运筹学 第五章 整数规划
- 格式:ppt
- 大小:1.55 MB
- 文档页数:102
第5章整数规划(割平面法)求解整数规划问题:Max Z=3x1+2x22x1+3x2≤144x1+2x2≤18x1,x2≥0,且为整数解:首先,将原问题的数学模型标准化,这里标准化有两层含义:(1)将不等式转化为等式约束,(2)将整数规划中所有非整数系数全部转化为整数,以便于构造切割平面。
从而有:Max Z=3x1+2x22x1+3x2+x3=142x1+x2+x4=9x1,x2≥0,且为整数利用单纯形法求解,得到最优单纯形表,见表1:表1最优解为:x1=13/4, x2=5/2, Z=59/4根据上表,写出非整数规划的约束方程,如:x2+1/2x3-1/2x4=5/2 (1)将该方程中所有变量的系数及右端常数项均改写成“整数与非负真分数之和”的形式,即:(1+0)x2+(0+1/2)x3+(-1+1/2)x4=2+1/2把整数及带有整数系数的变量移到方程左边,分数及带有分数系数的变量称到方程右边,得:x2 - x4-2 =1/2-(1/2x3+1/2x4) (2)由于原数学模型已经“标准化”,因此,在整数最优解中,x2和x4也必须取整数值,所以(2)式左端必为整数或零,因而其右端也必须是整数。
又因为x3,x4 0,所以必有:1/2-(1/2x3+1/2x4)<1由于(2)式右端必为整数,于是有:1/2-(1/2x3+1/2x4)≤0 (3)或x3+x4≥1 (4)这就是考虑整数约束的一个割平面约束方程,它是用非基变量表示的,如果用基变量来表示割平面约束方程,则有:2x1+2x2≤11 (5)从图1中可以看出,(5)式所表示的割平面约束仅割去线性规划可行域中不包含整数可行解的部分区域,使点E(3.5,2)成为可行域的一个极点。
图1在(3)式中加入松弛变量x5,得:-1/2x3-1/2x4+x5=-1/2 (6)将(6)式增添到问题的约束条件中,得到新的整数规划问题:Max Z=3x1+2x22x1+3x2+x3=142x1+x2+x4=9-1/2x3-1/2x4+x5=-1/2x i≥0,且为整数,i=1,2,…,5该问题的求解可以在表1中加入(6)式,然后运用对偶单纯形法求出最优解。
第五章整数规划1.整数规划的特点(1)整数规划:决策变量要求取整数的线性规划。
(2)整数规划可分为纯整数规划和混合整数规划。
(3)整数规划的可行域为离散点集。
2.整数规划的建模步骤整数规划模型的建立几乎与线性规划模型的建立完全一致,只是变量的部分或全体必须限制为整数。
3.求解整数规划的常用方法1)分支定界法没有最大化的整数规划问题A,与它相应的线性规划问题为问题B,从解问题B开始,若其最优解不符合A的整数条件,那么B的最优目标函数必是A的最优目标函数z*的上界,记作,而A的任意可行解的目标函数值将是z*的一个下界 ,分支定界法就是将B的可行域分成子区域的方法,逐步减小和增大,最终求得z*。
将要求解的整数规划问题称为问题A,将与它相应的线性规划问题称为问题B。
(1)解与整数规划问题A相应的线性规划问题B,可能得到以下几种情况之一:①B没有可行解,A也没有可行解,停止计算。
②B有最优解,并符合问题A的整数条件,则此最优解即为A的最优解,停止计算。
③B有最优解,但不符合A的整数条件,记它的目标函数值为。
(2)用观察法找问题A的一个整数可行解,求得其目标函数值,并记作。
以z*表示问题A的最优目标数值,则≤z*≤。
下面进行迭代.分支,在B的最优解中任选一个不符合整数条件的变量xi ,其值为bi。
构造两个约束条件xj ≤[bj]①和xj ≥[bj]+1 ②其中[bj ]为不超过bj的最大整数。
将这两个约束条件分别加入问题B,求两个后继规划问题B1和B2。
不考虑整数约束条件求解这两个后继问题。
定界,以每个后继问题为一分支标明求解的结果。
第一步:先不考虑整数约束,变成一般的线性规划问题,用图解法或单纯形法求其最优解,记为 ) ;第二步:若求得的最优解,刚好就是整数解,则该整数就是原整数规划的最优解,否则转下步;第三步:对原问题进行分支寻求整数最优解。
第四步:对上面两个子问题按照线性规划方法求最优解。
若某个子问题的解是整数解,则停止该子问题的分支,并且把它的目标值与上一步求出的最优整数解相比较以决定取舍;否则,对该子问题继续进行分支。