高中数学一年级 1.1.2弧度制及换算
- 格式:ppt
- 大小:319.50 KB
- 文档页数:24
弧度制和弧度制与角度制的换算教学设计一、内容分析:1、教材的地位与作用《弧度制和弧度制与角度制的换算》是普通高中课程标准实验教科书人教B 版必修四第一章第一单元第二节的内容。
本节课起着承上启下的作用——学生在初中已经学习过角的度量单位“度”并且上节课学了任意角的概念,学生已掌握了一些基本单位转换方法,并能体会不同的单位制能给解决问题带来方便;本节课的知识还为后继学习任意角的三角函数等知识做铺垫。
通过本节课的学习,我们很容易找出与角对应的实数并且在弧度制下的弧长公式与扇形面积公式有了更为简单的形式。
另外弧度制为今后学习三角函数带来很大方便。
同时通过本节课学习学生可以认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是是相互联系、辩证统一的。
2、教学重点和难点教学重点:角度与弧度的换算,弧长公式、扇形面积公式的应用教学难点:弧度制的概念的理解二、目标分析根据《高中数学教学大纲》的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,制定本节课的教学目标如下:1.知识与技能:理解弧度制的概念,会进行弧度与角度之间的互化。
2.过程与方法:通过控制变量法以及类比法建立对弧度制概念的理解。
3.情感态度与价值观:通过弧度制的学习,体会不同表象下相同事物的本质。
三、教法分析根据上述教材分析和目标分析,贯彻诱思探究教学原则,体现以教师为主导,学生为主体的教学思想,深化课堂教学改革,确定本课主要的教法为:1、计算机辅助教学借助多媒体教学手段引导学生直观感受当半径不同时,扇形弧长以及弧长和半径的比值,并引导学生进行讨论;利用多媒体向学生展示不同的例题以及课堂练习,使学生能够直观观察。
2、讨论式教学在引入新课时,通过观察表格让学生分组讨论、交流、总结,说出当半径不同时,扇形弧长以及弧长和半径的比值,并给予一定的指导。
在计算特殊角的弧度数时,让学生分组进行,保证每一位学生能够练习到,也保证课堂的进度。
1.1.2 弧度制一、学习目标1.弧度的角及弧度的定义;2.掌握角度与弧度的换算公式;3.熟练进行角度与弧度的换算;4.理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活运用这两个公式解题。
二、自主学习1.度量角的单位制(1)角度制;规定周角的为1度的角,用度作为单位度量角的单位制叫角度制.(2)弧度制;在以单位长为半径的圆中,单位长度的弧所对的称为1弧度的角,它的单位符号是rad,读作.这种以作单位度量角的单位制,叫作弧度制.2.角度与弧度的互化(1)角度制与弧度制的互化(换算)180°=;1°=rad=0.017 45 rad;1 rad==57°18′=57.30°(2)特殊角的度数与弧度数的对应表任一正角的弧度数都是一个数;任一负角的弧度数都是一个数;零角的弧度数是.3.扇形的弧长及面积公式设扇形的半径为r,弧长为l,α为其圆心角,则1.半径不同的圆中,相同的圆心角所对的角的弧度数是否相同?2.2°与2弧度的角是否表示同一个角?3.390°可以写成360°+π6吗?三、合作探究探究1:角度制与弧度制的互化1.(1)把112°30′化为弧度; (2)-5π12rad 化为度.类题·通法1.将角度制化为弧度制,当角度制中含有“分”“秒”单位时,应先将它们统一转化为“度”,再利用1°=π180rad 化为弧度便可. 2.以弧度为单位表示角时,常把弧度写成多少π的形式,如无特殊要求,不必把π写成小数.跟踪训练1.将下列角度与弧度互化.(1)20°;(2)11π12;(3)8 rad探究2 用弧度制表示角的集合2.把下列角化成2k π+α(0≤α<2π,k ∈Z )的形式,指出它是第几象限角并写出与α终边相同的角的集合.(1)-46π3; (2)-1 485°.类题·通法用弧度制表示角的集合时应注意:(1)利用弧度制与角度制之间的关系将有关角化为弧度数;(2)π的倍数是偶数,α的范围是[0,2π)(3)在表示角的集合时要使用统一的度量单位.跟踪训练2 (1)用弧度表示终边落在x轴的非正、非负半轴上,y轴的非正、非负半轴上,x轴上,y轴上的角的集合;(2)用弧度表示第一、二、三、四象限角的集合.探究3:弧长公式与面积公式的应用3.(1)已知扇形的半径为1 cm,圆心角为30°,求扇形的弧长和面积.(2)已知扇形的周长为6 cm,面积为2 cm2,求扇形圆心角的弧度数.类题·通法1.涉及扇形的周长、弧长、圆心角和面积等的计算,关键是要弄清题目中已知哪些量求哪些量,然后灵活运用弧长公式、扇形面积公式直接求解或列方程组解决.2.解题过程中,常常用到方程的思想及等价转化的思想.跟踪训练3 扇形的周长C一定时,它的圆心角θ取何值才能使该扇形的面积S最大,最大值是多少?四、自主小测1.下列说法不正确的是( )A .“度”与“弧度”是度量角的两种不同制度B .1度的角是圆周的1360所对的圆心角,1弧度的角是圆周的12π所对的圆心角 C .根据弧度的定义,180°一定等于π radD .不论是用角度制还是弧度制度量角,它们都与圆的半径长短有关2.若α=1 920°,则该角的弧度数为( )A.163B.323C.16π3D.32π33.-29π12的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.已知半径为10 cm 的圆上,有一条弧的长是40 cm ,则该弧所对的圆心角的弧度数是________.5.已知一扇形的圆心角是72°,半径为20 cm ,则扇形的面积是________.6.(1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π;(2)若β∈[-4π,0],且β与(1)中α的终边相同,求β.7.用弧度制表示终边在图中阴影区域内角的集合(包括边界)并判断2012°是不是这个集合的元素.参考答案二、自主学习1.(1)1360(2)圆心角 弧度 弧度2.(1)π rad π180180°π (2)0 π6 π4 π3 π2 2π3 3π4 5π6 π 5π4 3π2 7π42π (3)正 负 03.|α|πr 180 |α|r |α|πr 2360 12 12|α|r 2 [问题思考]1.提示:相同.在公式|α|=l r中,角的弧度数的大小与所在圆的半径的大小无关,只与圆心角的大小有关.2.提示:不是同一个角.2°是角度制,2是弧度制,2 rad 约为115°.3.提示:不可以,在同一表达式中角度与弧度不能混用.三、合作探究探究1:角度制与弧度制的互化1.解:(1)∵1°=π180rad , ∴112°30′=112.5°=112.5×π180 rad =5π8rad. (2)∵1 rad =⎝⎛⎭⎫180π°,∴-5π12 rad =-5π12×⎝⎛⎭⎫180π°=-75°. 跟踪训练1 解:(1)20°=20×π180=π9, (2)11π12=1112×180°=165°. (3)8 rad =8×⎝⎛⎭⎫180π°≈8×57.30°=458.40°. 探究2 用弧度制表示角的集合2.解:(1)-46π3=-8×2π+2π3,它是第二象限角,与2π3终边相同的角 的集合为⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+2π3,k ∈Z . (2)-1 485°=-5×360°+315°=-10π+7π4,它是第四象限角,与7π4终边相同的角的集合为 ⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+7π4,k ∈Z . 跟踪训练2 解:(1)终边落在x 轴的非正半轴上的角的集合为{β|β=2k π+π,k ∈Z }; 终边落在x 轴的非负半轴上的角的集合为{β|β=2k π,k ∈Z };终边落在y 轴的非正半轴上的角的集合为⎩⎨⎧⎭⎬⎫β⎪⎪β=2k π+3π2,k ∈Z ;终边落在y 轴的非负半轴上的角的集合为{β|β=2k π+π2,k ∈Z }; 所以,终边落在x 轴上的角的集合为{β|β=k π,k ∈Z };终边落在y 轴上的角的集合为⎩⎨⎧⎭⎬⎫β⎪⎪β=k π+π2,k ∈Z . (2)第一象限角为⎩⎨⎧⎭⎬⎫β⎪⎪2k π<β<2k π+π2,k ∈Z ; 第二象限角为⎩⎨⎧⎭⎬⎫β⎪⎪2k π+π2<β<2k π+π,k ∈Z ; 第三象限角为⎩⎨⎧⎭⎬⎫β⎪⎪2k π+π<β<2k π+3π2,k ∈Z ; 第四象限角为⎩⎨⎧⎭⎬⎫β⎪⎪2k π+3π2<β<2k π+2π,k ∈Z . 探究3:弧长公式与面积公式的应用3.解:(1)∵α=30°=π6,∴l =|α|×r =π6×1=π6(cm)S =12|α|×r 2=12×π6×12=π12(cm 2) 故扇形的弧长为π6 cm ,面积为π12cm 2. (2)设扇形的弧长为l ,所在圆的半径为r ,由题意得⎩⎪⎨⎪⎧l +2r =6,12lr =2, 消去l 并整理得,r 2-3r +2=0,解得r =1或r =2.当r =1时,l =4,圆心角α=l r =41=4;当r =2时,l =2, 圆心角α=l r =22=1.故扇形的圆心角为1弧度或4弧度. 跟踪训练3 解:设扇形的半径为R ,则扇形的弧长为C -2R ,∵S =12(C -2R )×R =-R 2+C 2R =-(R -C 4)2+(C 4)2, ∴当R =C 4,即θ=C -2R R =2时,扇形有最大面积C 216. 四、自主小测1.【答案】D【解析】根据角、弧度的定义,可知无论角度制还是弧度制,角的大小都与圆的半径长短无关,而与弧长与半径的比值有关,所以D 错误.2.【答案】D【解析】∵1°=π180弧度,∴1 920°=1 920×π180 rad =32π3rad. 3.【答案】D【解析】-29π12=-2π-5π12,因为-5π12是第四象限角,所以-29π12是第四象限角.4.【答案】4【解析】由l =|α|×r ,得弧度数为4.5.【答案】80π cm 2【解析】设扇形的弧长为l .∵72°=72×π180 rad =2π5rad , ∴l =|α|×r =2π5×20=8π(cm),∴S =12lr =12×8π×20=80π(cm 2). 6.解:(1)∵-1 480°=-1 480π180=-74π9=-10π+16π9, 又0≤16π9<2π,∴-1 480°=16π9-2×5π=16π9+2×(-5)π. (2)由(1)可知α=16π9.∵β与α终边相同,∴β=2k π+16π9,k ∈Z . 又∵β∈[-4π,0],令k =-1,则β=-2π9,令k =-2,则β=-20π9, ∴β的值是-2π9,-20π9. 7.解:∵150°=5π6,∴终边在阴影区域内角的集合为S ={β|5π6+2k π≤β≤3π2+2k π,k ∈Z }. ∵2012°=212°+5×360°=⎝⎛⎭⎫53π45+10πrad ,又5π6<53π45<3π2.∴2012°=503π45∈S .。
高中数学人教B版必修四第一章《1.1.2弧度制和弧度制与角度制的换算》省级名师优质课教案比赛获奖教案示范课教
案公开课教案
【省级名师教案】
1教学目标
1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制.
2.通过探究使学生认识到角度制和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣.
2学情分析
在物理学和日常生活中,一个量常常需要用不同的方法进行度量,不同的度量方法可以满足我们不同的需要.现实生活中有许多计量单位,如度量长度可以用米、厘米、尺、码等不同的单位制,度量重量可以用千克、斤、吨、磅等不同的单位制,度量角的大小可以用度为单位进行度量,并且一度的角等于周角的 ,记作1°.
通过类比引出弧度制,给出1弧度的定义,然后通过探究得到弧度数的绝对值公式,并得出角度和弧度的换算方法.在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性.这样可以尽量自然地引入弧度制,并让学生在探究过程中,更好地形成弧度的概念,建立角的集合与实数集的一一对应,为学习任意角的三角函数奠定基础.
通过探究讨论,关键弄清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但却是互相联系、辩证统一的.进一步加强对辩证统一思想的理解,渗透数学中普遍存在、相互联系、相互转化的观点.
3重点难点
教学重点:理解弧度制的意义,并能进行角度和弧度的换算.。