当前位置:文档之家› 向心力公式的应用

向心力公式的应用

向心力公式的应用
向心力公式的应用

向心力向心力公式的应用

(一)高考要求:II类。掌握圆周运动中的向心力问题

(二)教学目标:1.理解向心力的特点2.会用向心力公式解题

(三)教学重点和难点:1.运用向心力公式解题。2.向心力的来源

(四)课堂教学:

一、向心力的特点

1.下列关于向心力的论述中正确的是()

A.物体因为受到向心力的作用,才可能做圆周运动;

B.向心力仅仅是从它产生的效果来命名的,它可以使有初速度的物体做圆周运动,它的方

向始终指向圆心;匀速圆周运动的向心力是恒力。

C.向心力可以是重力、弹力、摩擦力中的某一种力,也可以是这些力中某几个力的合力;

D.向心力只改变速度的方向,不改变速度的大小。

二、向心力的分析与应用

2、如图所示的圆锥摆中,摆球A在水平面上做匀速圆周运动,关于A 球的受力情况,下列税法正

确的是:

A、摆球A受到重力、拉力和向心力作用

B、摆球A受到向心力和拉力作用

C、摆球A受到拉力和重力作用

D、摆球A受到重力和向心力作用如图4-3-14所示,质量不计的轻质弹性

杆P插入桌面上的小孔中,杆的另一端套有一个质量为m的小球,今使小

球在水平面内做半径为R的匀速圆周运动,且角速度为ω,则杆的上端受到

小球对其作用力的大小为()

A.mω2R

B.m g2+ω4R2

C.m g2-ω4R2

D.条件不足,不能确定

3、若圆锥摆的细线与竖直方向夹角为θ,摆线长为L,摆球质量为M,求:(1)摆球所需的向心

力;(2)摆球的向心加速度、线速度、角速度、周期。

4、如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不

考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( )

A.A的速度比B的大

B.A与B的向心加速度大小相等

C.悬挂A、B的缆绳与竖直方向的夹角相等

D.悬挂A的缆绳所受的拉力比悬挂B的小

5、如图所示,木板B托着木块A在竖直平面内作匀速圆周运动,从与圆心相平的位置a运动到最

高点b的过程中

A、B对A的支持力越来越大

B、B对A的支持力越来越小

C、B对A的摩擦力越来越大

D、B对A的摩擦力越来越小

6、质量相等的小球A、B分别固定在轻杆的中点及端点,当杆在光滑水平面上绕O点匀速转动时,

如图所示,求杆的OA段及AB段对球的拉力之比。

7.如图1所示,一木块放在圆盘上,圆盘绕通过圆盘中心且垂直于盘面的竖直轴匀速转动,木块

和圆盘保持相对静止,那么( )

A.木块受到圆盘对它的摩擦力,方向沿半径背离圆盘中心

B.木块受到圆盘对它的摩擦力,方向沿半径指向圆盘中心

C.木块受到圆盘对它的摩擦力,方向与木块运动的方向相反

D.因为木块与圆盘一起做匀速转动,所以它们之间没有摩擦力

8、如图所示,质量不计的轻质弹性杆P插入桌面上的小孔中,杆的另一端套有一个质量为m的小

球,今使小球在水平面内做半径为R的匀速圆周运动,且角速度为ω,则杆的上端受到小球对其作

用力的大小为()

A.mω2R B.m g2+ω4R2

C.m g2

-ω4R2D.条件不足,不能确定

向心力 向心力公式的应用作业(700张)

1.关于圆周运动的下列说法中正确的是

A.做匀速圆周运动的物体,在任何相等的时间内通过的位移都相等 B .做匀速圆周运动的物体,在任何相等的时间内通过的路程都相等

C.做圆周运动的物体的加速度一定指向圆心 D .做圆周运动的物体的加速度不一定指向圆心 2.下列关于匀速圆周运动的说法,正确的是( )

A .匀速圆周运动的速度大小保持不变,所以做匀速圆周运动的物体没有加速度

B .做匀速圆周运动的物体,虽然速度大小不变,但方向时刻都在改变,所以必有加速度

C .做匀速圆周运动的物体,加速度的大小保持不变,所以是匀变速曲线运动

D .匀速圆周运动加速度的方向时刻都在改变,所以匀速圆周运动一定是变加速曲线运动 3、在光滑的圆锥漏斗的内壁,有两个质量相等的小球A 、B ,它们分别紧贴漏斗,在不同水平面上做匀速圆周运动,如图4-5-6所示,则下列说法正确的是( )

A .小球A 的速率大于小球

B 的速率 B .小球A 的速率小于小球B 的速率

C .小球A 对漏斗壁的压力大于小球B 对漏斗壁的压力

D .小球A 的转动周期小于小球B 的转动周期 4.如图13所示,质量为m 的滑块从半径为R 的光滑固定的圆弧形轨道的A 点滑到B 点,下列说法正确的是

A.它所受的合外力的大小是恒定的

B.向心力大小逐渐增大

C.向心力逐渐减小

D.向心力不变

5.如图10所示,小球质量为m ,用长为L 的轻质细线悬挂在O 点,在O 点的正下方

2

L

处有一钉子P ,把细线沿水平方向拉直,如图2所示,无初速度地释放小球,当细线碰到钉子的瞬间,设线没有断裂,则下列说法错误的是 A.小球的角速度突然增大 B.小球的瞬时速度突然增大

C.小球的向心加速度突然增大

D.小球对悬线的拉力突然增大

6.在粗糙水平木板上放一物块,沿如图4-2-12所示的逆时针方向在竖直平面内作匀速圆周运动,圆半径为R ,速率ac Rg v ,<

为水平直径,bd 为竖

直直径.设运动中木板始终保持水平,物体相对于木板静止,则( ) A .物块始终受两个力作用

B .只有在a 、b 、c 、d 四点,物块受到的合外力才指向圆心

C .从a 运动到d ,物块处于超重状态

D .从b 运动到a ,物块处于超重状态7.如图所示,两根长度不同的细线分别系有两个小球,细线的上端都系于O 点。设法让两个小球在同一水平面上做匀速圆周运动。已知细线长之比为L 1∶L 2=3∶1,L 1跟竖直方向成60o角。下列说法中正确的有

A.两小球做匀速圆周运动的周期必然相等

B.两小球的质量m 1∶m 2=3∶1

C.L 2跟竖直方向成60o角

D.L 2跟竖直方向成45o角

8.A 、B 、C 三个完全相同的小球固定在同一根轻杆上,如图所示,已知OA=AB=BC ,当此装置以O 为轴在光滑水平面上做匀角速转动时,OA 、AB 、BC 三段杆所受拉力大小之比为:( )

A .1:2:3

B .3:2:1

C .3:5:6

D .6:5:3 9.如图4-3-13所示,将完全相同的两小球A ,B 用长L =0.8m 的细绳,悬于以v =4m/s 向左匀速运动的小车顶部,两球的小车前后壁接触.由于某种原因,小车突然停止,此时悬线中张力

之比T A :T B 为(g =10m/s 2

)( ) A .1:1 B .1:2 C .1:3 D .1:4

10.质量为m 的木块从半径为R 的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使木块的速率不变,那么( )

A .因为速率不变,所以木块的加速度为零

B .木块下滑过程中所受的合外力越来越大

C .木块下滑过程中所受的摩擦力大小不变

D .木块下滑过程中的加速度大小不变,方向始终指向球心

11、如图所示为游乐园中的“空中飞椅”设施,游客乘坐飞椅从启动匀速旋转,再到逐渐停止运动的过程中,下列说法正确的是

A .当游客速率逐渐增加时,其所受合外力的方向一定与速度方向相同

B .当游客做匀速圆周运动时,其所受合外力的方向总是与速度方向垂直

C .当游客做匀速圆周运动时,其所受合外力的方向一定不变

D .当游客做速率减小的曲线运动时,其所受合外力的方向一定与速度方向相反

12.如图所示,半径为r 的圆筒,绕通过其中心轴线的竖直轴OO ′匀速转动。一个物块P 紧靠在圆筒的内壁上,它与圆筒内壁间的摩擦因数为μ。为使物块不下滑,圆筒转动的角速度ω至少多大?

13.A 、B 两球质量分别为1m 、2m ,二者用一劲度系数为K 的轻质弹簧相连,两球均放置在光

滑水平面上,一长度为1L 的细绳的一端与A 相连,另一端固定在竖直转动轴O O '上,当A 、B 两球以相同的角速度ω绕OO ′轴做匀速圆周运动时,弹簧的长度为2L 如图所示。 (1)此时弹簧的伸长量多大?细绳拉力多大?

(2)此时若将细绳用激光烧断,A 、B 两球的加速度各是多大?

14、如图所示,半径为R 的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O 的对称轴OO ′重合。转台以一定角速度ω匀速旋转,一质量为m 的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O 点的连线与OO ′之间的夹角θ为60°,重力加速度大小为g 。 (1)若ω=ω0,小物块受到的摩擦力恰好为零,求ω0; (2)若ω=(1±k )ω0,且0<k ?1,求小物块受到的摩擦力大小和方向。

图4-5-6 图13

m

高中物理向心力的知识点分析

高中物理向心力的知识点分析 物理的知识点比较的多,而且比较难,学生需要多花费一点的时间去学习,下面本人的本人将为大家带来高中物理的向心力的知识点介绍,希望能够帮助到大家。 高中物理向心力的知识点 向心力的概念 向心力是当物体沿着圆周或者曲线轨道运动时,指向圆心(曲率中心)的合外力作用力。 向心力公式 该定义式不需要推导,也不需要研究为什么这么定义。 向心力的方向:始终指向物体圆周运动的圆心位置。 补充:如果物体做的不是圆周运动,那么向心力指向微小圆弧所对应的圆心(曲率中心)。 向心力不是力 “向心力”一词是从这种合外力作用所产生的效果而命名的。 这种效果可以由弹力、重力、摩擦力(及其他的力)等任何一力而产生,也可以由几个力的合力或其分力提供。 向心力的大小探究试验的具体操作步骤 (1)用质量不同的钢球和铝球做实验,使两球运动的 半径r和角速度ω相同。 可以观测出,向心力的大小与质量有关,质量越大,所需的向心力就越大。 (2)换用两个质量相同的小球做实验,保持它们运动 的半径相同。 可以观测出,向心力的大小与转动的快慢有关,角速

度越大,所需向心力也越大。 (3)仍用两个质量相同的小球做实验,保持小球运动 角速度相同。 可以观测出,向心力的大小与小球运动的半径有关,运动半径越大,所需的向心力越大。 实验表明,向心力的大小跟物体的质量m、圆周半径 r和角速度ω都有关系。 进一步还可以证明,匀速圆周运动所需的向心力公式为 F=mrω2 做圆周运动的物体,在向心力F的作用下,必然要产生一个加速度,这个加速度的方向与向心力的方向相同,总指向圆心,叫做向心加速度。 对于某一确定的匀速圆周运动来说,m以及r、v的 大小、ω都是不变的,所以向心力和向心加速度的大小不变,但向心力和向心加速度的方向却时刻在改变。 匀速圆周运动是瞬时加速度矢量的方向不断改变的运动,属于变加速运动的范畴。 向心力只改变方向却不改变速度的大小 圆周运动属于曲线运动,在做圆周运动中的物体也同时会受到与其速度方向不同的合外力作用。 对于在做圆周运动的物体,向心力是一种拉力,其方向随着物体在圆周轨道上的运动而不停改变。因此,圆周运动是一种加速度始终在改变的运动。就是因为这样的一种力,始终是沿着圆周半径指向圆周的中心,所以得名“向心力”。 向心力指向圆周中心,且被向心力所控制的物体是沿着切线的方向运动,所以向心力必与受控物体的运动方向垂直,仅产生速度法线方向(切线的垂线方向称之为发现方向)上的加

第二单元 匀速圆周运动与向心力公式的应用

第二单元匀速圆周运动与向心力公式的应用 高考要求:1、知道匀速圆周运动的概念; 2、理解线速度、角速度和周期的概念; 3、理解向心加速度和向心力以及与各物理量间的关系; 4、会用牛顿第二定律求解圆周运动问题。 知识要点: 一、描述匀速圆周运动快慢的物理量 1、线速度: 1)物理意义:描述质点沿圆周运动的快慢。 2)方向:质点在圆弧某点的线速度方向沿圆弧该点的切线方向。 3)大小:v=s/t,s为质点在t时间内通过的弧长。 2、角速度: 1)物理意义:描述质点绕圆心转动的快慢。 2)大小:ω=φ/t(rad/s),φ是连接质点和圆心的半径在t时间内转过的角度。 3、周期和频率: 1)周期:做圆周运动的物体运动一周所用的时间做周期。用T表示。 2)频率:做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速。用f表示。 4、线速度、角速度、周期和频率的关系: T=1/f,ω=2π/ T=2πf,v=2πr/ T=2πrf=ωr 注意:T、f、ω三个量中任一个确定,其余两个也就确定了。 5、向心加速度: 1)物理意义:描述线速度方向改变的快慢。 2)大小:a=v2/r=ω2r=4π2f2r=4π2r/T2=ωv。 3)方向:总是指向圆心。所以不论a的大小是否变化,它都是个变化的量。 6、解圆周运动的运动学问题关键在于熟练掌握各物理量间的关系。 二、圆周运动中的向心力 1、向心力 1)意义:描述速度方向变化快慢产生原因——向心力。 2)方向:总是指向圆心。 3)大小:F=ma=mv2/r=mω2r=m4π2f2r=m 4π2r/T2=mωv。 4)产生:向心力是效果力,不是性质力。向心力可以由某一个力提供,也可以由几个力的合力提供,要根据物体受力的实际情况判定。 5)求解圆周运动动力学问题关键在于分析清楚向心力的来源,然后灵活列出牛顿第二定律关系式。 2、向心力的特点: 1)匀速圆周运动:向心力为合外力,其大小不变,方向始终与速度方向垂直且指向圆心。 2)变速圆周运动:因速度大小发生变化,其向心力和向心加速度都在变化,其所受的合外力不仅大小随时间改变,方向也不沿半径指向圆心。合外力沿半径方向的分力 提供向心力,使物体产生向心加速度,改变速度的方向,合外力沿轨道方向切线方 向的分力,使物体产生切向加速度,改变速度的大小。 3)当沿半径方向的力F<mv2/r时,物体做离心运动;

高中物理向心力一

§5.6向心力(一) 【学习目标】 1.了解向心力概念,知道向心力是根据力的效果命名的。 2.体验向心力的存在,会分析向心力的来源。 3.掌握向心力的表达式,计算简单情景中的向心力。 4.从牛顿第二定律角度理解向心力的表达式。 5.初步了解“用圆锥摆粗略验证向心力的表达式”的原理。 6.会测量、分析实验数据,获得实验结论。 【新知预习】 一、向心力: 1.定义: 2.由向心加速度常用的三个公式r v a n 2= 、r a n ?=2ω和r T a n 2 24π=得到向心力的三个常用公式是 具体到某个问题,用哪一个公式,要具体问题具体分析. 3.向心力的作用: 【导析探究】 向心力来源探究 1. 圆锥摆 (1)甲图所示,圆锥摆圆心是 A .悬点O B .悬点O 在纸面上的投影点C (2)圆锥摆的半径是 A .摆长L B .高度O C C .摆长L 在纸面上的投影长度r (3)在圆锥摆中充当向心力的是 A .拉力 B .拉力与重力的合力 C .拉力在水平方向的分力 (4)θ表示摆线与竖直方向的夹角,ω表示圆锥摆的角速度,T 表示周期,请推导L g 2cos ωθ=和 L gT 22 4cos πθ= 2.地球绕太阳公转 (1)地球绕太阳公转的圆心是 (A.地球,B.太阳) (2)地球绕太阳公转的轨迹半径 A. 地球半径 B.太阳半径 C.地球到太阳的距离 D.都不是 (3)提供给地球绕太阳公转的向心力是 A .太阳对地球的引力 B .地球对太阳的引力 (4)地球直径为1.28×107m ,太阳直径1.4×109m 地球到太阳距离为1.5×1011m .地球质量为6.0×1024 kg 太阳对地球的引力是多少?

高中物理公式推导(匀速圆周运动向心加速度、向心力)word版本

V t ΔV 高中物理公式推导二 圆周运动向心加速度的推导 1、作图分析: 如图所示,在0t 、 t 时刻的速度位置为: 2、推导过程: 第一,对于匀速圆周运动而言,速度的大小是不发生变化的,变化的只是速度的方向,如图所示,速度方向的变化量为 v ,则有: R ? V 0 V 0

θ θ?=?≈?t v v v 0 第二,根据加速度的定义: t v a ??= 则有: t v t v a n ??= ??=θ0 第三,根据圆周运动的相关关系知: R v t = ??=θω 是故,圆周运动的向心加速度为: R v a n 2 = 第四,圆周运动的向心力的大小为:

R v m ma F n 2 == 3、意外收获: 第一,对于圆周运动,我们应该理解速度、角速度、周期之间的关系。具体为: R v =ω T πω2= v R πω2= 第二,我们应该掌握极限的相关知识,合理利用极限来解决相关问题。 第三,如果我们谈论的不是匀速圆周运动,我们同样可以利用此

方法进行谈论。对于非匀速圆周运动(或者叫做曲线运动),不仅速度的方向发生了变化,而且速度的大小也发生了变化,所以, 不仅有向心加速度之外,应该也有使物体速度大小变化的加速度。但是,在这种情况下,我们的向心加速度,叫做径向加速度,速度大小变化的加速度,叫做切向加速度。故有: (1)向心加速度为: R v a n 2 = (2) (3)切向加速度为: t v a t ??= (注意:这里的v ?是指切向速度方向速度的变化量,并不是指 图上的v ?。) 4、注意事项:

向心力公式的应用

向心力向心力公式的应用 (一)高考要求:II类。掌握圆周运动中的向心力问题 (二)教学目标:1.理解向心力的特点2.会用向心力公式解题 (三)教学重点和难点:1.运用向心力公式解题。2.向心力的来源 (四)课堂教学: 一、向心力的特点 1.下列关于向心力的论述中正确的是() A.物体因为受到向心力的作用,才可能做圆周运动; B.向心力仅仅是从它产生的效果来命名的,它可以使有初速度的物体做圆周运动,它的方 向始终指向圆心;匀速圆周运动的向心力是恒力。 C.向心力可以是重力、弹力、摩擦力中的某一种力,也可以是这些力中某几个力的合力; D.向心力只改变速度的方向,不改变速度的大小。 二、向心力的分析与应用 2、如图所示的圆锥摆中,摆球A在水平面上做匀速圆周运动,关于A 球的受力情况,下列税法正 确的是: A、摆球A受到重力、拉力和向心力作用 B、摆球A受到向心力和拉力作用 C、摆球A受到拉力和重力作用 D、摆球A受到重力和向心力作用如图4-3-14所示,质量不计的轻质弹性 杆P插入桌面上的小孔中,杆的另一端套有一个质量为m的小球,今使小 球在水平面内做半径为R的匀速圆周运动,且角速度为ω,则杆的上端受到 小球对其作用力的大小为() A.mω2R B.m g2+ω4R2 C.m g2-ω4R2 D.条件不足,不能确定 3、若圆锥摆的细线与竖直方向夹角为θ,摆线长为L,摆球质量为M,求:(1)摆球所需的向心 力;(2)摆球的向心加速度、线速度、角速度、周期。 4、如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不 考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( ) A.A的速度比B的大 B.A与B的向心加速度大小相等 C.悬挂A、B的缆绳与竖直方向的夹角相等 D.悬挂A的缆绳所受的拉力比悬挂B的小 5、如图所示,木板B托着木块A在竖直平面内作匀速圆周运动,从与圆心相平的位置a运动到最 高点b的过程中 A、B对A的支持力越来越大 B、B对A的支持力越来越小 C、B对A的摩擦力越来越大 D、B对A的摩擦力越来越小 6、质量相等的小球A、B分别固定在轻杆的中点及端点,当杆在光滑水平面上绕O点匀速转动时, 如图所示,求杆的OA段及AB段对球的拉力之比。 7.如图1所示,一木块放在圆盘上,圆盘绕通过圆盘中心且垂直于盘面的竖直轴匀速转动,木块 和圆盘保持相对静止,那么( ) A.木块受到圆盘对它的摩擦力,方向沿半径背离圆盘中心 B.木块受到圆盘对它的摩擦力,方向沿半径指向圆盘中心 C.木块受到圆盘对它的摩擦力,方向与木块运动的方向相反 D.因为木块与圆盘一起做匀速转动,所以它们之间没有摩擦力 8、如图所示,质量不计的轻质弹性杆P插入桌面上的小孔中,杆的另一端套有一个质量为m的小 球,今使小球在水平面内做半径为R的匀速圆周运动,且角速度为ω,则杆的上端受到小球对其作 用力的大小为() A.mω2R B.m g2+ω4R2 C.m g2 -ω4R2D.条件不足,不能确定

高中物理向心力向心加速度典型例题

向心力向心加速度典型例题解析【例1】如图37-1所示,一个大轮通过皮带拉着小轮转动,皮带和两轮之间无相对滑动,大轮的半径是小轮半径的2倍,大轮上的一点S离转动轴的距离是半径的1/3.当大轮边缘上的P点的向心加速度是0.12m/s2时,大轮上的S点和小轮边缘上的Q点的向心加速度各为多大? 解析:P点和S点在同一个转动轮子上,其角速度相等,即ωP=ωS.由向心加速度公式a=rω2可知:a s/a p=r s/r p,∴a s=r s/r p·a p=1/3× 0.12m/s2=0.04m/s2. 由于皮带传动时不打滑,Q点和P点都在由皮带传动的两个轮子边缘,这两点的线速度的大小相等,即v Q=v P.由向心加速度公式a=v2/r可知:a Q/a P =r P/r Q,∴a Q=r P/r Q×a P=2/1×0.12m/s2=0.24 m/s2. 点拨:解决这类问题的关键是抓住相同量,找出已知量、待求量和相同量之间的关系,即可求解. 【问题讨论】(1)在已知a p的情况下,为什么求解a s时要用公式a=rω 2/r? 2、求解a Q时,要用公式a=v (2)回忆一下初中电学中学过的导体的电阻消耗的电功率与电阻的关系式:P=I2R和P=U2/R,你能找出电学中的电功率P与电阻R的关系及这里的向心加速度a与圆周半径r的关系之间的相似之处吗? 【例2】如图37-2所示,一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动,在圆盘上放置一个木块,当圆盘匀角速转动时,木块随圆盘一起运动,那么

[ ] A.木块受到圆盘对它的摩擦力,方向背离圆盘中心 B.木块受到圆盘对它的摩擦力,方向指向圆盘中心 C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同 D.因为摩擦力总是阻碍物体的运动,所以木块所受到圆盘对它的摩擦力的方向与木块的运动方向相反 解析:从静摩擦力总是阻碍物体间的相对运动的趋势来分析:由于圆盘转动时,以转动的圆盘为参照物,物体的运动趋势是沿半径向外,背离圆心的,所以盘面对木块的静摩擦力方向沿半径指向圆心. 从做匀速圆周运动的物体必须受到一个向心力的角度来分析:木块随圆盘一起做匀速圆周运动,它必须受到沿半径指向圆心的合力.由于木块所受的重力和盘面的支持力都在竖直方向上,只有来自盘面的静摩擦力提供指向圆心的向心力,因而盘面对木块的静摩擦力方向必沿半径指向圆心.所以,正确选项为B. 点拨:1.向心力是按效果命名的,它可以是重力、或弹力、或摩擦力,也可以是这些力的合力或分力所提供. 2.静摩擦力是由物体的受力情况和运动情况决定的. 【问题讨论】有的同学认为,做圆周运动的物体有沿切线方向飞出的趋势,静摩擦力的方向应该与物体的运动趋势方向相反.因而应该选取的正确答案为D.你认为他的说法对吗?为什么? 【例3】如图37-3所示,在光滑水平桌面上有一光滑小孔O;一根轻绳穿过小孔,一端连接质量为m=1kg的小球A,另一端连接质量为M=4kg的重物B.

向心力典型例题(附答案详解)

一、选择题【共12道小题】 1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆筒转动的角速 度ω至少为()A. B. C. D. 解析:要使a不下滑,则a受筒的最大静摩擦力作用,此力与重力平衡,筒壁给a的支持力提供向心力,则N=mrω2,而fm=mg=μN,所以mg=μmr ω2,故. 所以A、B、C均错误,D正确. 2、下面关于向心力的叙述中,正确的是() A.向心力的方向始终沿着半径指向圆心,所以是一个变力 B.做匀速圆周运动的物体,除了受到别的物体对它的作用外,还一定受到一个向心力的作用 C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些力中某几个力的合力,或者是某一个力的分力 D.向心力只改变物体速度的方向,不改变物体速度的大小 解析:向心力是按力的作用效果来命名的,它可以是物体受力的合力,也可以是某一个力的分力,因此,在进行受力分析时,不能再分析向心力.向心力时刻指向圆心与速度方向垂直,所以向心力只改变速度的方向,不改变速度的大小,即向心力不做功. 答案:ACD

3、关于向心力的说法,正确的是() A.物体由于做圆周运动而产生了一个向心力 B.向心力不改变圆周运动物体速度的大小 C.做匀速圆周运动的物体其向心力即为其所受的合外力 D.做匀速圆周运动的物体其向心力大小不变 解析:向心力并不是物体受到的一个特殊力,它是由其他力沿半径方向的合力或某一个力沿半径方向的分力提供的.因为向心力始终与速度方向垂直,所以向心力不会改变速度的大小,只改变速度的方向.当质点做匀速圆周运动时,向心力的大小保持不变. 答案:BCD 4、在光滑水平面上相距20 cm的两点钉上A、B两个钉子,一根 长1 m的细绳一端系小球,另一端拴在A钉上,如图所示.已知小 球质量为0.4 kg,小球开始以2 m/s的速度做水平匀速圆周运动, 若绳所能承受的最大拉力为4 N,则从开始运动到绳拉断历时为() A.2.4π s B.1.4π s C.1.2π s D.0.9π s 解析:当绳子拉力为4 N时,由F=可得r=0.4 m.小球每转半个周期,其半径就减小0.2 m,由分析知,小球分别以半径为1 m,0.8 m和0.6 m各转过半个圆周后绳子就被拉断了,所以时间为t==1.2π s. 答案:C

人教版高中物理必修2向心力

5-6 向心力 一向心力 1.向心力的含义:做匀速圆周运动的物体具有向心加速度,是由于它受到了指向圆心的力,这个合力 叫做向心力。 2.向心力的大小 =mωv,这三个公式适用于所有圆周运动,但在变速圆周运动(1)基本公式:F n=mω2r=m v2 r 中,ω、v是变化的,所以求某一点的向心力时,ω、v都是那一点的瞬时值。 )2r=m2πf2r=m(2πn)2r (2)常用公式:F n=m(2π T 3.向心力的方向:总是指向圆心,故方向时刻在变化,所以向心力是变力。 4.向心力的作用效果:向心力总是指向圆心,而线速度是沿圆周的切线方向,故向心力始终与线速度垂直,所以向心力的作用效果只是改变物体速度的方向,而不改变速度的大小。 ●特别提醒:向心力的方向指向圆心,与线速度方向垂直,方向时刻在改变,故向心力为变力。【例1】关于向心力的说法正确的是() A.物体由于做圆周运动而产生向心力 B.向心力不改变物体做圆周运动的速度的大小 C.做匀速圆周运动的物体向心力是不变的 D.只要物体做圆周运动,它的合力一定指向圆心【例2】关于做匀速圆周运动的物体所受的向心力,下列说法正确的是() A.因向心力总是沿半径指向圆心,且大小不变,故向心力是一个恒力 B.因向心力指向圆心,且与线速度方向垂直,所以它不能改变线速度的大小 C.物体所受的合外力 D.向心力和向心加速度的方向都是不变的 【例3】一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度逐渐减小。图中分别画出了汽车转弯时所受合力F的四种方向,正确的是() 【例4】如图所示,将完全相同的两小球A、B,用长为L=0.8m的细绳悬于以v=4m/s向右匀速运动 的小车顶部,两球与小车前后壁接触。由于某种原因,小车突然 停止运动,此时悬线的拉力之比F B:F A为(g取10m/s2)() A.1:1 B.1:2 C.1:3 D.1:4

高中物理 第五节 向心力、向心加速度-教案

第五节 向心力、向心加速度 教学目标: 一、知识目标: 1、理解向心加速度和向心力的概念 2、知道匀速圆周运动中产生向心加速度的原因。 3、掌握向心力与向心加速度之间的关系。 二、能力目标: 1、学会用运动和力的关系分析分题 2、理解向心力和向心加速度公式的确切含义,并能用来进行计算。 三、德育目标: 通过a 与r 及ω、v 之间的关系,使学生明确任何一个结论都有其成立的条件。 教学重点: 1、理解向心力和向心加速的概念。 2、知道向心力大小r v m mrw F 2 2==,向心加速的大小r v r w Q 2 2==,并能用 来进行计算。 教学难点: 匀速圆周运动的向心力和向心加速度都是大小不变,方向在时刻改变。 教学方法: 实验法、讲授法、归纳法、推理法 教学用具: 投影仪、投影片、多媒体、CAI 课件、向心力演示器、钢球、木球、细绳 教学步骤: 一、引入新课 1:复习提问(用投影片出示思考题) (1)什么是匀速圆周运动 (2)描述匀速圆周运动快慢的物理量有哪几个? (3)上述物理量间有什么关系? 2、引入:由于匀速云的速度方向时刻在变,所以匀速圆周运动是变速曲线运动。而力是改变物体运动状态的原因。所以做匀速圆周运动的物体所受合外力有何特点?加速度又如何呢?本节课我们就来共同学习这个问题。 二、新课教学 (一)用投影片出示本节课的学习目标: 1、理解什么是向心力和向心加速度 2、知道向心力和向心加速度的求解公式 3、了解向心力的来源

(二)学习目标完成过程 1:向心力的概念及其方向 (1)在光滑水平桌面上,做演示实验 a:一个小球,拴住绳的一端,绳的另一端固定于桌上,原来细绳处于松驰状态 b:用手轻击小球,小球做匀速直线运动 c:当绳绷直时,小球做匀速圆周运动 (2)用CAI课件,模拟上述实验过程 (3)引导学生讨论、分析: a:绳绷紧前,小球为什么做匀速圆周运动? b:绳绷紧后,小球为何做匀速圆周运动?小球此时受到哪些力的作用?合外力是哪个力?这个力的方向有什么特点?这个力起什么作用? (4)通过讨论得到: a:做匀速圆周运动的物体受到一个指向圆心的合力的作用,这个力叫向心力。 b:向心力指向圆心,方向不断变化。 c:向心力的作用效果——只改变运动物体的速度方向,不改变速度大小。 2、向心力的大小 (1)体验向心的大小 a:每组学生发用细线联结的钢球、木球各一个,让学生拉住绳的一端,让小球尽量做匀速圆周运动,改变转动的快慢、细线的长短多做几次。 b:引导学生猜想:向心力可能与物体的质量、角速度、半径有关。 c:过渡:刚才同学们已猜想大向心力可能与m、v、r有关,那么,我们的猜想是否正确呢?下边我们通过实验来检验一下。 (2)a:用实物投影仪,投影向心力演示器。 b:介绍向心力演示的构造和使用方法 构造:(略)→主要介绍各部分的名称 使用方法:匀速转动手柄1,可以使塔轮2和3以及长槽4和短槽5随之匀速转动,槽内的小球就做匀速圆周运动。使小球做匀速圆周运动的向心力由横臂6的挡板对小球的压力提供,球对挡板的反作用力通过杠杆的作用使弹簧测力套筒7下降,从而露出标尺8,标尺8上露出的红白相间等方格可显示出两个球所受向心力的比值。 (3)操作方法: a:用质量不同的钢球和铝球,使他们运动的半径r和角速度ω相同→观察得到:向心力的大小与质量有关,质量越大,向心力也越大。 b:用两个质量相同的小球,保持运动半径相同,观察向心力与角速度之间的关系 c:仍用两个质量相同的小球,保持小球运动的角速度相同,观察向心力的大小与运动半径之间的关系。 (4)总结得到:向心力的大小与物体质量m、圆周半径r和角速度ω都有关系,且给出公式:F=mrω2(说明该公式的得到方法,空气变量法、定量测数据)

用微积分推导匀速圆周运动向心力公式

用微积分推导匀速圆周运动向心力公式 已知如图所示,建立如 图所示平面直角坐标系,其中物体做圆周运动的轨迹方程为x 2+y 2=R 2,即圆周半径为R 。设t 为所经历的时间,当t=0时,物体位于坐标(R ,0)点,并且逆时针运动。设匀速圆周运动的速率为v ,设物体质量为m ,受到的向心力为F 。当时间为t 时,物体和圆心的连线与x 轴正方向的夹角为θ,设周期为T , 则2t T πθ= 在x 轴方向,物体所受的分力为 2cos x t F F T π=- 所以,x 方向的加速度为 2cos x F t a m T π=- 为两边对t 求积分得

2cos 2cos 22cos 22sin 2x x F t v dt m T F t dt m T F T t d t m T T F T t C m T πππππππ= -=- =- ?=-+??? 得其中,C x 与t 无关,由已知条件得,当t=0时,v x =0 代入上式得C x =0 t x 2sin 2x F T t v m T ππ∴=-当时间为时,轴方向的分速度为 在y 轴方向,物体所受到的分力为 2sin y t F F T π= 所以,物体在y 轴方向的加速度为 2sin y F t a m T π= 两边对t 求积分得 2sin 2sin 22sin 22cos 2y F t v dt m T F t dt m T F T t d t m T T F T t C m T πππππππ= = =?=-+??? 其中C 与t 无关,由已知条件得,当t=0时,v y =v 代入上式得

22cos 22y F T C v m FT t FT v v m T m ππππ=+∴=- ++ 22222222 2222sin (cos )4222cos ()222cos 02x y v v v F T t F T t F T v v m T m T m F T t F T v v m T m t T F T v m ππππππππππ=+∴=+-+++=++= 经化简可得 由于为变量 所以只能 222222 22222222,444F T R T m v R F v m m v F R ππππ== = =移项,两边求平方得 v 由于代入得v 化简可得即向心力表达式

用实验验证向心力公式

向心力实验器验证向 心力公式 【目的和要求】 通过实验了解做圆周运动的物体所需要的向心力F与其质量m、转动半径R和转动角速度ω的关系,对向心力公式F=mω2R进行实验验证。 【仪器和器材】 向心力实验器(B型),学生天平(J0104型),测力计(J2104型),游标卡尺,刻度尺。

B型向心力实验器的构造如图2.24-1所示。

【实验方法】 1.检查和调整仪器。 把向心力实验器按图安装之后应做如下检查和调整: (1)将弹簧与圆柱体分离,圆柱体在横杆上应能灵活滑动。 (2)检查横杆上的防脱螺母应该安全可靠,以防圆柱体或配重在旋转时从横杆上飞出。 (3)用手捻动捻轴,转动轴的转动应灵活。

(4)半径指示板位于不同位置时,圆柱体的凸柱均应能刮碰到发声片,两个发声片发出的声音应不同。 (5)转动横杆,让眼睛与横杆等高,分别从互相垂直的两个方向观察横杆,横杆应在水平面转动。如果横杆转动时忽上忽下,则圆柱体在运动中受到的向心力就不只是弹簧的弹力。 2.设定实验状态 (1)移动半径指示板,其两片发声片间的间隔至移动轴轴心

的距离则是我们设定的转动半径。根据半径的大小移动配重,使横杆转动时实验器能保持平稳。 (2)移动弹簧调节杆,设定使圆柱体在预定半径上做圆周运动的向心力。 (3)用手捻动捻轴,转动轴的转动应灵活。 (4)半径指示板位于不同位置时,圆柱体的凸柱均应能刮碰到发声片,两个发声片发出的声音应不同。

(5)转动横杆,让眼睛与横杆等高,分别从互相垂直的两个方向观察横杆,横杆应在水平面转动。如果横杆转动时忽上忽下,则圆柱体在运动中受到的向心力就不只是弹簧的弹力。 2.设定实验状态 (1)移动半径指示板,其两片发声片间的间隔至移动轴轴心的距离则是我们设定的转动半径。根据半径的大小移动配重,使横杆转动时实验器能保持平稳。

高一物理向心力典型例题(含答案)全解

向心力典型例题(附答案详解) 一、选择题【共12道小题】 1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠 在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆 筒转动的角速度ω至少为()A. B. C. D. 解析:要使a不下滑,则a受筒的最大静摩擦力作用,此力与重力平衡,筒壁给a的支持力提供向心力,则N=mrω2,而fm=mg=μN,所以mg=μmr ω2,故. 所以A、B、C均错误,D正确. 2、下面关于向心力的叙述中,正确的是() A.向心力的方向始终沿着半径指向圆心,所以是一个变力 B.做匀速圆周运动的物体,除了受到别的物体对它的作用外,还一定受到一个向心力的作用 C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些力中某几个力的合力,或者是某一个力的分力 D.向心力只改变物体速度的方向,不改变物体速度的大小 解析:向心力是按力的作用效果来命名的,它可以是物体受力的合力,也可以是某一个力的分力,因此,在进行受力分析时,不能再分析向心力.向心力时刻指向圆心与速度方向垂直,所以向心力只改变速度的方向,不改变速度

的大小,即向心力不做功. 答案:ACD 3、关于向心力的说法,正确的是() A.物体由于做圆周运动而产生了一个向心力 B.向心力不改变圆周运动物体速度的大小 C.做匀速圆周运动的物体其向心力即为其所受的合外力 D.做匀速圆周运动的物体其向心力大小不变 解析:向心力并不是物体受到的一个特殊力,它是由其他力沿半径方向的合力或某一个力沿半径方向的分力提供的.因为向心力始终与速度方向垂直,所以向心力不会改变速度的大小,只改变速度的方向.当质点做匀速圆周运动时,向心力的大小保持不变. 答案:BCD 4、在光滑水平面上相距20 cm的两点钉上A、B两个钉子, 一根长1 m的细绳一端系小球,另一端拴在A钉上,如图所 示.已知小球质量为0.4 kg,小球开始以2 m/s的速度做水平 匀速圆周运动,若绳所能承受的最大拉力为4 N,则从开始运动到绳拉断历时为() A.2.4π s B.1.4π s C.1.2π s D.0.9π s 解析:当绳子拉力为4 N时,由F=可得r=0.4 m.小球每转半个周期,其半径就减小0.2 m,由分析知,小球分别以半径为1 m,0.8 m和0.6 m各转过半个圆周后绳子就被拉

(完整版)高一物理__向心力_习题、答案

向心力习题 1.在匀速圆周运动中,下列物理量不变的是( ) A .向心加速度 B .线速度 C .向心力 D .角速度 2.下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是 ( ) A .物体除其他的力外还要受到—个向心力的作用 B .物体所受的合外力提供向心力 C .向心力是一个恒力 D .向心力的大小—直在变化 3.下列关于向心力的说法中正确的是( ) A .物体受到向心力的作用才可能做圆周运动 B .向心力是指向圆心方向的合力,是根据力的作用效果来命名的,但受力分析时应该画出 C .向心力可以是重力、弹力、摩擦力等各种力的合力,也可以是其中某一种力或某几种力的合力 D .向心力只改变物体运动的方向,不改变物体运动的快慢 4. 如图所示的圆锥摆中,摆球A 在水平面上作匀速圆周运动,关于A 的受力情况,下列说法中正确的是( ) A .摆球A 受重力、拉力和向心力的作用; B .摆球A 受拉力和向心力的作用; C .摆球A 受拉力和重力的作用; D .摆球A 受重力和向心力的作用。 5.如图所示,在匀速转动的圆筒内壁上紧靠着一个物体一起运动,物体所受向 心力是 ( ) A .重力 B .弹力 C .静摩擦力 D .滑动 摩擦力 6.如图所示,一圆盘可绕通过圆盘中心O 且垂直于盘面的竖直轴转动,在圆盘上放置一小木块A ,它随圆盘一起做匀速圆周运动。则关于木块A 的受力,下列说法正确的是( ) A .木块A 受重力、支持力和向心力 B .木块A 受重力、支持力和静摩擦力,静摩擦力的方向指向圆心 C .木块A 受重力、支持力和静摩擦力,静摩擦力的方向与木块运动方向相 反 D .木块A 受重力、支持力和静摩擦力,静摩擦力的方向与木块运动方向相 (第5题) (第4题) (第6题)

《向心力物理设计教案》

精品文档 xx物理设计教案 【设计思想】 教育以人为本,学生是学习的主体,在课堂教学中应该让学生带着自己的问题去探究以体现学生的主体性。 【教材分析】 本节课是从动力学的角度研究匀速圆周运动的,这部分知识是本章的重点和难点,也是学好圆周运动的关键点,学好这部分知识,可以为后面的天体运动和带电粒子在匀强磁场中的运动打好基础。 教材的编排思路很清撤,先是从身边的事例出发,让学生体验到做圆周运动的物体需要有一个指向圆心的力,从而引出向心力的概念。由于上一节中,已经从大凡性的结论入手,利用矢量运算,在普遍情况下得出做匀速圆周运动的物体的加速度方向指向圆心的结论,进一步得到了向心加速度的大小。于是根据牛顿第二定律,就可以得到做匀速圆周运动的物体受到的合外力方向和大小,即向心力的大小和方向。 接着,教材为了让学生对向心力有一个感性的认识,设计了“实验”栏目 ──“用圆锥摆验证向心力的表达式。实际上,这个实验除了要验证向心力表达式之外,另外一个目的就是可以让学生体验到“向心力不是一个新的力,而是一个效果力”,也即让学生初步学会分析向心力的来源。 与过去例外的是,本节中又讨论了变速圆周运动和大凡的曲线运动。这样安排的目的是从生活实际出发,在更广漠的背景下让学生认识到什么情况下物体将做匀速圆周运动,什么情况下会做变速圆周运动。以及知道如何处理大凡曲线运动的方法。 【学情分析】 (1)思维基础

根据新课程教学理念,从高一第一学期开始,在课堂教学过程中教师一直重视“过程与方法”的教学,学生已经初步有了探究事物的大凡方法,即“是什么?──怎么样?──为什么?”的思维方法。因此,本设计中就通过创设问题情景,激励学生自己提出想要研究的问题。 (2)心理特点 依据20世纪最出名的发展心理学家皮亚杰的理论可知高一学生的认知发展过程是由详尽运算阶段向形式运算阶段过渡,也是由直观认识向逻辑推理、实验推理过渡阶段,因此在教学中,要遵循从感性到理性的认识规律,本节课抓住学生的心理特点进行教学设计。(3)已有知识 通过前一节《向心加速度》的学习,学生已经知道了向心加速度的方向指向圆心,它描述了物体速度方向变化的快慢。 于是根据牛顿第二定律可知,这个加速度一定是由于它受到了指向圆心的力。因此将向心加速度的表达式代入牛顿第二定律即可得到向心力的表达式。 但由于错误的经验或者说是思维定势,学生往往认为向心力是一种新的力,因此“向心力不是一种新的力,而是根据作用效果命名的力”(即向心力的来源)对学生来说,将是个难点。 【教学目标】 1.知识与技能 (1)知道什么是向心力,理解它是一种效果力。 (2)理解向心力公式的确切含义,并能用来进行简单的计算。 (3)知道变速圆周运动中向心力是合外力的一个分力,知道合外力的作用效果。 2.过程与方法 (1)通过对向心力概念的探究体验,让学生理解其概念。

2.4 实验4 用圆锥摆验证向心力的公式

实验4 用圆锥摆验证向心力的公式 【实验目的】 验证向心力公式。 【实验器材】 铁架台(带铁夹)、细线、小金属球、白纸、圆规、刻度尺、秒表。实验装置图如图2.4-10所示。 【实验原理】 在圆锥摆动中,摆球的运动为圆周运动,如图2.4-11所示,摆球的向心力为。若向心力的公式成立,即,则有成立,化简可得。其中,T为理论值,将摆长和半径r测出,就可求出此值。若T的计算值与实测值在一定的误差范围内相等,那么向心力的公式也就得到验证。 【实验设计与步骤】 此实验不是通过直接测量影响向心力的三个变量来验证公式,而是将公式进行转化,通过验证另一个公式成立达到了验证向心力公式成立的目的。在实际的实验教学中,要善于引导学生另辟巧径,培养学生的创新精神。 1.用铁架台上的铁夹将连有小铁球的细线夹紧,调节铁夹的高度, 让小球自然垂下时与实验桌相距2~3cm。如图2.4-11所示。 2.在一张纸上画一个直径约为30~40cm的圆,将圆心标出,把纸压 在实验桌上,且使摆球的重力作用线在静止时通过圆心。 3.用两只手指捏住摆线上端,策动摆球在水平面内做圆周运动,细

心调节手的摆幅,使摆球尽可能与地面上面的圆重合。待满意后将手松开,并用秒表测出摆球转动约10圈的时间t(所计转动的圈数以小球运动半径不发生明显衰减为宜),然后求出圆锥摆的摆动周期T。 4.用刻度尺测量出圆锥摆的摆长和小球做圆周运动的半径r。 5.改变摆长和半径r,进行多次实验,记录数据,并完成表2.4-3. 表2.4-3 【实验数据记录与分析】 实验数据举例: 表2.4-4 从表2.4-4的数据可观察到,通过公式计算得出的周期值跟用

专题:圆周运动向心力公式的应用

专题:圆周运动向心力公式的应用 1、半径为40cm ,转速1200r/min .求(1)砂轮转动的周期;(2)砂轮转动的角速度;(3)砂轮边缘上一点线速度的大小? 2.甲、乙两个物体都做匀速圆周运动,其质量之比为1:2,转动半径之比为1:2,在相同的时间内甲转过60度,乙转过45度,则他们的向心力之比为( ) A1:4 B2:3 C 4:9 D9:16 3.图2中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点。左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r ,b 点在小轮上,到小轮中心的距离为r 。c 点和d 点分别位于小轮和大轮的边缘上。若在传动过程中,皮带不打滑。则:( ) A. a 点与b 点的线速度大小相等 B. a 点与b 点的角速度大小相等 C. a 点与c 点的线速度大小相等 D. a 点与d 点的向心加速度大小相等 4.有—个竖直放置的圆形轨道,半径为R ,由左右两部分组成.如图5—4—6所示.右半部分AEB 是光滑的,左半部BFA ,是粗糙的.现在轨道最低点A 放一个质量为m 的小球。并给小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B ,小球在B 点又能沿BFA 轨道回到A 点,到达A 点时对轨道的压力为4mg .在求小球在A 点的速度v 0? 若给小球以初速度 但方向向左,小球能到达最高点吗? 有关摩擦力的圆周运动 1.如图 1,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是( ) A .受重力、支持力、静摩擦力和向心力的作用 B .摩擦力的方向始终指向圆心O C .重力和支持力是一对平衡力 D .摩擦力是使物体做匀速圆周运动的向心力 2.如图4所示,A 、B 、C 三个物体放在旋转圆台上,动摩擦因数均为μ,A m ,A 、B 离轴的距离为R ,C 离轴的距离为2R ,则当圆台旋转时(设三物体都没有滑动)( ) A .C 物体的向心加速度最大 B .B 物体所受的静摩擦力最小 C .当圆台转速增加时,C 比A 先滑动 D .当圆台转速增加时,B 比A 先滑动 3.如图9所示,物体与圆筒壁的动摩擦因数为μ,圆筒的半径为R 。若要物体不滑下,则圆筒转动的角速度至少为 。 5Rg v 0

(完整版)向心力典型例题(附答案详解)

向心力典型例题 一、选择题【共12道小题】 1、如图6-7-7所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆筒转动的角速度ω至少为() 图6-7-7 A. B. C. D. 您的答案: 参考答案与解析:解析:要使a不下滑,则a受筒的最大静摩擦力作用,此力与重力平衡,筒壁给a的支持力提供向心力, 则N=mrω2,而f m=mg=μN,所以mg=μmrω2,故.

所以A、B、C均错误,D正确. 答案:D 主要考察知识点:匀速圆周运动、变速圆周运动、离心现象及其应用 2、下面关于向心力的叙述中,正确的是() A.向心力的方向始终沿着半径指向圆心,所以是一个变力 B.做匀速圆周运动的物体,除了受到别的物体对它的作用外,还一定受到一个向心力的作用 C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些力中某几个力的合力,或者是某一个力的分力 D.向心力只改变物体速度的方向,不改变物体速度的大小 您的答案: 参考答案与解析:解析:向心力是按力的作用效果来命名的,它可以是物体受力的合力,也可以是某一个力的分力,因此,在进行受力分析时,不能再分析向心力.向心力时刻指向圆心与速度方向垂直,所以向心力只改变速度的方向,不改变速度的大小,即向心力不做功. 答案:ACD

主要考察知识点:匀速圆周运动、变速圆周运动、离心现象及其应用 3、关于向心力的说法,正确的是() A.物体由于做圆周运动而产生了一个向心力 B.向心力不改变圆周运动物体速度的大小 C.做匀速圆周运动的物体其向心力即为其所受的合外力 D.做匀速圆周运动的物体其向心力大小不变 您的答案: 参考答案与解析:解析:向心力并不是物体受到的一个特殊力,它是由其他力沿半径方向的合力或某一个力沿半径方向的分力提供的.因为向心力始终与速度方向垂直,所以向心力不会改变速度的大小,只改变速度的方向.当质点做匀速圆周运动时,向心力的大小保持不变. 答案:BCD 主要考察知识点:匀速圆周运动、变速圆周运动、离心现象及其应用 4、在光滑水平面上相距20 cm的两点钉上A、B两个钉子,一根长1 m的细绳一端系小球,另一端拴在A钉上,如图6-7-8所示.已知小球质量为0.4 kg,小球开始以2 m/s的速度做水平匀速圆周

《向心力》物理教学设计范例

教学设计模式范例1: 《向心力》教学设计 【教材版本】人教版高中物理必修二第五章第七节 【课标分析】以高中物理新课改的基本理念为指导,基于高一学生的实际和与向心力相关的学习任务,注重在教学中体现科学探究精神,使学生尽可能完整地经历科学探究的过程。通过学生探究式的大胆的假设和猜想以及科学的分析,不仅仅获取科学知识,同时能将物理理论应用生活实际之中。鉴于教材根据牛顿第二定律直接推导出向心力的表达式的教学方法,本节课突破该教学方法,采用“引导探究”式教学法,该教学法以解决问题为中心,注重学生的独立钻研,着眼于创新思维的培养,充分发挥学生主动性。其主要程序是: 不仅重视知识的获得,而且更重视学生获得知识的过程及方法,更加突出了学生的主动学习。学生活动约占课时的一半,力求体现“以教师为主导,以学生为主体”的教学思想。 【教材分析】 《向心力》一节是普通高中课程标准试验教科书必修2章曲线运动的重点、难点,具有承前启后的作用。它既是本章知识的一个拐点,又是本章内容拓展的重要基础;通过学习,既能使学生从对圆周运动的表面认识上升到理论分析,又能让学生从生活中的圆周运动分析提高到对天体运动及带电粒子在电磁场中的运动的分析及推演。同时,《向心力》一节能够充分体现力和运动的在物理学中的重要性,是运动与力关系学习的好素材。 【学情分析】 学生通过前面的学习,理解了质量、力与加速度的关系,了解了描述圆周运动的各个物理量及其关系,认识了匀速圆周运动指向圆心的向心加速度,并且学生已经经历了同学之间相互协作、相互讨论、相互交流及最后的成果展示的学习过程,具备了处理问题的一般思路方法:提出问题—分析问题—解决问题。 【新课标要求】 (一)知识与技能 1、理解向心力的概念。 2、知道向心力大小与哪些因素有关。理解公式的确切含义,并能用来进行计算。 3、知道在变速圆周运动中,可用上述公式求质点在某一点的向心力和向心加速度。

圆周运动及向心力公式的应用

圆周运动及向心力公式的应用 考点一:描述圆周运动的物理量 例1:如图所示是自行车传动结构的示意图,其中Ⅰ是半径 为r1的牙盘(大齿轮),Ⅱ是半径为r2的飞轮(小齿轮), Ⅲ是半径为r3的后轮,假设脚踏板的转速为n(r/s),则自 行车前进的速度为() 例2:如图所示为一实验小车中利用光脉冲测量车速 和行程的装置的示意图,A为光源,B为光电接收器, A、B均固定在车身上,C为小车的车轮,D为与C同 轴相连的齿轮.车轮转动时,A发出的光束通过旋转 齿轮上齿的间隙后变成脉冲光信号,被B接收并转 换成电信号,由电子电路记录和显示.若实验显示单 位时间内的脉冲数为n,累计脉冲数为N,则要测出小车的速度和行程还必须测量的物理量或数据是_______________;小车速度的表达式为v=_______________;行程的表达式为s=__________________. 考点二:匀速圆周运动及圆周运动向心力的特点 例3:汽车甲和汽车乙质量相等,以相等速度率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿半径方向受到的摩擦力分别为F f甲和F f乙,以下说法正确的是 ( ) A. F f甲小于F f乙 B. F f甲等于F f乙 C. F f甲大于F f乙 D. F f甲和F f乙大 小均与汽车速率无关 例4:(1)为了清理堵塞河道的冰凌,空军实施了投弹爆破,飞 机在河道上空高H处以速度v0水平匀速飞行,投掷下炸弹并击中 目标。求炸弹刚脱离飞机到击中目标所飞行的水平距离及击中目 标时的速度大小。(不计空气阻力) (2)如图17所示,一个竖直放置的圆锥筒可绕其中心OO′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H,筒内壁A点的高度为筒高的一半。内壁上有一质量为m的小物块。求

相关主题
文本预览
相关文档 最新文档