运筹学[第五章整数规划]山东大学期末考试知识点复习
- 格式:doc
- 大小:127.50 KB
- 文档页数:5
运筹学知识点总结运筹学是研究在有限资源条件下,如何最优化决策问题的学科。
它是应用数学的一部分,主要包括线性规划、整数规划、图论等方向。
运筹学在工业、交通、军事、金融等各个领域有广泛的应用。
一、线性规划线性规划是运筹学中应用最广泛的部分,也是最基础的部分。
线性规划是一种数学方法,用于确定线性函数的最大值或最小值。
它被用来优化各种决策问题,例如成本最小化、收益最大化等。
如果一个问题可以通过不等式和等式来表示,同时还满足线性条件,那么这个问题就可以用线性规划来解决。
二、整数规划整数规划是指在优化问题中,变量需要满足整数限制的问题。
它是一个复杂的优化问题,通常需要使用分支定界法等高级算法来解决。
整数规划在生产安排、设备选型等问题中有广泛应用。
例如,在工厂的生产调度中,每个任务的产量必须是整数,因此需要使用整数规划来制定生产计划。
三、图论图论是运筹学的一个重要分支,它是一种研究图形结构和它们的互相关系的数学理论。
在运筹学中,图论被用来解决一些最短路径、最小花费等问题。
图论在计算机科学中也有广泛的应用。
例如,它被用来分析互联网的连接模式,制定数据传输的路径等。
四、决策分析决策分析是指选择最优行动方案的过程,它使用决策分析方法来权衡各种可行方案的利弊。
这些方法包括概率分析、统计分析、风险分析等。
决策分析在金融、政府和企业管理等领域中有广泛的应用。
例如,在股票投资中,决策分析被用来估计利润和风险,从而选择最优的投资组合。
五、排队论排队论是研究排队系统行为的学科,它被用来分析服务过程中的等待时间、系统容量和服务能力等因素。
排队论可以用来优化人员调度、设备运营和客户满意度。
排队论在交通运输领域中有广泛应用。
例如,在快速公路上,排队论可以帮助确定最佳车道数量,从而减少塞车和等待时间。
六、模拟模拟是一种数学方法,用于模拟真实世界的行为和系统。
它可以用来预测系统行为,以优化决策。
模拟通常使用计算机程序来模拟系统,这些程序称为仿真器。
运筹学必考知识点总结在运筹学中,有一些必考的知识点是非常重要的。
这些知识点涵盖了运筹学的基本概念、方法和模型,对于考生来说,掌握这些知识点是至关重要的。
本文将对运筹学的一些必考知识点进行总结,帮助考生更好地备考。
1. 线性规划线性规划是运筹学中的重要方法之一,它通过建立数学模型来解决各种决策问题。
在线性规划中,目标是最大化或最小化一个线性函数,同时满足一系列线性约束条件。
考生需要掌握线性规划的基本理论,包括线性规划模型的建立、单纯形法和对偶理论等内容。
2. 整数规划整数规划是线性规划的扩展,它要求决策变量取整数值。
整数规划在实际应用中有着广泛的用途,因此对于考生来说,掌握整数规划的基本理论和解题方法是必不可少的。
3. 动态规划动态规划是一种用于求解多阶段决策问题的优化方法。
在动态规划中,问题被分解为多个子问题,并且这些子问题之间存在重叠。
考生需要了解动态规划的基本原理、状态转移方程的建立以及动态规划算法的实现。
4. 网络流问题网络流问题是运筹学中的一个重要领域,它涉及到图论和优化算法等多个方面的知识。
在网络流问题中,主要考察最大流、最小割、最短路等问题的求解方法。
5. 效用理论效用理论是运筹学中的一个重要分支,它研究人们在做出决策时的偏好和选择。
效用函数、期望效用、风险偏好等概念是考试中的热点内容。
6. 排队论排队论是研究排队系统的运作规律和性能指标的数学理论。
在排队论中,考生需要了解排队系统的稳定性条件、平衡方程、性能指标的计算方法等。
7. 多目标决策多目标决策是指在考虑多个目标时的决策问题。
在多目标决策中,往往需要考虑到多个目标之间的矛盾和权衡,因此考生需要掌握多目标规划的基本原理和解题方法。
8. 随机规划随机规划是考虑到不确定因素的决策问题。
在随机规划中,目标函数、约束条件等参数都是随机变量,因此需要考虑到风险和概率的因素。
以上是一些运筹学中的必考知识点,考生在备考过程中需要重点关注这些知识点。
《运筹学》课程综合复习资料一、判断题1.求解LP 问题时,对取值无约束的自由变量,通常令"-'=j j j x x x ,其中:0≥"'j j x x ,在用单纯形法求得的最优解中,有可能同时出现0>"'j jx x 。
答案:错2.在PERT 计算中,将最早节点时刻等于最迟节点时刻、且满足0)(),()(=--i t j i t j t E L 节点连接而成的线路是关键线路。
答案:对3.在一个随机服务系统中,当其输入过程是一普阿松流时,即有(){}()t n en t n t N P λλ-==!,则同一时间区间内,相继两名顾客到达的时间间隔是相互独立且服从参数为λ的负指数分布,即有()te t X p λλ-==.答案:对4.已知*i y 为线性规划的对偶问题的最优解,若*i y =0,说明在最优生产计划中第i 种资源一定有剩余。
答案:对5.用单纯形法求解单纯形表时,若选定唯一入基变量k x (检验数>0),但该列的1,2...m=i 0ik a ≤,则该LP 问题无解。
答案:对6.对偶单纯形法中,若选定唯一出基变量i x (i x <0),但i x 所在行的元素(系数矩阵中)全部大于或等于0,则此问题无解。
答案:对7.LP 问题的可行域是凸集。
答案:对8.动态规划实质是阶段上枚举,过程上寻优。
答案:对9.动态规划中,定义状态变量时应保证在各个阶段中所做决策的相互独立性。
答案:对10.目标规划中正偏差变量应取正值,负偏差变量应取负值。
答案:错11.LP问题的基可行解对应可行域的顶点。
答案:对12.若LP问题有两个最优解,则它一定有无穷多个最优解。
答案:对13.若线性规划的原问题有无穷多最优解,则其对偶问题也一定有无穷多最优解。
答案:对14.对偶问题的对偶问题一定是原问题。
答案:对15.对于同一个动态规划问题,逆序法与顺序法的解不一样。
运筹学知识点总结运筹学是一门研究如何有效决策和优化资源分配的学科,它涵盖了数学、统计学和计算机科学等多个学科的知识。
在现代社会,运筹学在各个领域都有广泛的应用,比如物流管理、生产调度、供应链优化等。
本文将介绍一些运筹学的基本概念和应用。
1. 线性规划线性规划是运筹学中最基础也是最常用的数学模型之一。
它的目标是在一组线性约束条件下,最大化或最小化线性目标函数。
线性规划可以用来解决资源分配、生产计划、投资组合等问题。
常见的线性规划算法有单纯形法和内点法。
2. 整数规划整数规划是线性规划的一种扩展形式,其中决策变量被限制为整数。
整数规划在许多实际问题中都有应用,比如货车路径优化、工人调度等。
求解整数规划问题的方法包括分支定界法和割平面法。
3. 图论图论是运筹学中的一个重要分支,它研究图的性质和图算法。
图是由节点和边组成的数学结构,可以用来表示网络、路径、流量等问题。
常见的图论算法有最短路径算法、最小生成树算法和最大流算法。
4. 排队论排队论研究的是随机到达和随机服务的系统中的排队行为。
它在交通规划、电话网络、客户服务等领域有广泛的应用。
常见的排队论模型有M/M/1队列、M/M/c队列和M/G/1队列。
排队论可以用来优化服务水平、减少等待时间等。
5. 动态规划动态规划是一种解决多阶段决策问题的方法,它将问题分解为一系列子问题,并通过递归的方式求解。
动态规划常用于求解最优化问题,比如背包问题、旅行商问题等。
它的核心思想是将问题转化为子问题的最优解,并利用子问题的最优解求解原问题。
6. 模拟优化模拟优化是一种通过模拟实验寻找最优解的方法。
它基于概率统计和随机模拟的原理,通过多次模拟实验来搜索解空间。
模拟优化常用于在实际问题的局部搜索中找到较好的解。
常见的模拟优化算法有遗传算法、蚁群算法和粒子群算法。
7. 供应链管理供应链管理是一种综合运筹学和物流管理的概念,它研究如何优化整个供应链中的流程和资源分配。
供应链管理的目标是降低成本、增加效率并提供更好的顾客服务。
一、简答题
1、线性规划对偶问题可以采用哪些方法求解?
正确答案:(1)用单纯形法解对偶问题;
(2)由原问题的最优单纯形表得到;
(3)由原问题的最优解利用互补松弛定理求得;
(4)由Y=C=B1求得,其中B为原问题的最优基
2、运筹学的系统特征是什么?
正确答案:运筹学的系统特征可以概括为以下四点
(1)用系统的观点研究功能关系
(2)应用各学科交叉的方法
(3)采用计划方法
(4)为进一步研究揭露新问题
3、简述什么是0-1规划问题、纯整数规划问题和混合整数规划问题。
正确答案:(1)0-1规划问题:在线性规划问题中,如果要求所有的决策变量只能取0或1,这样的问题称为0-1规划。
(2)纯整数规划:如果要求所有的决策变量都取整数,这样的问题成为纯整数规划问题。
(3)混合整数规划:在线性规划问题中,如果要求部分决策变量取整数,则称该问题为混合整数规划。
4、若某线性规划问题有无穷多最优解,则应满足什么条件?
正确答案:(1)非基变量检验数为零;(2)基变量中没有人工变量;(3)所有6,s0。
5、简述什么是影子价格。
正确答(1)对偶变量Y表示与原问题的第个约束条件相对应的资源的影子价格;(2)在数量上表现为,当该约束条件的右端常数增加一个单位时(假设原问题的最优解不变),原问题目标函案:数最优值增加的数量。
6、简述一般决策问题的四个约束条件。
运筹学复习要点运筹学复习要点第二章线性规划与单纯形法一、标准型:规定具有下述条件的线性规划问题为标准型式的线性规划问题:1、目标函数为求最大;2、约束条件为等式约束;3、决策变量为非负。
二、线性规划问题具有的特征:1、每一问题都用一组决策变量(x1, x2, . . . ,xn)表示某一方案;2这组决策变量的值就代表一个具体方案,一般这些变量值是非负的;3、存在一定的约束条件,它们可用线性等式或不等式表示;4、都有一个要求达到的目标,它们可用决策变量的线性函数表示,称目标函数。
根据问题不同,要求目标函数实现最大化或最小化。
三、图解法的结论:1、可行域一定是凸集,即该区域内任意两点间连线上的点仍在该区域内;2、线性规划最优解不可能在凸集内的点上实现;3、线性规划问题有可能存在无穷多最优解;4、如果可行域无界,则最优解可能是无界解;5、如果不存在可行域,则没有可行解,也一定不存在最优解;6图解法只适用于两个决策变量的情况。
四、单纯形法:其基本思路是首先确定一个初始基可行解,然后判断该基可行解是否为最优解。
如果是最优解,则求解过程结束;如果不是最优解,则在此基础上变换找出另一个基可行解,该基可行解的目标函数值应该优于原基可行解。
再判断新的基可行解是否为最优解,如果是最优解,则求解过程结束;如果不是最优解,则在此基础上变换再找出另一个新基可行解,如此进行下去,直到找到最优解为止。
五、最优性检验与解的形式:最优解的判别定理,若X(0) = (b′1, b′2, ……… ,b′m, 0, …… , 0)T为对应于基B的一个基可行解,且对于一切j = m + 1, …… , n,有σj6 0,则X(0)为最优解,称σj为检验数。
无穷最多解判别定理,若X(0) = (b′1, b′2, …… , b′m, 0, …… , 0)T为对应于基B的一个基可行解,且对于一切j = m + 1, …… , n,有σj6 0,又存在某个非基变量的检验数σm+k= 0,则线性规划问题有无穷多最优解。
运筹学知识点总结一、线性规划线性规划是运筹学中最基础、最重要的一个分支。
它的基本形式可以表示为:Max cxs.t. Ax ≤ bx ≥ 0其中,c是一个n维的列向量,x是一个n维的列向量,A是一个m×n的矩阵,b是一个m维的列向量。
线性规划的目标是找到满足约束条件的x,使得目标函数cx取得最大值。
而当目标是最小化cx时,则是最小化问题。
线性规划问题有着很好的性质,它的最优解一定存在且一定在可行域边界上。
而且,很多非线性规划问题也可以通过线性化转化成线性规划问题,因此线性规划具有广泛的适用范围。
二、整数规划整数规划是线性规划的一个扩展,它在线性规划的基础上增加了对决策变量的整数取值限制。
这样的问题往往更加接近实际情况。
整数规划问题的一般形式可以表示为:Max cxs.t. Ax ≤ bx ∈ Zn整数规划问题的求解难度要比线性规划问题高很多。
因为整数规划问题是NP-hard问题,也就是说它没有多项式时间的算法可以解决。
但是对于特定结构的整数规划问题,可以设计专门的算法来求解。
比如分枝定界法、动态规划等。
整数规划问题在许多领域都有着广泛的应用,比如生产调度、设备配置、网络设计等。
三、动态规划动态规划是一种用来求解具有重叠子问题结构的最优化问题的方法。
它的核心思想是将原问题分解成一系列相互重叠的子问题,然后利用子问题的最优解来构造原问题的最优解。
动态规划问题的一般形式可以表示为:F(n) = max{F(n-1), F(n-2)+cn}其中,F(n)是问题的最优解,cn是问题的参数,n是问题的规模。
动态规划问题的求解是一个自底向上的过程,它依赖于子问题的最优解,然后通过递推关系来求解原问题的最优解。
动态规划在资源分配、路径优化、排程问题等方面有着广泛的应用。
四、决策分析决策分析是一种用来帮助人们做出最佳决策的方法。
它可以应用在各种风险决策、投资决策、生产决策等方面。
决策分析的一般形式可以表示为:Max E(u(x))其中,E(u(x))是对决策结果的期望效用,u(x)是决策结果的效用函数,x是决策变量。
运筹学知识点:绪论1.运筹学的起源2.运筹学的特点第一章线性规划及单纯形法1.规划问题指生产和经营管理中如何合理安排,使人力、物力等各种资源得到充分利用,获得最大效益。
2.规划问题解决两类问题:一是给定一定数量的人力、物力等资源,研究如何充分利用,以发挥其最大效果;二是已给定计划任务,研究如何统筹安排,用最少的人力和物力去完成。
3.规划问题的数学模型包含三个组成要素:决策变量、目标函数(单一)、约束条件(多个)。
线性规划问题的数学模型要求:决策变量为可控的连续变量,目标函数和约束条件都是线性的。
4.线性规划问题的标准形式:目标函数为极大、约束条件为等式、决策变量为非负、变量为非负5.划标准型时添加的松驰变量、剩余变量和人工变量6.理解可行解、最优解、基、基解、基可行解等概念,且掌握各类解间的关系7.用图解法理解线性规划问题的四种解的情况:无穷多最优解、无界解、无可行解、唯一最优解8.用图解法只有解决两个变量的决策问题9.线性规划问题存在可行解,则可行域是凸集。
10.线性规划问题的基可行解对应线性规划问题可行域的顶点。
11.线性规划问题的解进行最优性检验:当所有的检验数小于等于零时为最优解;尤其当检验数小于零时(即不等于零)有唯一最优解;当某个非基变量检验数为时,有无穷多最优解;当存在某个检验数大于零且对应的系数又小于等于零时,有无界解。
12.单纯形法的计算过程,可能出计算题13.入单纯形表前首先要化成标准形式。
14.确定换出变量时根据θ值最小原则,且要求公式中对应的系数大于零。
15.当线性规划中约束条件为等式或大于等于时,划为标准型后,系数矩阵中又不包含单位矩阵时,需要添加人工变量构造一个单位矩阵作为基。
16.人工变量的系数为足够大的一个负值,用—M代表17.一般线性规划问题的数学建模题(生产计划问题、人才资源分配问题、混合配料问题等)第二章对偶问题1.原问题和对偶问题数学模型的对应关系,可能出填空题和数学模型题2.每一个线性规划必然有与之相伴而生的对偶问题3.对偶问题的性质:弱对偶性、无界性、强对偶性、最优性、互补松弛性,其中互补松弛性可能出计算题4.原问题与其对偶问题之间存在一对互补的基解,其中原问题的松弛变量对应对偶问题的变量,对偶问题的剩余变量对应原问题变量5.影子价格的定义,用互补松驰性理解影子价格的含义6.影子价格与企业的生产任务、产品结构、技术状况等相关,与市场需求无关7.理解影子价格是机会成本第三章运输问题1.运输问题的数学模型,出建模题2.掌握三个数字:m+n、m*n、m+n-13.解的退化及处理4.运输规划问题本质仍然是线性规划,系数矩阵的特殊性,利用表上作业法求解,核心依然是单纯形法5.表上作业法的计算过程,可能出大题6.什么是基格和空格及含义以及检验数的经济意义7.初始方案的方法,计算检验数的方法,调整方案的方法8.检验数的含义及检验规划与一般线性规划问题的差别9.产销不平衡问题的处理,包括产大于销和销大于产,假想地的单位运价设为零第四章整数规划1.整数规划的分类:纯整数、混合整数、0-1整数2.指派问题的数学模型,可能出建模题3.匈牙利法的计算过程4.解矩阵的特点:n个解1位于不同行不同列上5.分枝定界法分枝和定界的依据以及如何分枝和如何定界6.整数规划问题的求解方法及适用条件7.整数规划问题与其松弛问题解的关系第五章目标规划1.线性规划的局限:严格约束、单目标、约束同等重要2.目标规划问题的数学模型,可能会出建模题,强调目标函数由偏差变量、优先因素和权系数构成3.偏差变量的含义及特点,成对出现,非负且至少有一个为零4.目标约束是等式,等式左边添加一对偏差变量相减5.目标规划问题求解的单纯形表计算停止的规划:要么所有行的检验数均为非负,要么前i行检验数为非负,第i+1行存在负的检验数,但在负检验数上面存在正检验数6.目标规划的达成函数中的偏差变量的选择第六章图论与网络优化1.图论中的图研究对象间的关系,只关心图中有多少个点及点间有线相连2.树的定义及性质3.最小树的求解方法:避圈法和破圈法4.狄克斯屈拉算法的特点:不仅求出从始点到终点的最短路,还求出从始点其他任何各点的最短路5.有向图(点弧)非对称关系和无向图(点边)对称关系的应用6.可行流的定义:两大类的三个条件7.增广链的定义及特点8.最大流最小割定理9.用ford-fulkerson算法求网络中的最大流的计算过程10.算法的核心和实质是判断是否存在增广链,,即网络达到最大流的条件是网络中不存在增广链第七章网络计划技术1.关键路线的定点:持续时间最长、节点时差为零、不止一条2.工作持续时间的确定方法及使用条件3.节点最早时间、节点最迟时间的理解4.工作时间参数着重理解总时差和自由时差,即总时差是若干项工作共同拥有的机动时间,自由时差是某项工作单独拥有的机动时间5.绘制网络技术图的规则第八章动态规划1.动态规划是研究多阶段决策问题的理论和方法2.状态必须具备无后效性,及无后效性的定义3.动态规划和顺序解法和逆序解法的路径及应用条件。
第五章整数规划
1.整数规划的特点
(1)整数规划:决策变量要求取整数的线性规划。
(2)整数规划可分为纯整数规划和混合整数规划。
(3)整数规划的可行域为离散点集。
2.整数规划的建模步骤
整数规划模型的建立几乎与线性规划模型的建立完全一致,只是变量的部分或全体必须限制为整数。
3.求解整数规划的常用方法
1)分支定界法
没有最大化的整数规划问题A,与它相应的线性规划问题为问题B,从解问题B开始,若其最优解不符合A的整数条件,那么B的最优目标函数必是A的最优目标函数z*的上界,记作,而A的任意可行解的目标函数值将是z*的一个
下界,分支定界法就是将B的可行域分成子区域的方法,逐步减小和增大,
最终求得z*。
将要求解的整数规划问题称为问题A,将与它相应的线性规划问题称为问题B。
(1)解与整数规划问题A相应的线性规划问题B,可能得到以下几种情况之一:
①B没有可行解,A也没有可行解,停止计算。
②B有最优解,并符合问题A的整数条件,则此最优解即为A的最优解,停止计算。
③B有最优解,但不符合A的整数条件,记它的目标函数值为。
(2)用观察法找问题A的一个整数可行解,求得其目标函数值,并记作。
以z*表示问题A的最优目标数值,则≤z*≤。
下面进行迭代。
分支,在B的最优解中任选一个不符合整数条件的变量x
i ,其值为b
i。
构造两个约束条件
x
j ≤[b
j
] ①
和
x
j ≥[b
j
]+1 ②
其中[b
j ]为不超过b
j
的最大整数。
将这两个约束条件分别加入问题B,求两个后继规划问题B1和B2。
不考虑整数约束条件求解这两个后继问题。
定界,以每个后继问题为一分支标明求解的结果。
第一步:先不考虑整数约束,变成一般的线性规划问题,用图解法或单纯形法求其最优解,记为 ) ;
第二步:若求得的最优解,刚好就是整数解,则该整数就是原整数规划的最优解,否则转下步;
第三步:对原问题进行分支寻求整数最优解。
第四步:对上面两个子问题按照线性规划方法求最优解。
若某个子问题的解是整数解,则停止该子问题的分支,并且把它的目标值与上一步求出的最优整数解相比较以决定取舍;否则,对该子问题继续进行分支。
第五步:重复第三、四步直至获得原问题最优整数解为止。
2)割平面法
割平面法既可以求解纯整数规划,也可以用于求解混合整数规划。
其基本思路与分支定界法类似,它也是在求解整数规划(Ⅰ)的相应的线性规划(L)的基础上,不断增加新的约束,通过求解一系列线性规划问题,最终得到原问题(I)的整数最优解。
但在此方法中,新约束的求法与分支定界法中不同,此外新增加的约束叫做割平面或切割方程,它使得由原可行域中切割掉一部分,此部分只包含非整数解,但不切割掉任何整数可行解。
割平面法求解整数规划的求解步骤:
(1)先不考虑整数条件,求解(Ⅰ)相对应的线性规划问题(L),与分支定界法步骤(1)一样,同样可得到三种结果之一。
(2)求一个切割方程:切割方程可由单纯形表的最终表中的任一个含有非整数基变量的等式约束演变而来,因此,切割方程不唯一。
1°令x
i
为相应的线性规划(L)的最优解中为分数值的一个基变量,由单纯形的最终表得到:
其中i∈Q(Q表示构成基变量号码的集合),k∈K(K表示构成非基变量号码的集合)。
2°将b
i 和a
ik
都分解成整数部分N和非负真分数f之和,即
而N为不超过b的最大整数,即N=[b]。
并将①代入②,得
3°提出变量为整数的条件(当然还有非负条件),由③式左边看必须是整数,
但右边因为0<f
<1,所以不能为正,故得切割方程
i
(3)在(L)的基础上,增加第一个切割方程,即构成线性规划问题(L1),用单纯形法或对偶单纯形法求最优解,若(L1)得到的仍为非整数解,则返回步(2),继续求第二个切割方程。
4.指派问题
(1)指派问题的特点。
把m项工作分派给n个人去做,既发挥各人特长又使效率最高。
这是一类特殊0—1规划问题。
(2)求解方法——匈牙利法。
该方法由库思提出,他引用了匈牙利一位数学家的定理。
①指派问题的标准型。
目标为min;系数矩阵为方阵(即人数与工作数相等,或者说每项工作只能由一人来做,每个人只能做一项工作)且其所有元素均为非负。
满足这两个条件的指派问题叫做标准型的指派问题。
②标准型指派问题的求解。
5.0—1规划问题
(1)一般形式。
仅取0或1,它和一 0—1型整数规划是整数规划中的特殊情形,它的变量x
i
般整数规划的约束条件形式是一致的。
(2)求解方法——隐枚举法。
0—1规划常用隐枚举法和过滤法,都是利用变量只能取0或l两个值的特性。
隐枚举法是一种特殊的分支定界法,它适用任何0—1规划问题的求解。
但
用隐枚举法要经过一些模型的变换。
过滤法实际上就是隐枚举法的一个特殊情况,在计算的过程中确定一个过滤条件,不断地检验,由于0—1的特性,其工作量在维数不大的情况下也是可以很快完成的,但当维数很大时不可取。
要用隐枚举法,首先应将0—1规划化成以下规范形式:
①如果目标函数是求最小值,则对目标函数两边乘以-1,改求最大值。
②如果目标函数中某变量x
j 的系数c
j
>0,则令x
j
=1-y
j
替换x
j
,其中y
j
为0
—1变量,于是变量y
j
在目标函数中的系数变成小于0。
③如果约束条件是“≥”形式,则可两边乘以-1,改为“≤”的形式。
④如果约束条件中含有等式,则可将每个等式化成两个“≤”形式的不等式,例如
0—1规划的隐枚举法的基本思想是:首先令全部变量取0(因为目标函数的系数全非正,此时,相应的目标函数值s=0就是上界)。
如果此解可行,则为最优解,计算终止;否则,选择某个变量为0或1,将问题分析成两个子问题,继续分别对它们进行检验,即令没有被选择的变量全部为0,检查是否可行。
如此下去,或者再分支,或者使所有的子问题停止分支,并以最大下界值对应的可行解为最优解。