第五章-整数规划-第5节
- 格式:pdf
- 大小:609.35 KB
- 文档页数:20
第五章整数规划、学习目的与要求1、熟悉分支定界法和割平面法的原理及其应用;2、掌握求解0―― 1规划问题的隐枚举法;3、掌握求解指派问题的匈牙利法。
二、课时9学时第一节整数规划的数学模型及解的特点整数规划IP (integer programming):在许多规划问题中,如果要求一部分或全部决策变量必须取整数。
例如,所求的解是机器的台数、人数、车辆船只数等,这样的规划问题称为整数规划,简记IP。
松弛问题(slack problem):不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的松弛问题。
若松弛问题是一个线性规化问题,则该整数规划为整数线性规划(integer linear programming)。
一、整数线性规划数学模型的一般形式nmax(或min) z 八c j x jj a"nZ a ij X j <(或=,或X)b i (i =1,2,…,m)j =1s.t.」X j X0( j =1,2,…,n)X-X2,…,x n中部分或全部取整数I整数线性规划问题可以分为以下几种类型1、纯整数线性规划(pure integer linear programming):指全部决策变量都必须取整数值的整数线性规划。
有时,也称为全整数规划。
2、混合整数线性规划(mixed integer liner programming):指决策变量中有一部分必须取整数值,另一部分可以不取整数值的整数线性规划。
3、0—1型整数线性规划(zero—one integer liner programming):指决策变量只能取值0或1的整数线性规划。
二、整数规划的例子例1某服务部门各时段(每2h为一时段)需要服务员的人数见下表。
按规定,服务员连续工作8h (即四个时段为一班)。
现在求安排服务员的工作时间,使服务部门服务员总数最少?解:设在第时段开始上班的服务员的人数为。
问题的数学模式略。
第五章 整数规划整数规划(integer programming )亦称整数线性规划,它实质上是在线性规划的基础上,给一些或全部决策变量附加取整约束得到的。
在许多情况下,我们都可以把规划问题的决策变量看成是连续的变量;但在某些情况下,规划问题的决策变量 却被要求一定是整数。
例如,完成某项工作所需要的人数或设备台数,进入市场销售的商品件数,以及某一机械设备维修的次数等。
为了满足整数解的要求,最容易想到的办法就是把求得的非整数解进行四舍五入处理来得到整数解,但这往往是行不通的。
舍入处理会出现两方面的问题:一是化整后的解根本不是可行解;二是化整后的解虽是可行解,但并非是最优解。
因此,有必要另行研究整数规划的求解问题。
在线性规划的基础上,要求所有变量都取整的规划问题称为纯整数规划问题(pure integer programming );如果仅仅是要求一部分变量取整,则称为混合整数规划问题(mixed integer programming )。
根据整数规划的定义,可将整数规划的数学模型表示为:0,;{min ≥==X b AX CX w 且(部分)为整数}。
显而易见,整数规划的可行域是其相应线性规划可行域的子集。
§1分枝定界法分枝定界法(branch and bound method )是求解整数规划常用的一种方法,它具有灵活且便于用计算机求解等优点。
它的一般思想是利用连续的(线性规划)模型来求解非连续的(整数规划)问题。
假定k x 是一个有取整约束的变量,而其最优连续值*k x 是非整数;那么在][*k x (表示*k x 的取整值)和1][*+k x 之间不可能包括任何可行整数解。
因此,k x 的可行整数值必然满足][*k k x x ≤或1][*+≥k k x x 之一。
把这两个条件分别加到原线性规划的解空间上,产生两个互斥的线性规划子问题。
实际上这一过程利用了整数约束条件,在“分割”时删除了不包含可行整数点的部分连续空间(1][][**+<<k k k x x x )。
第五章整数规划§1整数规划的数学模型及特点要求一部分或全部决策变量必须取整数值得规划问题称为整数规划。
其模型为:Max(或min)z=s.t若要求决策变量只能取值0或1的整数规划称为0-1型整数线性规划。
§5 指派问题一.指派问题的标准形式及数学模型在现实生活中,有各种性质的指派问题。
例如,有若干项工作需要分配给若干人(或部门)来完成;有若干项合同需要选择若干个投标者来承包;有若干班级需要安排在各教室上课等等。
诸如此类的问题,它们的基本要求是在满足特定的指派要求条件下,使指派方案的总体效果最佳。
由于指派问题的多样性,有必要定义指派问题的标准形式。
指派问题的标准形式(以人和事为例)是:有n个人和n件事,已知第i个人作第j件事的费用为,要求确定人和事之间的一一对应的指派方案,是完成这n件事的总费用最少。
为了建立标准指派问题的数学模型,引入个0-1变量:这样,问题的数学模型可写成(5.1)s.t (5.3)其中,(5.1)表示每件事必优且只有一个人去做,(5.2)表示每个人必做且只做一件事。
注:○1指派问题是产量()、销量()相等,且==1,i,j=1,2,…n的运输问题。
○2有时也称为第i个人完成第j件工作所需的资源数,称之为效率系数(或价值系数)。
并称矩阵C= =(5.5)为效率矩阵(或价值系数矩阵)。
并称决策变量排成的n×n矩阵X== (5.6)为决策变量矩阵。
(5.6)的特征是它有n个1,其它都是0。
这n个1位于不同行、不同列。
每一种情况为指派问题的一个可行解。
共n!个解。
其总的费用 z =C⊙X这里的⊙表示两矩阵对应元素的积,然后相加。
问题是:把这n个1放到X的个位置的什么地方可使耗费的总资源最少?(解最优)例1已知效率矩阵C=则X(1)=,X(2)=都是指派问题的最优解例12/P-149:某商业公司计划开办五家新商店。
为了尽早建成营业,商业公司决定由5家建筑公司分别承建。