为 ▲14.若x ,y 满足约束条件20,0,30,y x y x y -≤⎧⎪-≤⎨⎪+-≥⎩则y z x =的最大值为 ▲15.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足和医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援若将4名医生志愿者分配到两家医院(每人去一家医院,每家医院至少去1人),则共有 ▲ 种分配方案16.已知正方形ABCD 边长为3,点E ,F 分别在边AB ,AD 上运动(E 不与A ,B 重合,F 不与A ,D 重合),将△AEF 以EF 为折痕折起,当A ,E ,F 位置变化时,所得五棱锥A-EBCDF 体积的最大值为 ▲ 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答。
绝密★启用前试卷类型:A 深圳市2020年普通高中高三年级线上统一测试数学(理科)2020.3本试卷共23小题,满分150分.考试用时120分钟.一、选择题:本题共12 小题,每小题5分,共60 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}3210{,,,=A,}032|{2<--=xxxB,则A B=UA.)3,1(-B.]3,1(-C.)3,0(D.]3,0(答案:B解析:{|13}B x x=-<<,所以,集合A中,元素0,1,2集合B都有,3不在集合B中,所以,A B=U]3,1(-2.设23i32iz+=-,则z的虚部为答案:B解析:23i32iz+=-=(23i)(3+2i)6496(32i)(3+2i)13i ii+++-==-,所以,虚部为1。
3.某工厂生产的30个零件编号为01,02,…,19,30,现利用如下随机数表从中抽取5个进行检测. 若从表中第1行第5列的数字开始,从左往右依次读取数字,则抽取的第5个零件编号为34 57 07 86 36 04 68 96 08 23 23 45 78 89 07 84 42 12 53 31 25 30 07 32 8632 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42答案:C解析:如下图,第1行第5列的数字开始,大于30的数字舍去,重复的舍去,取到数字依次为:07、04、08、23、12、所以,第5个编号为12,选C。
A.1-B.1C.2-D.2 A.25B.23C.12 D. 074.记n S 为等差数列{}n a 的前n 项和,若23a =,59a =,则6S 为答案:A 解析:16256256()6()3()22a a a a S a a ++===+=36 5.若双曲线22221x y a b-=(0a >,0b >)的一条渐近线经过点(1,2)-,则该双曲线的离心率为答案:C解析:双曲线的渐近线为:by x a=±,经过点(1,2)-, 所以,2b a =,离心率为:c e a ====6.已知tan 3α=-,则πsin 2()4α+=答案:D解析:πsin 2()4α+=22sin(2)cos 2cos sin 2παααα+==-=222222cos sin 1tan 194cos sin 1tan 195αααααα---===-+++,选D 。
绝密★启用前 试卷类型:A深圳市2020年普通高中高三年级线上统一测试数 学(理科) 2020.3本试卷共23小题,满分150分.考试用时120分钟.一、选择题:本题共 12 小题,每小题5分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}3 2 1 0{,,,=A ,}032|{2<--=x x x B ,则A B =A .)3,1(-B .]3,1(-C .)3,0(D .]3,0(2.设23i32iz +=-,则z 的虚部为 3.某工厂生产的30个零件编号为01,02,…,19,30,现利用如下随机数表从中抽取5个进行检测. 若从表中第1行第5列的数字开始,从左往右依次读取数字,则抽取的第5个零件编号为4.记nS 为等差数列{}n a 的前n 项和,若23a =,59a =,则6S 为 5.若双曲线22221x y a b-=(0a >,0b >)的一条渐近线经过点(1,2)-,则该双曲线的离心率为 6.已知tan 3α=-,则πsin 2()4α+=7.7)2(xx -的展开式中3x 的系数为 8.函数()2ln |e 1|x f x x =--的图像大致为A .1-B .1C .2-D .2A .25B .23C .12D. 07A .36B .32C .28D. 24AB C D. 2A .35B .35-C .45D .45-A .168B .84C .42 D. 219.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球表面积为 A .323π3B .32πC .36πD .48π10.已知动点M 在以1F ,2F 为焦点的椭圆2214yx +=上,动点N 在以M 为圆心,半径长为1||MF 的圆上,则2||NF 的最大值为 11.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则A .33AB AC HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=-12.已知定义在π[0]4,上的函数π()sin()(0)6f x x ωω=->的最大值为3ω,则正实数ω的取值个数 最多为 二、填空题:本大题共4小题,每小题5分,共 20 分.13.若y x ,满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-+101022x y x y x ,则y x z 2-=的最小值为 ___________.14.设数列{}n a 的前n 项和为n S ,若n a S n n -=2,则=6a ___________.15.很多网站利用验证码来防止恶意登录,以提升网络安全. 某马拉松赛事报名网站的登录验证码由0,1,2,…,9中的四个数字随机组成,将从左往右数字依次增大的验证码称为“递增型验证码”(如0123),已知某人收到了一个“递增型验证码”,则该验证码的首位数字是1的概率为___________. 16.已知点1(,)2M m m -和点1(,)2N n n -()m n ≠,若线段MN 上的任意一点P 都满足:经过点P 的所ABCDA .2B .4C .8D .16A .4B .3C .2D. 1(第9题图)第9题图有直线中恰好有两条直线与曲线21:2C y x x =+(13)x -≤≤相切,则||m n -的最大值为___.三 、 解答题: 共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一 ) 必考题:共60 分. 17.(本小题满分12分)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S ,222+2a b c S -=. (1)求cos C ;(2)若cos sin a B b A c +=,a =,求b .18.(本小题满分12分)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是平行四边形, 点M ,N 分别在棱1C C ,1A A 上,且12C M MC =,12A N NA =.(1)求证:1//NC 平面BMD ;(2)若13A A =,22AB AD ==,π3DAB ∠=, 求二面角N BD M --的正弦值.19.(本小题满分12分)已知以F 为焦点的抛物线2:2(0)C y px p =>过点(1,P -为AB中点,且OM OP OF λ+=.(1)当3λ=时,求点M 的坐标; (2)当12OA OB ⋅=时,求直线l 的方程.20.(本小题满分12分)在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期. 一研究团队统计了某地区名患者的相关信息,得到如下表格:1000(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述名患者中抽取人,得到如下列联表. 请将列联表补充完整,并根据列联表判断是否有的把握认为潜伏期与患者年龄有关;(3)以这天发生的概率,每名患者的潜伏期是否超过天相互独立. 为了深入研究,该研究团队随机调查了20名患者,其中潜伏期超过天的人数最有可能....(即概率最大.....)是多少? 附:))()()(()(2d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=.21.(本小题满分12分)已知函数()e ln(1)xf x a x =--.(其中常数e=2.718 28⋅⋅⋅,是自然对数的底数) (1)若a ∈R ,求函数()f x 的极值点个数;(2)若函数()f x 在区间(1,1+e )a-上不单调,证明:111a a a +>+.(二)选考题:共 10 分.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1C 的参数方程为⎪⎩⎪⎨⎧=+-=,sin ,cos 32ααt y t x (t 为参数,α为倾斜角),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为θρsin 4=.(1)求2C 的直角坐标方程;(2)直线1C 与2C 相交于F E ,两个不同的点,点P 的极坐标为π),若PF PE EF +=2,求直线1C 的普通方程.100020095%66623.(本小题满分10分)选修4-5:不等式选讲已知,,a b c 为正数,且满足 1.a b c ++= 证明: (1)1119a b c++≥; (2)8.27ac bc ab abc ++-≤绝密★启封并使用完毕前 试题类型:A深圳市 2020 年普通高中高三年级线上统一测试理科数学试题答案及评分参考一、选择题1. B2. B3. C4. A5. C6. D7. B8. A9. D10. B11. D12. C12. 解析:当ω4π - π6 > π2 时,即 ω > 83 时, f (x )max =1 = ω3 ,解得 ω = 3 ;当ω4π - π6 ≤ π2 时,即 0 < ω ≤ 83 时, f (x )max = sin(ω4π - π6 ) = ω3 ,令 g (ω) = sin(ω4π - 6π) , h (ω) = ω3 ,如图,易知 y = g (ω) , y = h (ω) 的图象有两个交点 A (ω1 , y 1 ) , B (ω2 , y 2 ) ,所以方程 sin(ω4π - π6 ) = ω3 有两个实根 ω1,ω2 ,又 g (83) =1 > 89 = h (83) ,所以易知有 ω1 < 83 < ω2 ,所以此时存在一个实数 ω = ω1 满足题设,综上所述,存在两个正实数 ω 满足题设,故应选 C.二、填空题:13. - 314. 6315.4 16.4 15316. 解析:由对称性不妨设 m < n ,易知线段 MN 所在直线的方程为 y = x -12 ,又12 x 2 + x > x - 12 ,∴点 P 必定不在曲线 C 上,不妨设 P (t , t - 1 ) , (m ≤ t ≤ n ) ,且过点 P 的直线 l 与曲线 C 相切于点 Q ( x , 1 x 2 + x ) , 2 0 2 0 0( 1 x 2 + x ) - (t - 1 )易知 y ' |x = x = k PQ ,即 x + 1 =22 ,整理得 x 02 - 2tx 0- 1 = 0 ,x- t(法一)显然 x 0 ≠ 0 ,所以 2t = x 0 -1,x 0令 f ( x ) = x -1 , x ∈[-1,0) U (0,3] ,x深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 1 页 共 16页如图,直线 y = 2t 和函数 y = f ( x ) 的图象有两个交点,又 f (-1) = 0 ,且 f (3) = 83 ,∴ 0 ≤ 2t ≤83 ,即 0 ≤ t ≤ 43 ,∴ 0 ≤ m < n ≤43 ,∴ | m - n | 的最大值为 43 ,故应填 43 .(法二)由题意可知 -1 ≤ x 0 ≤ 3 ,令 f ( x ) = x 2 - 2tx - 1 ,∴函数 f ( x ) 在区间 [-1, 3] 上有两个零点,⎧ f (-1) = 2t ≥ 0⎪4⎪ f (3) = 8 - 6t ≥ 00 ≤ t ≤ 则⎨,解得,⎪-1 < t< 33⎪2+ 4 > 0⎩V = 4t∴ 0 ≤ m < n ≤43 ,∴ | m - n | 的最大值为 43 ,故应填 43 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分 12 分)已知△ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,△ ABC 的面积为 S ,a 2 +b 2 - c 2 = 2S .(1)求 cos C ;(2)若 a cos B + b sin A = c , a = 5 ,求 b .解:(1) S = 12 ab sin C ,a 2 + b 2 - c 2 = 2S ,∴ a 2 + b 2 - c 2 = ab sin C ,…………………………………………………………………2 分在△ ABC 中,由余弦定理得 cos C = a 2 + b 2 - c 2 = ab sin C = sin C,2ab2ab2∴ s in C =2cosC ,…………………………………………………………………………4 分又 sin 2 C +cos 2C=1 , ∴5cos 2C=1,cosC= ±55,cosC= 5由于 C ∈(0, π) ,则 sin C > 0 ,那么 cosC>0 ,所以 5.………………………6 分(2)(法一)在△ ABC 中,由正弦定理得 sin A cos B + sin B sin A = sin C ,……………7 分sin C = sin[π - ( A + B )] = sin( A + B ) = sin A cos B + cos A sin B , ………………………8 分∴sin A cos B + sin B sin A = sin A cos B + cos A sin B ,即 sin B sin A = cos A sin B ,深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 2 页 共 16页又 A , B ∈(0, π) ,∴sin B ≠ 0 , sin A =cosA ,得 A = π. ……………………………9 分4sin B = sin[π - ( A + C )] = sin( A + C ) , ……………………………………………10 分23, (11)2 5 2 510 分∴sin B = sin A cos C + cos A sin C = 2 ⨯ 5 + 2⨯ 5= 103 10a sin B 5 ⨯在△ ABC 中,由正弦定理得 b = =10= 3 . ……………………………12 分 sin A2(法二) a cos B + b sin A = c ,又 a cos B + b cos A = c , ∴ a cos B + b sin A = a cos B + b cos A ,…………………………………………………8 分即 sin A = cos A ,又 A ∈(0, π) , ∴ A = π. ……………………………………………9 分4⨯ 25a sin C5在△ ABC 中,由正弦定理得 c ==52.………………………10 分2sin A 22b = C cos A + a cos C ,25 = 3.………………………………………………………12 分(法三)求 A 同法一或法二⨯25 a sin C5 在△ ABC 中,由正弦定理得 c =52, ………………………10 分 2 sin A 2 2 又由余弦定理 c 2 = a 2 + b 2 - 2ab cos C ,得 b 2 - 2b - 3 = 0 ,解得 b = -1 或 b = 3 .所以 b = 3 . ……………………………………………………………………………12 分(余弦定理 a 2= b 2+ c 2 - 2b cos A ,得 b 2 - 4b + 3 = 0 ,解得 b = 1 或 b = 3 . 因为当 b = 1时, a 2 +b 2 - c 2 = -2 < 0 ,不满足 cosC>0 (不满足 a 2 +b 2 - c 2 = -2 ≠ 2S ),故舍去,所以 b = 3 )【命题意图】综合考查三角函数的基本运算、三角函数性质,考查利用正弦、余弦定理解决三角形问题,检验学生的数学知识运用能力.深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 3 页 共 16页18.(本小题满分 12 分)如图,在直四棱柱 ABCD - A 1B 1C 1D 1 中,底面 ABCD 是平行四边形, 点 M ,N 分别在棱 C 1C ,A A 上,且 C M = 2MC , A N = 2NA .C 1111(1)求证: NC 1 // 平面 BMD ;A 1πB(2)若 A A = 3,AB = 2AD = 2 , ∠DAB =1,求二面角13MN - BD - M 的正弦值.DNCA B(第 18 题图)解:(1)证明:(法一)如图,连接 AC 交 BD 于点 G ,连接MG .设 C 1M 的中点为 E ,连接 AE .………2 分G , M 是在△ ACE 边 CA ,CE 的中点,A 1 ∴ MG //AE , ……………………………………3 分又 C 1M = 2MC , A 1 N = 2NA , AA 1 //CC 1 ,N∴四边形 ANC 1E 是平行四边形,故 NC 1 //AE ,∴ NC 1 //GM , …………………………………4 分A GM ⊂ 平面 BMD ,∴ NC 1 // 平面 BMD . …………………………………5 分(法二)如图,设 E 是 BB 1 上一点,且 BE = 2B 1E ,连接 EC 1 . 设 G是BE 的中点,连接 GM .……………………1 分BE = MC 1,BE //MC 1 ,∴四边形 BEC 1M 是平行四边形,故 EC 1 //BM , ……2 分又 BM ⊂ 平面 BMD ,∴ EC 1 // 平面 BMD , …………………………………3 分同理可证 NE //AG , AG //DM ,故 NE //DM ,D C 1E B 1MDCBD 1 C 1A 1 BMA B深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 4 页 共 16页∴NE//平面BMD ,…………………………………4分又EC1,NE ⊂平面NEC1,且NE C1E = E ,∴平面NEC1//平面BMD,又NC1⊂平面NEC1,所以NC1//平面BMD.……………5分(2)(法一)设二面角N-BD-M为α,二面角N - BD - A 为β,根据对称性,二面角M - BD - C的大小与二面角N - BD - A 大小相等,故α =π-2β,sin α =sin(π - 2β ) = sin 2β.下面只需求二面角M - BD - C 的大小即可.………7分由余弦定理得BD2= AD2+ AB2-2AD ⋅ AB cos∠DAB =3,故AB2= AD2+ BD2,AD⊥BD.……………………8分四棱柱ABCD - A1B1C1D1为直棱柱,∴DD1⊥底面ABCD,DD1⊥ BD ,……………………9分又AD, D1D ⊂平面ADD1 A1,AD D1D = D,∴BD ⊥平面BDD B ,…………………………………10 分1 1DCA BMDN CA BND ⊂平面ADD1A1,∴ND ⊥ BD,所以二面角N - BD - A 的大小为∠NDA ,即∠NDA = β,在Rt ∆NAD中,sin β =AN=1=2,…………11 分ND2∴ β =π,α =π,42∴二面角N - BD - M 的正弦值为1.…………………12 分(法二)由余弦定理得BD2= AD2+ AB2-2AD ⋅ AB cos∠DAB =3,故AB2= AD2+ BD2,AD⊥BD.……………………6 分以D 为坐标原点O,以DA, DC, DD1分别为x, y, z 轴建立如图所示的空间直角坐标系.深圳市2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案第 5 页共16页依题意有 D (0,0,0) , B (0, 3,0) , M (-1, 3,1) , N (1, 3,1) ,DB = (0, 3,0) , DM = (-1, 3,1) , DN = (1, 3,1),……7 分 设平面 MBD 的一个法向量为 n = (x , y , z ) , ⎧ ⎧3y = 0∴⎨, ∴⎨,⎪n ⋅ DM = 0 ⎪-x + 3y + z = 0⎩⎩令 x =1 ,则 z = 1, y = 0 ,∴n = (1,0,1) ,……………9 分同理可得平面 NBD 的一个法向量为 m = (1,0, -1) ,……10 分m ⋅ n 0所以 cos < m , n >==0 ,……………11 分2 ⋅ 2 | m || n |所以二面角 N - BD - M 的大小为 π2 ,正弦值为1 .…12 分zDCABMNDCx B y【命题意图】考察线面平行、线面垂直判定定理等基本知识,考查空间想象能力,计算能力,考查学生综合运用基本知识处理数学问题的能力.19.(本小题满分 12 分)已知以 F 为焦点的抛物线 C : y 2 = 2 px ( p > 0) 过点 P (1, -2) ,直线 l 与 C 交于 A ,B 两点,M 为AB 中点,且 OM + OP = λOF .(1)当 λ=3 时,求点 M 的坐标;(2)当 OA ⋅ OB = 12 时,求直线 l 的方程.解:(1)因为 P (1, -2) 在 y 2 = 2 px 上,代入方程可得 p = 2 ,C y = 4x ,焦点为 F (1, 0) , 2所以 的方程为 2 ………………………………… 分设 M ( x 0 , y 0 ) ,当 λ=3 时,由 OM + OP = 3OF ,可得 M (2, 2) , ………………4 分(2)(法一)设 A (x 1 , y 1 ) , B ( x 2 , y 2 ) , M (x 0 , y 0 ) ,由 OM + OP = λOF ,可得 (x 0 +1, y 0 - 2) = (λ,0) ,所以 y 0 =2 ,所以 l 的斜率存在且斜率 k = y 1 - y 2=4=2=1 , ……………7 分x 1 - x 2y 1 + y 2y 0⎧ y = x + b + (2b - 4)x + b 2 = 0 , 可设 l 方程为 y = x + b , 联立 ⎨4x 得 x 2⎩ y 2 =∆ = b - 4 22=16 -16b > 0 ,可得 b < 1 ,………………………………9 分(2 )深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 6 页 共 16页则 x 1 + x 2 = 4 - 2b , x 1 x 2 = b 2 , y 1 y 2 = x 1 x 2 + b (x 1 + x 2 ) + b 2 = 4b ,所以 OA ⋅OB = x x + y y =b 2 + 4b = 12 , …………………………………11 分1 2 1 2解得 b = -6 ,或 b = 2 (舍去),所以直线 l 的方程为 y = x -6 .……………………………………………12 分(法二)设 l 的方程为 x = my + n , A (x 1 , y 1 ) , B ( x 2 , y 2 ) , M (x 0 , y 0 ) ,⎧x = my + n+16n > 0 , ………………6 分 联立 ⎨ 2 = 4x得 y 2- 4my - 4n = 0 , ∆ =16m 2 ⎩ y则 y 1 + y 2 = 4m , y 1 y 2 = -4n , x 1 + x 2 = m ( y 1 + y 2 ) + 2n = 4m 2 + 2n ,所以 M (2m 2 + n , 2m ) ,…………………………………………………………7 分由 OM + OP = λOF ,得 (2m 2 + n +1, 2m - 2) = (λ, 0) ,所以 m =1, …………8 分 所以 l 的方程为 x = y + n ,由 ∆ = 16 +16n > 0 可得, n > -1, ……………………………………………9 分由 y y= -4n 得 x x =( y y )2= n 2,1 21 216所以 OA ⋅OB = x x + y y =n 2 - 4n =12 , ………………………………………11 分1 2 1 2解得 n = 6 ,或 n = -2 (舍去),所以直线 l 的方程为 y = x - 6 . ……………………………………………12 分【命题意图】本题以直线与抛物线为载体,考查抛物线方程,直线与抛物线的位置关系、向量的数量积运算,考查学生的逻辑推理,数学运算等数学核心素养及思辨能力.20.(本小题满分 12 分)在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期. 一研究团队统计了某地区1000 名患者的相关信息,得到如下表格:(1)求这1000 名患者的潜伏期的样本平均数 x (同一组中的数据用该组区间的中点值作代表);(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过 6 天为标准进行分层抽样,从上述1000 名患者中抽取 200 人,得到如下列联表. 请将列联表补充完整,并根据列联表判断是否有 95% 的把握认为潜伏期与患者年龄有关;深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 7 页 共 16页潜伏期 ≤ 6 天 潜伏期 > 6 天总计50 岁以上(含 50 岁)10050 岁以下55总计200(3)以这1000 名患者的潜伏期超过 6 天的频率,代替该地区1名患者潜伏期超过 6 天发生的概率,每名患者的潜伏期是否超过 6 天相互独立. 为了深入研究,该研究团队随机调查了 20 名患者,其中潜伏期超过 6 天的人数最有可能(即概率最大)是多少?.... .....附:P (K 2 ≥ k 0 )0.050.025 0.010k3.8415.0246.635K2=n (ad - bc )2,其中 n = a + b + c + d .(a + b )(c + d )(a + c )(b + d )解:(1) x =1⨯(1⨯85 + 3⨯ 205 + 5 ⨯310 + 7 ⨯ 250 + 9 ⨯130 +11⨯15 +13⨯5)= 5.4 天. 1000……………………………………………………………………………2 分(2)根据题意,补充完整的列联表如下:潜伏期 < 6 天 潜伏期 ≥ 6 天 总计50 岁以上(含 50 岁)653510050 岁以下5545100总计12080200则K2= (65 ⨯ 45 - 55 ⨯ 35)2 ⨯ 200 = 25 ≈ 2.083 , ………………………………………5 分120 ⨯80 ⨯100 ⨯10012经查表,得 K 2 ≈ 2.083 < 3.841 ,所以没有 95% 的把握认为潜伏期与年龄有关. ……6 分(3)由题可知,该地区每 1 名患者潜伏期超过 6 天发生的概率为 400 = 2 , ……7 分10005设调查的 20 名患者中潜伏期超过 6 天的人数为 X ,则 X ~ B (20, 2 ) , P ( X = k ) = C k ⎛ 2 ⎫k⎛ 3 ⎫20-k20 ⎪ ⎪, k = 0 ,1, 2 ,…, 20 ,………8 分5⎝ 5 ⎭ ⎝ 5⎭⎧ k ⎛ 2 ⎫k ⎛ 3 ⎫ 20-kk +1 ⎛ 2⎫k +1 ⎛ 3 ⎫19-k⎧P ( X = k ) ≥ P ( X = k +1) ⎪C20 ⎪ ⎪ ≥ C 20 ⎪ ⎪5 5 5 5 得 ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭, …………10 分 由 ⎨⎨ ⎩P ( X = k ) ≥ P ( X = k -1)⎪ k ⎛ 2 ⎫k ⎛ 3 ⎫ 20-k k -1 ⎛ 2 ⎫k -1 ⎛ 3 ⎫21-k ⎪C20 ⎪ ⎪ ≥ C 20 ⎪ ⎪5 5 ⎩ ⎝ ⎭ ⎝ ⎭ ⎝ 5 ⎭ ⎝ 5 ⎭深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 8 页 共 16页⎧3(k+1) ≥ 2(20 -k )37≤ k ≤42化简得⎨,解得,55⎩2(21 -k ) ≥ 3k又k ∈N,所以k =8,即这20名患者中潜伏期超过6天的人数最有可能是8人.…12分【命题意图】以医学案例为实际背景,考查频数分布表,考查平均数,二项分布的随机变量概率最大时的取值;考查分析问题、解决问题的能力;处理数据能力、建模能力和核心素养.21.(本小题满分12 分)已知函数f (x)=e x- a ln(x -1).(其中常数e=2.718 28⋅⋅⋅,是自然对数的底数)(1)若a∈R,求函数f(x)的极值点个数;-a11(2)若函数f(x)在区间(1,1+e) 上不单调,证明:+> a .a a +1解:(1)易知f'(x)=(x-1)e x- a,x >1,………………………………………1 分x -1a ≤0 f (x)>0 f (x)(1, +∞)①若,则',函数在上单调递增,∴函数f ( x)无极值点,即函数f ( x)的极值点个数为0;……………………2 分②若a >0,(法一)考虑函数y =(x -1)e x- a(x ≥1),Q y(1+ a)= a e1+a- a > a - a =0,y(1)= -a <0,∴函数y =(x -1)e x- a(x ≥1)有零点x0,且1< x0<1+ a ,Q y' = x e x>0,∴函数y =(x -1)e x- a(x ≥1)为单调递增函数,∴函数y =(x -1)e x- a(x ≥1)有唯一零点x,'(x-1)e x-a亦存在唯一零点x ,∴ f (x)=x -10…………………………………4 分∴当x ∈(1, x0)时,易知f '(x)<0,即函数f ( x)在(1, x0)上单调递减,x ∈(x0,+∞) f (x)>0 f ( x)(x0 , +∞)当时,易知',即函数在上单调递增,∴函数f( x) 有极小值点x0,即函数f ( x) 的极值点个数为1 ,……………………5 分综上所述,当a ≤0时,函数f(x)的极值点个数为0;当a >0时,函数f(x)的极值点个数为1.(法二)易知函数y =e x的图象与y =x a-1(a>0)的图象有唯一交点M(x0,y0),深圳市2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案第9 页共16页∴e x 0=a,且 x >1 ,…………………………………………………………………3 分x 0 -1 0∴当 x ∈(1, x 0 ) 时,易知 f '(x ) < 0 ,即函数 f ( x ) 在 (1, x 0 ) 上单调递减, x ∈(x 0 , +∞) f (x ) > 0 f ( x ) (x 0 , +∞)当时,易知 ' ,即函数 在上单调递增,∴ 函数 f ( x ) 有极小值点 x 0 ,即函数 f ( x ) 的极值点个数为1 , ……………………4 分综上所述,当 a ≤ 0 时,函数 f ( x ) 的极值点个数为 0 ;当 a > 0 时,函数 f ( x ) 的极值点个数为1 .(注:第(1)问采用法二作答的考生应扣 1 分,即总分不得超过 4 分)(法三)对于 ∀a > 0 ,必存在 n ∈N * ,使得 n >2 - ln a,即 2 - na < lna , aQe -na < 1 ,∴ e 1-na +e - na - a < e 2-na - a < e ln a - a = 0 ,e-na 1+e -na- a∴ f '(1 + e -na ) = e< 0 ,e-na又f '(1 + a ) =a e 1+a - a=e 1+a -1 > 0 , a∴函数 f '(x )(x-1)e x - a有零点,不妨设其为 x0 ,x -1显然 f '(x ) = e x - xa-1 (x >1) 为递增函数,∴ x 0 为函数 f '(x ) 的唯一零点, …………………………………………………………4 分∴当 x ∈(1, x 0 ) 时,易知 f '(x ) < 0 ,即函数 f ( x ) 在 (1, x 0 ) 上单调递减,当x ∈(x 0 , +∞) 时,易知 f '(x ) > 0 ,即函数 f ( x ) 在 (x 0 , +∞) 上单调递增,∴ 函数 f ( x ) 有极小值点 x 0 ,即函数 f ( x ) 的极值点个数为1 , ……………………5 分综上所述,当 a ≤ 0 时,函数 f ( x ) 的极值点个数为 0 ;当 a > 0 时,函数 f ( x ) 的极值点个数为1 .(2) Q 函数 f (x ) 在区间 (1,1+e -a ) 上不单调,∴存在 x ∈(1,1+e -a ) 为函数 f (x ) 的极值点,……………………………………6 分∴ 由( )可知a > 0 ,且 '-a) =e -a ⋅ e 1+e - a - a> 0,即 1-a +e - a> a ,1f (1+e e -ae两边取对数得1 - a +e -a > ln a ,即1+e -a - ln a > a , ………………………………7 分深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 10 页 共 16页(法一)欲证 1a + a1+1> a ,不妨考虑证 1a + a 1+1 ≥1+e -a - ln a ,先证明一个熟知的不等式: e x ≥ 1 + x ,令 g(x ) = e x - x -1,则 g '(x ) = e x -1,∴ g '(0) = 0 ,不难知道函数 g(x ) 的极小值(即最小值)为 g(0) = 0 ,∴ e x - x -1 ≥ 0 ,即 e x ≥ 1 + x ,……………………………………………………8 分(思路 1:放缩思想)∴ e -a = 1 ≤ 1 , 即 1 ≥ e -a ,………………………9 分a +1 a +1e a11111又e -1≥ ,∴ e 1-≤ a ,∴1 - ≤ ln a ,即 ≥1 - ln a , ………………………11 分a a a a a∴ 1 + 1 ≥1+e -a- ln a ,∴ 1 + 1 > a . …………………………12 分a a +1 a a +1ϕ(a ) = a- a 2=a 22 ϕ(a ) = a + ln a -1 (思路 :构造函数)令 1,则 ' 11a -1,不难知道,函数 ϕ(a ) 有最小值 ϕ(1) = 0 ,∴ϕ(a ) ≥ 0 ,…………………………10 分当 a > 0 时, 1 - e -a = e a- a-1> 0 , …………………………………………11 分a +1 (a +1)e a∴ 1a + ln a -1 + a +1 1 - e -a > 0,即1a + a1+1 ≥1+e -a - ln a ,∴ 1 + 1> a . …………………………………………………………………12 分 a +1 a(法二)令 F (x ) =1+e -x - ln x - x ,则 F (x ) = -e - x - -1 < 0,'1∴函数 F (x ) 为单调递减函数,显然 F (2) < 2 - ln 2 - 2 < 0 ,且 F (a ) > 0 ,∴ 0 < a < 2 ,①若 0 < a < 1 ,则 1 + 1 > 1> a ,即 1 + 1 > a 成立; …………………………8 分 aa +1 a a a +1 ②若1≤ a < 2 ,只需证 1 + 1 ≥1+e -a - ln a , a a +1不难证明 1 + 1 ≥ 14,只需证明 14 ≥1+e -a - ln a , …………………………9 分 a a +1 7a + 37a + 3令 G (a )=14 -a + ln a -1,1≤ a ≤ 2 ,则 G '(a ) = e -a1 98 1 98 - e + - > - , 7a + 3 a (7a + 3)2 a (7a + 3)2 当1≤ a ≤ 2 时, 1 - 98 = 49a 2-56a +9 ,a (7a + 3)2 a (7a + 3)2显然函数 y = 49a 2 - 56a + 9 在 [1,2] 上单调递增,且 y (1) = 2 > 0 ,深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 11 页 共 16页∴ G (a)>0G(a)10 ',即函数为单调递增函数,………………………………………分∴当1≤a< 2 时,G(a)≥G(1)=2-1=2e - 5> 0 ,即G(a)>0,………………11 分5e5e∴7a 14+3≥1+e-a- ln a,即1a+a1+1>a,综上所述,必有1+1> a 成立.…………………………………………………12 分a a +1(法三)同(法二)得0 <a< 2 ,①若0 <a< 1 ,则1+1>1> a ,即1+1> a 成立;…………………………8 分a a +1a a +1a②若1≤a< 2 ,只需证1+1≥1+e-a- ln a,a a +1令G(a)=1a+a1+1-e-a+ln a -1,1≤ a ≤2,则G'(a)= e -a-1+a -1≥ e-a-1,(a+1)2a2(a+1)2下证当1≤a≤ 2 时,e-a-1> 0 ,即证e a< (a+1)2,即证ea< a +1, (9)分2(a+1)2a令H (a)=e2- a -1,1≤a≤2,'1aa =2ln 2'则2,当时,,2 e-1H (a)=H (a)=0不难知道,函数H (a)在[1,2ln 2)上单调递减,在(2ln 2,2]上单调递增,∴函数H (a)的最大值为H (1),或H (2)中的较大值,显然H (1)= e - 2 < 0 ,且H(2)=e-3<0,a∴函数H (a)的最大值小于0,即H (a)<0,亦即e2< a +1,…………………………10分∴ e -a1> 0,即',-(a+1)2G (a)>0∴函数G(a)=1+1- e-a+ ln a-1 ,1≤a≤ 2 单调递增,a a +1易知G(1)=1-1> 0,∴ G(a)>0,即1+1≥1+e-a- ln a,………………………11分a a +12e11∴当1≤a< 2 时,有+> a成立,a a +111综上所述,+> a .…………………………………………………………12 分a a +1深圳市2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案第12 页共16页【命题意图】 本题以基本初等函数及不等式证明为载体,考查学生利用导数分析、解决问题的能力,分类讨论思想及逻辑推理、数学运算等数学核心素养,具有较强的综合性.22.(本小题满分 10 分)选修 4-4:坐标系与参数方程⎧3 + t cos α, 在直角坐标系 xOy 中,直线 C 1( t 为参数, α 为倾斜角),的参数方程为 ⎨⎪⎩y = t sin α,以坐标原点为极点, x轴的正半轴为极轴建立极坐标系,曲线 C 2 的极坐标方程为 ρ = 4sin θ .(1)求 C 2 的直角坐标方程; (2)直线 C 1 与 C 2 相交于 E , F 两个不同的点,点 P 的极坐标为 (23, π) ,若 2 EF = PE + PF ,求直线 C 1 的普通方程.解:(1)由题意得, C 2 的极坐标方程为 ρ = 4sin θ ,所以 ρ 2 = 4ρ sin θ ,………………1 分又 x = ρ cos θ , y = ρ sin θ ,………………2 分代入上式化简可得, x 2 + y 2 - 4 y = 0 ,………………3 分所以 C 2 的直角坐标方程 x 2 + ( y - 2)2 = 4 .………………4 分(2)易得点 P 的直角坐标为 (-23,0) ,⎧代入 C 2的直角坐标方程,可得将 ⎨⎪⎩y = t sin α,t 2 - (4 3 c os α + 4 sin α )t +12 = 0 ,………………5 分∆ = (4 3 cos α + 4sin α)2 - 48=[8sin(α +π3 )]2- 48 > 0 ,解得 sin(α + π3 ) > 23 ,或 sin(α + π3 ) < - 23 ,不难知道α必为锐角,故 sin(α +π3 ) > 23 ,所以 π3 < α + π3 < 2π3 ,即 0 < α < π3 ,………………6 分设这个方程的两个实数根分别为 t 1 , t 2 ,则t 1 + t 2 = 4 3 cos α + 4 sin α , t 1 ⋅t 2 =12 ,………………7 分深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 13 页 共 16页所以 t 1 与 t 2 同号,由参数 t 的几何意义可得,PF t t t + t π =+2 =2= 8 sin(α + ) ,1 13= 4 4sin 2 (α +π ) - 3 ,………………8 分 t - t 2 = (t + t )2 - 4t t11 2 1 23所以 2 ⨯ 44sin 2 (α +π3) - 3 = 8 sin(α + 3π) ,两边平方化简并解得 sin(α +π3 ) = 1,所以α = π6 + 2k π , k ∈ Z ,因为 0 < α < π ,所以 α = π,………………9 分3 6⎧3⎪x = -2 3 + t ,所以直线 C 1⎪2的参数方程为 ⎨1⎪⎪y =t ,2⎩消去参数 t ,可得直线 C 1 的普通方程为 x -y + 2= 0 .………………10 分3 3【命题意图】本题主要考查了圆的极坐标方程与直角坐标方程的互化、直线参数方程中参数的几何意义和三角函数等知识点,重点考查数形结合思想,体现了数学运算、逻辑推理等核心素养,考察考生的化归与转化能力.23.(本小题满分 10 分)选修 4-5:不等式选讲已知 a , b , c 为正数,且满足 a + b + c = 1. 证明:(1)1a + b 1 + 1c ≥ 9 ;(2) ac + bc + ab - abc ≤ 278.1 1 1⎛ 1 1 1 ⎫证明:(1)因为 ++= (a + b + c ) ++⎪a b c b c ⎝ a ⎭= 3 +ba +b a + ac +ac + b c +bc深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 14 页 共 16页≥3 + 2 ba⋅ba+2 ac⋅ac+2 bc⋅bc=9(当且仅当a = b = c =13时,等号成立).………………5分(2)(法一)因为a,b,c为正数,且满足a+b+c=1,所以c =1- a - b ,且1- a >0,1- b >0,1- c >0,所以ac + bc + ab - abc= (a+b-ab)c+ab= (a+b-ab()1-a-b)+ab= (b-1)(a-1)(a+b)= (1 -a)(1 -b)(1 -c)⎡(1 -a) + (1 -b) + (1 -c) ⎤38≤ ⎢⎥=,327⎣⎦所以ac + bc + ab - abc ≤278 .(当且仅当a = b = c =13时,等号成立).………………10分(法二)因为a, b, c 为正数,且满足a+b+c=1,所以c =1- a - b ,且1- a >0,1- b >0,1- c >0,ac + bc + ab - abc =1-(a + b + c )+ ac + bc + ab - abc=(1 -a)+b(a- 1)+c(a- 1)+bc(1 -a)=(1-a)⎡1-(b+c)+bc⎤⎣⎦=(1-a)(1-b)(1-c)⎡3-(a + b + c)⎤38≤ ⎢⎥=327⎣⎦所以ac + bc + ab - abc ≤278 .深圳市2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案第15 页共16页(当且仅当a = b = c =13时,等号成立).………………10分【命题意图】本题以三元不等式为载体考查二元基本不等式(三元均值不等式)的证明,涉及代数恒等变形等数学运算、充分体现了对考生的逻辑推理的核心素养及化归与转化能力的考察.深圳市2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案第16 页共16页深圳市2020年普通高中高三年级线上统一测试数学(理科)试题第22 页共22页。