27.1.2 圆的对称性1
- 格式:pptx
- 大小:205.09 KB
- 文档页数:1
27.1.2圆的对称性教学目标:使学生知道圆是中心对称图形和轴对称图形,并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法.重点难点: 1.重点:由实验得到同一个圆中,圆心角、弧、弦三者之间的关系.2.难点:运用同一个圆中,圆心角、弧、弦三者之间的关系解决问题.教学过程:一、由问题引入新课:要同学们画两个等圆,并把其中一个圆剪下,让两个圆的圆心重合,使得其中一个圆绕着圆心旋转,可以发现,两个圆都是互相重合的.如果沿着任意一条直径所在的直线折叠,圆在这条直线两旁的部分会完全重合.由以上实验,同学们发现圆是中心对称图形吗?对称中心是哪一点?圆不仅是中心对称圆形,而且还是轴对称图形,过圆心的每一条直线都是圆的对称轴.二、新课1.同一个圆中,相等的圆心角所对的弧相等、所对的弦相等.垂直于弦的直径平分弦,并且平分弦所对的两条弧.实验1.将图形28.1.3中的扇形AOB 绕点O 逆时针旋转某个角度,得到图28.1.4中的图形,同学们可以通过比较前后两个图形,发现AOB AOB ∠=∠,AB AB =,.AB=AB实质上,AOB ∠确定了扇形AOB 的大小,所以,在同一个圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等.图23.1.3图23.1.4问题:在同一个圆中,如果弧相等,那么所对的圆心角,所对的弦是否相等呢? 在同一个圆中,如果弦相等,那么所对的圆心角,所对的弧是否相等呢?实验2、如图28.1.7,如果在图形纸片上任意画一条垂直于直径CD 的弦AB ,垂足为P ,再将纸片沿着直径CD 对折,比较AP 与PB 、AC ︵与CB ︵,你能发现什么结论? 显然,如果CD 是直径,AB 是⊙O 中垂直于直径的弦,那么AP BP =,AC=BC ,AD=BD .请同学们用一句话加以概括. ( 垂直于弦的直径平分弦,并且平分弦所对的两条弧) 2.同一个圆中,圆心角、弧、弦之间的关系的应用.(1)思考:如图,在一个半径为6米的圆形花坛里,准备种植六种不同颜色的花卉,要求每种花卉的种植面积相等,请你帮助设计图28.1.5,在⊙O 中,AC BC =,145∠=︒,求2∠种植方案.(2)如的度数.3、课堂练习:P38练习1、2、3 三、课堂小结本节课我们通过实验得到了圆不仅是中心对称图形,而且还是轴对称图形,而由圆的对称性又得出许多圆的许多性质,即(1)同一个圆中,相等的圆心角所对弧相等,所对的弦相等.(2)在同一个圆中,如果弧相等,那么所对的圆心角,所对的弦相等.(3)在同一个圆中,如果弦相等,那么所对的圆心角,所对的弧相等.(4)垂直于弦的直径平分弦,并图23.1.7图 23.1.5且平分弦所对的两条弧.四、作业P42 习题28.1 1、2、3、4、5。
第三章圆2.圆的对称性(一)一、学生知识状况分析学生的知识技能基础:学生在七、八年级已经学习过轴对称图形以及中心对称图形的有关概念及性质,以及本节定理的证明要用到三角形全等的知识等。
学生的活动经验基础:在平时的学习中,学生逐步适应应用多种手段和方法探究图形的性质。
同时,在平时的教学中,我们都鼓励学生独立探索和四人小组互相合作交流,使学生形成一些数学活动的经验基础,具备一定探求新知的能力。
二、教学任务分析圆是一种特殊图形,它既是轴对称图形,又是中心对称图形。
该节内容分为2课时。
本节课是第1课时,学生通过前面的学习,能用折叠的方法得到圆是一个轴对称图形。
其对称轴是任一条过圆心的直线。
具体地说,本节课的教学目标是:知识与技能:1.理解圆的轴对称性及其相关性质;2.利用圆的轴对称性研究垂径定理及其逆定理.过程与方法:1.经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法。
情感态度与价值观:1.培养学生独立探索,相互合作交流的精神。
2.通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神。
教学重点:利用圆的轴对称性研究垂径定理及其逆定理.教学难点:和圆有关的相关概念的辨析理解。
三、教学过程分析本节课设计了六个教学环节:课前准备(制作实验器材、完成预习提纲)、创设问题情境引入新课、讲授新课、课堂小结、创新探究、课后作业。
第一环节课前准备活动内容:(提前一天布置)1.每人制作两张圆纸片(最好用16K打印纸)2.预习课本P88~P92内容活动目的:通过第1个活动,希望学生能利用身边的工具去画图,并制作图纸片,培养学生的动手能力;在第2个活动中,主要指导学生开展自学,培养良好的学习习惯。
实际教学效果:1.学生在制作图纸片时,有时可能没有将圆心标出来,老师要对其进行启发引导,找出圆心。
2.预习提纲,要简明扼要,学生基本上能通过阅读教材就能较好完成。
圆的对称性—知识讲解(基础)【学习目标】1.理解圆的对称性;并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法;理解弦、弧、半圆、优弧、劣弧、等弧等与圆有关的概念,理解概念之间的区别和联系;2.通过探索、观察、归纳、类比,总结出垂径定理等概念,在类比中理解深刻认识圆中的圆心角、弧、弦三者之间的关系;3. 掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、圆的对称性圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.圆是中心对称图形,对称中心为圆心.要点诠释:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.要点三、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.要点四、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)要点五、弧、弦、圆心角的关系1.圆心角与弧的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2. 圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.3. 圆心角的度数与它所对的弧的度数相等.【典型例题】类型一、应用垂径定理进行计算与证明1.(2015•巴中模拟)如图,AB为半圆直径,O为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D,若AC=8cm,DE=2cm,求OD的长.【答案与解析】解:∵E为弧AC的中点,∴OE⊥AC,∴AD=AC=4cm,∵OD=OE﹣DE=(OE﹣2)cm,OA=OE,∴在Rt△OAD中,OA2=OD2+AD2即OA2=(OE﹣2)2+42,又知0A=OE,解得:OE=5,∴OD=OE﹣DE=3cm.【总结升华】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形.举一反三:【变式】如图,⊙O中,弦AB⊥弦CD于E,且AE=3cm,BE=5cm,求圆心O到弦CD 距离。
第27章圆27.1.2.圆旳对称性一、学情分析学生旳知识技能基本:学生在七、八年级已经学习过轴对称图形以及中心对称图形旳有关概念及性质,以及本节定理旳证明要用到三角形全等旳知识等。
在上节课中,学生学习了圆旳轴对称性,并运用轴对称性研究了垂径定理及其逆定理。
学生具有一定旳研究图形旳措施,基本掌握探究问题旳途径,具有合情推理旳能力,并逐渐发展了逻辑推理能力。
学生旳活动经验基本:在平时旳学习中,学生逐渐适应应用多种手段和措施探究图形旳性质。
同步,在平时旳教学中,比较注重学生独立摸索和四人小组互相合伙交流,使学生形成某些数学活动旳经验基本,具有一定探求新知旳能力。
二、教学任务分析知识与技能:1.理解圆旳旋转不变性;2.运用圆旳旋转不变性研究圆心角、弧、弦之间相等关系旳定理.过程与措施:1.经历摸索圆旳对称性及有关性质旳过程,进一步体会和理解研究几何图形旳多种措施。
2.通过观测、比较、操作、推理、归纳等活动,发展学生推理观念,推理能力以及概括问题旳能力。
情感态度与价值观:培养学生积极摸索数学问题旳态度与措施。
教学重点:运用圆旳旋转不变性研究圆心角、弧、弦之间相等关系旳定理.教学难点:理解有关定理中“同圆”或“等圆”旳前提条件.三、教学过程分析本节课设计了六个教学环节:课前准备,创设问题情境引入新课,讲授新课,课堂小结,创新探究,课后作业。
第一环节 课前准备活动内容:(提前一天布置)1、每人用透明旳胶片制作两个等圆。
2、预习课本P37--39内容。
第二环节 创设情境,引入新课活动内容:问题提出:我们研究过轴对称图形和中心对称图形,我们是用什么措施来研究它旳,它们旳定义是什么?活动目旳:为了引出圆旳轴对称和旋转不变性。
第三环节 合伙探究 感受新知活动内容:(一)通过教师演示实验,探究圆旳旋转不变性;请同窗们观测屏幕上两个半径相等旳圆。
请回答:它们重叠吗?如果重叠,将它们旳圆心固定。
将上面旳圆旋转任意一种角度,两个圆还重叠吗 ?归纳:圆具有旋转不变性。