3.6 线性方程组解的结构A (1)
- 格式:pdf
- 大小:448.13 KB
- 文档页数:32
线性方程组解的结构
线性方程组的解的结构是线性空间。
线性方程组是数学中一个很重要
的概念,它是由多个线性方程组成的方程组。
线性方程组是指所有未知量
的各个线性方程组成的一个方程组。
线性方程组的解的结构本质上是线性
空间的结构。
线性空间是指一个能进行线性运算的集合。
线性空间具有加法运算和
数乘运算,而且满足线性运算的性质。
线性方程组的解符合线性空间的定义,因此可以将线性方程组的解看作是线性空间中的向量。
首先,线性方程组的解是一个向量空间。
向量空间是线性空间的一种
特殊情况,它是一个向量的集合,可以进行线性运算。
在线性方程组中,
解是通过求解方程组得到的向量。
其次,线性方程组的解是一个子空间。
子空间是线性空间的一个子集,同时也是一个线性空间。
线性方程组的解是通过线性运算得到的,所以它
也是线性空间中的子空间。
1.如果矩阵的秩等于线性方程组的未知量的个数,那么线性方程组有
唯一解。
2.如果矩阵的秩小于线性方程组的未知量的个数,那么线性方程组有
无穷多解。
3.如果矩阵的秩等于线性方程组的未知量的个数,但是矩阵的秩小于
矩阵的列数,那么线性方程组有无解。
总之,线性方程组的解的结构是线性空间,它满足线性空间的定义和
性质。
线性方程组的解是线性空间中的向量,该向量可以通过矩阵运算来
求解。
线性方程组的解的结构与矩阵的秩有密切的关系,矩阵的秩决定了线性方程组的解的结构。
线性方程组的解的结构是线性空间及其应用的一个重要领域,它在数学和工程中都有广泛的应用。
§3.6 线性方程组解的结构一、齐次线性方程组解的结构11211000s a x a x a x a x a x a x a x a x a x ⋅⋅⋅+=⎧⎪⋅⋅⋅+=⎪⎨⎪⎪⋅⋅⋅+=⎩11221n n 12222n n 1s22sn n ++++…………………………++(1)1.解的性质性质1 方程组(1)的两个解的和还是(1)的解. 证明 设),,,(21n k k k 与),,,(21n l l l 是方程组⑴的两个解.则∑==nj j ijk a10 ),,,2,1(s i =∑==nj jij la 10 ).,,2,1(s i =两个解的和为),,,(2211n n l k l k l k +++ (2)代入方程组,得∑∑∑====+=+=+nj nj nj j ij j ij j j ijl a k a l k a111000)().,,2,1(s i =即⑵是方程组的解. 证毕性质2 方程组(1)的一个解的倍数还是(1)的解; 证明 设),,,(21n k k k 是⑴的一个解,因为 00)(11=⋅==∑∑==c k a c ck a nj nj j ij j ij ).,,2,1(s i=所以),,,(21n ck ck ck 还是方程组的解.证毕由性质1和性质2得:性质3 方程组(1)的解的任一线性组合还是(1)的解. 2.基础解系定义 齐次线性方程组(1)的一组解12,r ηηη,,,若满足1) ,ηηη12r ,,线性无关; 2)(1)的任一解可由,ηηη12r ,,线性表出.则称,ηηη12r ,,为(1)的一个基础解系.3 .基础解系的存在性定理1 在齐次线性方程组有非零解的情况下,它有基础解系,并且基础解系所含解向量的个数等于n r -,其中)(A R r =.证:若()R A r n =<,不防设112110r a a a a a a a a a ≠121r222r r2rr?… ?…………………?…,则方程组(1)与方程组11112211,11121122222,1121122,11r r r r n n r r r r n n r r rr r r r r rn n a x a x a x a x a x a x a x a x a x a x a x a x a x a x a x ++++++++⋅⋅⋅+=---⎧⎪++⋅⋅⋅+=---⎪⎨⎪⎪++⋅⋅⋅+=---⎩(2) 同解,用n r -组数 (1,0,…,0), (0,1,…,0), …, (0,0,…,1)代入自由未知量11(,,,)r r n x x x ++⋯⋯,就得到(2)的解,也就是(1)的n r -个解111121221222--,1-,2-,(,,,,100(,,,010(,,,001r r n r n r n r n r r c c c c c c c c c ηηη=⎧⎪=⎪⎨⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⎪⎪=⎩,,,),,,,),,,,) 则r n -ηηη,,,21 为方程组(1)的一个基础解系. ⅰ) r n -ηηη,,,21 线性无关 事实上,若 1122k k ηη++--0n r n r k η+=,即112212(*,*,*,,,)(0,0,,)n r n r n r k k k k k k ηηη---+++==……,,0比较最后n -r 个分量,得 021====-r n k k k .因此, r n -ηηη,,,21 线性无关.ⅱ) 任取方程组(1)的一个解),,,(21n c c c =η,η可由12,n r ηηη-,,线性表出.事实上,由12n r ηηη-,,,是方程组(1)的解知:r n n r r c c c -+++++ηηη 2211也为(1)的解,又 r n n r r c c c -+++++ηηη 2211=(n r c c ,,,*,*,1 +)它与η的最后n r -个分量相同,即自由未知量的值相同,所以它们为同一个解,即11r n n r c c ηηη+-=++…….由ⅰ) ⅱ)知,r n -ηηη,,,21 为(1)的一个基础解系. 证毕推论 任一与方程组(1)的某一基础解系等价的线性无关的向量组都是方程组(1)的基础解系.证明:12t ηηη,,,为(1)的一个基础解系,12,s ααα,,线性无关,且与12t ηηη,,,等价,则s t =,且i α可由12t ηηη,,,线性表出,即i α也为(1)的解向量.任取方程组(1)的一个解向量η,则η可由12t ηηη,,,线性表出,从而η可由12,t ααα,,线性表出.又12,t ααα,,线性无关,所以12,t ααα,,也是基础解系.证毕4 .基础解系的求法我们只要找到齐次线性方程组的n r -个自由未知量,就可以获得它的基础解系.具体地说,我们先通过初等行变换把系数矩阵化为阶梯形,那么阶梯形的非零行数就是系数矩阵的秩.把每一个非零行最左端的未知量保留在方程组的左端,其余n r -个未知量移到等式右端,再令右端n r -个未知量其中的一个为1,其余为零,这样可以得到n r -个解向量r n -ηηη,,,21 ,这n r -个解向量r n -ηηη,,,21 构成了方程组的基础解系. 方程组(1)的任一解即通解可表为1112,t t t k k k k k P ηηη=++∈……,,,例1 求齐次线性方程组12451234123451234530,20,426340,242470.x x x x x x x x x x x x x x x x x x +--=⎧⎪-+-=⎪⎨-++-=⎪⎪+-+-=⎩ 的一个基础解系。
线性方程组的解的结构线性方程组的解的结构IT技术2009NO.35科技创新导报线性方程组的解的结构刘勇(大连交通大学理学院辽宁大连 116028)摘要:本文对非齐次线性方程组进行了深入的讨论,并给出了另一种刻画非齐次线性方程组解的结构的方法,即只用自身的有限个解来表示全部的解。
从而使非齐次线性方程组解的结构更加完善。
关键词:线性方程组线性无关解的结构中图分类号:G642文献标识码:A文章编号:1674-098X(2009)12(b)-0033-01线性方程组理论是线性代数最基本的内容之一,它在数学的各个领域及其他学科的各个分支都有着广泛的应用。
研究线性方程组解之间的关系及解的结构是线性方程组理论的核心内容。
齐次线性方程组解的结构可以通过自身的有限个解来表示其全部解。
而在一般的线性代数教材中关于非齐次线性方程组解的结构则是借助于它的'导出方程组的基础解系和它自身的一个解来表示。
那么,非齐次线性方程组能否也像齐次线性方程组一样也用其自身的解来表示全部解呢?这是我们要讨论的问题。
设数域P上的线性方程组为AX=B (1)对应齐次方程组可表为AX=0 (2)若令α1,α2,L,αn为A的列向量则(1)还可表为x1α1+x2α2+L+xnαn=B,显然方程组(1)有解的充要条件是B可由α1,α2,L,αn线性表示。
在解决线性方程组有解的判定之后,进一步讨论线性方程组解的结构问题。
在线性方程组解是唯一的情况下当然不存在什么结构问题。
有许多解的情况下,第一文库网所谓的解的结构问题就是解与解之间的关系问题。
同样分两种情况:1.B=O定理1设齐次线性方程组(2)有非零解即r(A)=r定理2(齐次线性方程组解的结构定理)设齐次线性方程组(2)中,r(A)=r2.B≠O定理3(非齐次线性方程组解的结构定理)设非齐次线性方程组(1)中, r(A)=r(A%)=r是非齐次线性方程组(1)的导出η1方,η2程,L组,ηn(2)?r的一个基础解系,那么非齐次线性方程组(1)的全部解为γ0+k1η1+k2η2+L+kn?rη,n?r其中k1,k2,L,kn?r∈P。
§6 线性方程组解的结构在解决线性方程组有解的判别条件之后,进一步来讨论线性方程组解的结构.所谓解的结构问题就是解与解之间的关系问题.一、齐次线性方程组的解的结构设⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++0,0,0221122221211212111n sn s s n n n n x a x a x a x a x a x a x a x a x a (1) 是一齐次线性方程组,它的解所成的集合具有下面两个重要性质:1. 两个解的和还是方程组的解.2. 一个解的倍数还是方程组的解.从几何上看,这两个性质是清楚的.在3=n 时,每个齐次方程表示一个过得点的平面.于是方程组的解,也就是这些平面的交点,如果不只是原点的话,就是一条过原点的直线或一个过原点的平面.以原点为起点,而端点在这样的直线或平面上的向量显然具有上述的性质.对于齐次线性方程组,综合以上两点即得,解的线性组合还是方程组的解.这个性质说明了,如果方程组有几个解,那么这些解的所有可能的线性组合就给出了很多的解.基于这个事实,我们要问:齐次线性方程组的全部解是否能够通过它的有限的几个解的线性组合给出?定义17 齐次线性方程组(1)的一组解t ηηη,,,21 称为(1)的一个基础解系,如果1)(1)的任一个解都能表成t ηηη,,,21 的线性组合;2)t ηηη,,,21 线性无关.应该注意,定义中的条件2)是为了保证基础解系中没有多余的解.定理8 在齐次线性方程组有非零解的情况下,它有基础解系,并且基础解系所含解的个数等于r n -,这里r 表示系数矩阵的秩(以下将看到,r n -也就是自由未知量的个数).定理的证明事实上就是一个具体找基础解系的方法.由定义容易看出,任何一个线性无关的与某一个基础解系等价的向量组都是基础解系.二、一般线性方程组的解的结构如果把一般线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++sn sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111,, (9) 的常数项换成0,就得到齐次线性方程组(1). 齐次线性方程组(1)称为方程组(9)的导出组.方程组(9)的解与它的导出组(1)的之间有密切的关系:1. 线性方程组(9)的两个解的差是它的导出组(1)的解.2. 线性方程组(9)的一个解与它的导出组(1)的一个解之和还是这个线性方程组的一个解.定理9 如果0γ是线性方程组(9)的一个特解,那么线性方程组(9)的任一个解γ都可以表成ηγγ+=0其中η是导出组(1)的一个解.因此,对于线性方程组(9)的任一个特解0γ,当η取遍它的导出组的全部解时,(10)就给出(9)的全部解.定理9说明了,为了找出一线性方程组的全部解,只要找出它的一个特殊的解以及它的导出组的全部解就行了.导出组是一个齐次线性方程组,在上面已经看到,一个齐次线性方程组的解的全体可以用基础解系来表示.因此,根据定理我们可以用导出组的基础解系来表出一般线性方程组的一般解;如果0γ是线性方程组(9)的一个特解,r n -ηηη,,,21 是其导出组的一个基础解系,那么(9)的任一个解γ都可以表成r n r n k k k --++++=ηηηγγ 22110推论 在线性方程组(9)有解的条件下,解是唯一的充要条件是它的导出组(1)只有零解.线性方程组的理论与解析几何中关于平面与直线的讨论有密切的关系.来看线性方程组⎩⎨⎧=++=++.,23232221211313212111b x a x a x a b x a x a x a (11) (11)中每一个方程表示一个平面,线性方程组(11)有没有解的问题就相当于这两个平面有没有交点的问题.我们知道,两个平面只有在平行而不重合的情形没有交点.(11)的系数矩阵与增广矩阵分别是⎪⎪⎭⎫ ⎝⎛=232221131211a a a a a a A 与⎪⎪⎭⎫ ⎝⎛=22322211131211b a a a b a a a A , 它们的秩可能是1或者2.有三个可能的情形:1. 秩A =秩A =1.这就是的两行成比例,因而这两个平面平行.又因为A 的两行也成比例,所以这两个平面重合.方程组有解.2.秩A =2秩A =1,.这就是说,这两个平面平行而不重合. 方程组无解.3. 秩A =2.这时A 的秩一定也是 2.在几何上就是这两个平面不平行,因而一定相交. 方程组有解.下面再来看看线性方程组的解的几何意义.设矩阵A 的秩为2,这时一般解中有一个自由未知量,譬如说是3x ,一般解的形式为⎩⎨⎧+=+=.,32223111x c d x x c d x (12) 从几何上看,两个不平行的平面相交在一条直线.把(12)改写一下就是直线的点向式方程3222111x c d x c d x =-=-. 如果引入参数t ,令t x =3,(12)就成为⎪⎩⎪⎨⎧=+=+=.,,3222111t x t c d x t c d x (13)这就是直线的参数方程.(11)的导出方程组是⎩⎨⎧=++=++.0,0323222121313212111x a x a x a x a x a x a (14) 从几何上看,这是两个分别与(11)中平面平行的且过原点的平面,因而它们的交线过原点且与直线(12)平行.既然与直线(12)平行,也就是有相同的方向,所以这条直线的参数方程就是⎪⎩⎪⎨⎧===.,,32211t x t c xt c x (15)(13)与(15)正说明了线性方程组(11)与它的导出组(14)的解之间的关系. 例1 求线性方程组⎪⎪⎩⎪⎪⎨⎧0793,083,032,054321432143214321=+-+=++-=+-+=-+-x x x x x x x x x x x x x x x x的一个基础解系.例2 设线性方程组⎪⎪⎩⎪⎪⎨⎧.2193164,432,14523,42354321543215432154321-=-+++-=+----=--++-=-+-+x x x x x x x x x x x x x x x xx x x x用它的导出齐次方程组的基础解系表示它的全部解.。