圆的对称性
- 格式:docx
- 大小:600.84 KB
- 文档页数:7
圆的对称性及周长计算一、圆的对称性【知识点一】圆是轴对称图形。
(1)轴对称图形:如果一个图形沿着一条直线对折,直线两旁的部分能够完全重合,则这个图形叫做轴对称图形。
这条直线就是它的对称轴。
(2)圆是轴对称图形,直径所在的直线是圆的对称轴。
【知识点二】圆的对称轴的画法。
(1)圆的对称轴的画法:把圆的直径两端无限延长,就得到圆的对称轴。
(2)圆有无数条对称轴,所以圆以圆心为旋转点旋转任意角度都与自身重合。
半圆只有一条对称轴。
【知识点三】根据对称轴画出给定图形的轴对称图形。
画指定图形的轴对称图形,应根据轴对称图形的性质,找到原图形的关键点或关键线段。
圆是曲线图形,它的关键点就是圆心,关键线段就是直径和半径。
画指定图形的轴对称图形的方法:(1)找出所给图形的关键点或关键线段,圆的关键点为圆心,关键线段为半径或直径。
(2)画出关键点或关键线段的对应点和对应线段。
(3)圆应以对应点为圆心,对应半径为半径画圆,圆以外图形应连结对应点和对应线段。
误区警示:(1)圆的直径是圆的对称轴,圆有无数条直径,圆有无数条对称轴。
这种说法完全正确。
(2)判断:在同一平面内,任意两个圆都成轴对称。
(√)练一练:1、画出下面图形的另一半。
2、两个大小不同的圆可以组成六种图形,请找出每个图形的对称轴,并说一说它们的对称轴有什么共同特点。
3、判断。
(1)只有圆是轴对称图形。
( )(2)圆有无数条对称轴。
( )二、圆的周长(1) 圆的周长与直径有关,直径越长,周长越长。
(2) 任意一个圆的周长与它的直径的比是一个固定的数,我们把它叫做圆周率。
用字母π表示。
在小学阶段,如果不做特殊要求,π一般取3.14。
(3)=⇒=⨯圆的周长圆周率圆的周长直径圆周率直径圆的周长计算公式:直径×圆周率 或 半径×2×圆周率。
如果用字母C 表示圆的周长,r 表示半径,d 表示直径。
圆的周长字母公式为:C=πd 或C=2πr.(4)圆的周长的变化与该圆半径、直径的关系:① 如果圆的半径、直径扩大若干倍,它的周长也扩大若干倍。
《圆的对称性》教学反思《圆的对称性》教学反思1我在对圆的对称性这节的教学过程中,从回忆等腰三角形这个轴对称图形开始,继而提问:如果以刚才演示的等腰三角形的顶点为圆心,腰长为半径做圆,那么圆是否是轴对称图形?同时,要求学生利用自制的圆形纸片动手实验,折叠观察交流,从而获得圆是轴对称图形,对称轴是过圆心的直线(有无数条)。
这一环节貌视简单,却为下面做好铺垫。
我要求学生事先做好学具,动手就可以很快,教学中要控制时间。
接下来我利用黑板上总结中所画的图形介绍圆的.相关概念:弧、弦。
在读写认的过程中使学生熟悉基础概念并感受优劣弧和弦长短的变化。
在此基础上安排学生活动:并讨论下列问题:(1)在探索圆的对称性的过程中,若折叠两条相交直径可以是那些位置关系呢?垂直是特殊情况,你能得出那些等量关系?(2)若把AB向下平移到任意位置,变成非直径的弦,观察一下,还有与刚才相类似的结论吗?(3)要求学生在纸片上画出图形,并沿CD折叠,试验后提出猜想。
(4)猜想结论是否正确,要加以理论证明引导学生写出已知,求证。
然后让学生阅读课本的证明,并回答下类问题:教材证明利用了圆的什么性质?若只证AE=BE,还有什么方法?(5)猜想得以证明,命题是真命题,我们得到了定理!在环环相扣的活动后总结垂径定理并板书定理推理格式。
在教学中,学习水平不足的同学参与了活动完成的质量不够,费时较长,一定程度上影响了课堂进度,教进应加强适时点拔指导。
垂径定理是中学数学中的一个很重要的定理,由于他涉及到的条件结论比较多学生容易搞混肴,本节课采取了,讲练结合动手操作的教学方法,课前布置所有同学制作一张圆形纸片,课上利用此纸片探索、体验圆是轴对称图形,并进一步利用圆的轴对称性探究垂径定理,环环相扣、逐层深入,激发学生的学习兴趣,收到了很好的教学方法。
《圆的对称性》教学反思2九年级上册第三章第一节圆的对称性分为3个课时,今天我讲授的是第一课时。
这节课结束了,喜忧掺半,我进行了课后反思,反思如下:圆的轴对称性、垂径定理是圆的重要性质之一,在圆的有关内容中占有举足轻重的地位,是今后研究圆与直线的位置关系和数量关系的基础,这些知识在日常生活和生产中有广泛的应用,垂径定理反映了圆的重要性质,是证明线段相等、角相等、弧相等的重要依据,因此,它是整节书的重点,理解和证明垂径定理是本节课的难点,尤其学生在证明弧相等时比较吃力,语言表达不好。
圆的概念与对称性【知识要点】1.圆的基本概念(1)圆的定义:在平面内到定点的距离等于定长的点的集合叫做圆。
定点叫做圆心,定长叫半径。
(2)确定圆的条件;①已知圆心和半径,圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;③已知圆的直径的位置和长度可确定一个圆;(3)点和圆的位置关系设圆的半每径为r,点到圆心的距离为d,则点与圆的位置关系有三种。
①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔d<r;(4)弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直线。
直径是圆中最大的弦。
圆心到弦的距离叫做弦心距。
(5)弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(6)等圆、等弧:能够重合的两个圆叫做等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的两条弧叫做等弧。
2.圆的基本性质(1)圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
圆绕圆心旋转任何角度,都能够与原来的图形重合,因此圆还具有旋转不变性。
(2)垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
推论1 ①平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2 圆的两条平行弦所夹的弧相等。
【典型例题】例1如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点,AB=10cm,CD=6cm,则AC的长为()A.0.5cm B.1cm C.1.5cm D.2cm例2如图⊙O的直径AB与弦CD相交于点E,且BC=BD,AE=8,EB=2,则CD=__________。
例3 ⊙O平面内一点P和⊙O上一点的距离最小为3cm,最大为8cm,例4已知:⊙O的半径为2cm,弦AB的长为距离为()A .1cmB .2cmCD 例5如图⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm ,∠CEA=30°,求CD 的长。
《圆的对称性》圆日期:目录•圆的定义与基本性质•圆的对称性概述•圆的轴对称性•圆的中心对称性•圆的对称性在日常生活中的应用•总结与展望圆的定义与基本性质定义圆是平面上所有与给定点(称为圆心)距离相等的点的集合。
几何表示通常,我们用圆心O和半径r来表示一个圆,记为⊙O(r)。
圆的定义圆中心的点,记作O,是圆的对称中心。
圆心、半径与直径圆心从圆心到圆上任一点的线段,记作r,长度等于圆的半径。
半径通过圆心,且两个端点都在圆上的线段,记作d,长度等于半径的两倍,即d=2r。
直径圆的基本性质同心性:所有与给定圆同心的圆都共享同一个圆心。
等距性:圆上任意两点到圆心的距离相等。
这些基本性质不仅定义了圆,也为后续研究圆的性质和其在各种应用中的作用奠定了基础。
圆周角定理:同弧所对的圆周角相等,等于圆心角的一半。
对称性:圆具有旋转对称性,任何经过圆心的角度旋转后,圆保持不变。
圆的对称性概述对称性,在几何学中,是指图形在某个变换下保持不变的性质。
例如,一个图形在旋转、翻折等操作后,如果与原图形重合,那么这个图形就具有对称性。
对称性定义几何变换包括旋转、翻折、平移等。
如果一个图形在这些变换下保持不变,我们说这个图形具有相应的对称性。
变换的种类对称性的定义实际应用圆的对称性在建筑设计、艺术设计、工程学等领域都有广泛应用,对这些应用的理解和分析需要深入研究圆的对称性。
几何基本图形圆是最基本的几何图形之一,对于理解更复杂的几何形状和结构至关重要。
数学理论圆的对称性研究也有助于推动数学理论的发展,如群论、拓扑学等。
为何研究圆的对称性圆的对称性的种类旋转对称性:圆具有旋转对称性,即无论沿着哪个方向旋转,只要旋转的角度相同,都能与原始图形重合。
平移对称性:由于圆是各向同性的,它在任何方向的平移都不会改变它的形状,这也是圆的一种对称性。
翻折对称性:圆也具有翻折对称性,即无论沿着哪条直径翻折,都能与原始图形重合。
总结起来,圆的对称性是其在各个方向上均匀性的体现,这也是它在几何学和应用领域中重要地位的原因之一。
圆的对称性〖圆的定义〗几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点称为圆心,定长称为半径.轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆. 集合说:到定点的距离等于定长的点的集合叫做圆.点与圆的位置三种位置关系:________、________、________.〖有关圆的基本性质与定理〗圆的确定:不在同一直线上的三个点确定一个圆.圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线.圆也是中心对称图形,其对称中心是圆心.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.垂径定理的推论:推论一:平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧? 推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧?推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧? 推论四:在同圆或者等圆中,两条平行弦所夹的弧相等?类型一、判断点和圆的位置关系: 【例1】已知圆的半径等于5?cm ,根据下列点P 到圆心的距离:(1)4?cm ;(2)5?cm ;(3)6?cm ,判定点P 与圆的位置关系,并说明理由.【例2】若A e 的半径为5,点A 的坐标为(3,4)点P 的坐标为(5,8)则点P 和A e 的位置关系.【搭配练习】1、已知a 、b 、c 是△ABC 的三边长,外接圆的圆心在△ABC 一条边上的是( )A.a=15,b=12,c=1???????? ??=5,b=12,c=12?=5,b=12,c=13???????????? ?=5,b=12,c=14?2、如图,点A 、B 、C 表示三个村庄,现要建一座深水井泵站,向三个村庄分别送水,为使三条输水管线长度相同,水泵站应建在何处?请画出图,并说明理由.类型二、垂径定理的应用【例3】1、如图,AB 是⊙O 的一条弦,OC ⊥AB 于点C ,OA = 5,AB = 8,求OC 的长.2、如图,⊙O 的半径为5,圆心O 到弦AB 的距离为3,则圆上到弦AB 所在的直线距离为2的点有( ).A . 1个B . 2个C . 3个D . 4个3、如图,已知半径OD 与弦AB 互相垂直,垂足为点C ,若AB=8cm ,CD=3cm ,则圆O 的半径为______.4、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为_________.5、如图,在平面直角坐标系中,⊙A 经过原点O ,并且分别与x 轴、y 轴交于B 、C 两点,已知B (8,0),C (0,6),则⊙A 的半径为____________.6、在Rt ABC V 中,90ACB ∠=o ,3AC =,4BC =,以点CB为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为( ). A. 95 B. 245 C. 185 D. 527、如图,在以点O 为圆心的两个圆中,大圆的弦AB 交小圆于点C 、D ,求证:AC=BD .8、如图是一名考古学家发现的一块古代车轮碎片,你能帮他找到这个车轮的半径吗?(画出示意图,保留作图痕迹)【搭配练习】1、如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,已知,CD=8,AE=2,求⊙O 的半径.2、如图,⊙O 的半径为5,AB 为弦,OC ⊥AB ,交AB 于点D ,交⊙O 于点C ,CD=2,求弦AB 的长.3、如图,⊙O 的直径CD=10,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OC=3:5.求AB 的长度.4、如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________. 类型三、圆中两条弦的问题:【例4】1、如图,⊙O 的半径为10cm ,弦AB ∥CD ,AB=16cm ,CD=12cm ,圆心O 位于AB 、CD 的上方,求AB 和CD 间的距离.2、AB,AC 分别是⊙O 中的两条弦,圆的半径为2,且AB=AC=求BAC ∠3、已知⊙O 的半径为13,弦.AB CD P AB=24cm,CD=10cm,求AB 和CD 的距离。
苏科版数学九年级上册2.2《圆的对称性》教学设计一. 教材分析《圆的对称性》是苏科版数学九年级上册第二章第二节的内容。
本节课主要学习了圆的对称性质,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线等。
通过本节课的学习,使学生能够理解圆的对称性质,并能运用到实际问题中。
二. 学情分析学生在学习本节课之前,已经学习了圆的基本概念,如圆的定义、圆的方程等,同时也学习了平面图形的对称性。
因此,学生对于对称性的概念已经有所了解,但对于圆的对称性质还需要进一步的引导和探究。
三. 教学目标1.理解圆的对称性质,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线。
2.能够运用圆的对称性质解决实际问题。
3.培养学生的观察能力、思考能力和解决问题的能力。
四. 教学重难点1.圆的对称性质的理解和运用。
2.圆的对称轴的确定。
五. 教学方法采用问题驱动法、案例分析法、小组合作学习法等,引导学生通过观察、思考、讨论、实践等方式,掌握圆的对称性质,并能够运用到实际问题中。
六. 教学准备1.教学课件或黑板。
2.圆形教具。
3.练习题。
七. 教学过程1.导入(5分钟)通过展示一些具有对称性的图形,如圆、正方形、矩形等,引导学生回顾对称性的概念,并提问:你们认为圆具有对称性吗?圆的对称性质是什么?2.呈现(10分钟)利用多媒体课件或黑板,呈现圆的对称性质,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线。
同时,通过举例说明圆的对称性质。
3.操练(10分钟)让学生拿出圆形教具,观察并尝试找出圆的对称轴。
学生可以自行尝试,也可以与同桌相互讨论。
在学生操作过程中,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些关于圆的对称性的练习题,让学生独立完成。
题目可以包括判断题、选择题和解答题等。
学生完成后,教师进行讲解和点评。
5.拓展(10分钟)让学生思考:圆的对称性质在实际生活中有哪些应用?引导学生举例说明,如圆形的桌面、圆形的路面等。
ABC 圆的定义与圆的对称性【知识要点】(一)圆的有关概念 1.圆的基本概念定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。
固定点O 叫做圆心;线段OA 叫做半径;圆上各点到定点(圆心O )的距离都等于定长(半径r);反之,到定点的距离等于定长的点都在同一个圆上(另一定义); 以O 为圆心的圆,记作“⊙O ”,读作“圆O ” 2.圆的对称性及特性:(1)圆是轴对称图形,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴;(2)圆也是中心对称图形,它的对称中心就是圆心.(3)一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.这是圆特有的一个性质:圆的旋转不变性 3.弦:连接圆上任意两点的线段叫做弦。
4.弦心距:圆心到弦的距离叫做弦心距. 5.直径:经过圆心的弦叫直径。
注:圆中有无数条直径 6.圆弧:(1)圆上任意两点间的部分,也可简称为“弧” 以A,B 两点为端点的弧.记作AB ⋂,读作“弧AB”. (2)圆的任意一条直径的两个端点把圆分成两条弧,其中每一条弧都叫半圆。
如弧AD.(3)小于半圆的弧叫做劣弧,如记作AB ⋂(用两个字母). 7.圆心角:顶点在圆心,两边和圆相交的角叫做圆心角。
说明:(1)直径是弦,但弦不一定是直径,直径是圆中最长的弦。
(2)半圆是弧,但弧不一定是半圆。
(3)等弧只能是同圆或等圆中的弧,离开“同圆或等圆”这一条件不存在等弧。
(4)等弧的长度必定相等,但长度相等的弧未必是等弧。
(二)弦、弧、弦心距、圆心角的关系定理:在同圆或等圆中,弦、弧、弦心距、圆心角四组量中只要有一组量相等,则其余三组量也相等。
(三)点和圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离为d 。
则:(1)若rd=,则点P在圆上;(3)若rd<,d>,则点P在圆外;(2)若r则点P在圆内。
说明:点和圆的位置关系与点到圆心的距离和半径大小的数量关系是对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系。
圆的对称性
温故知新:
1.已知:如图,点O是∠EPF的平分线的一点,以O为圆心的圆和∠EPF的两边分别交于点
A、B和C、D.求证: ∠OBA=∠OCD
1、圆的对称性
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:
平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
【例1】如图,AB、AC、BC是⊙O的弦,∠AOC=∠BOC.∠ABC与∠BAC相等吗?为什么?
【例2】如图,在△ABC中,∠C=90°,∠B=28°,以C为圆心,
DE的度数.
CA为半径的圆交AB于点D,交BC与点E.求⌒
AD、⌒
【例3】如图,在同圆中,若⌒
AB=2⌒
CD,则AB与2CD的大小关系是( ) .
A. AB>2CD
B. AB<2CD
C. AB=2CD
D. 不能确定
【例4】如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径.
【例5】如图,圆柱形水管内原有积水的水平面宽CD=10cm,水深GF=1cm,若水面上升1cm(EG=1cm),则此时水面宽AB为多少?
【例6】有一座弧形的拱桥,桥下水面的宽度AB 为7.2米,拱顶高出水面CD ,长为2.4米,现有一艘宽3米,船舱顶部为长方形并且高出水面2米的货船要经过这里,此货船能顺利通过这座弧形拱桥吗?
课堂练习
1.如图,在⊙O 中,AB ︵=AC ︵,∠AOB =122°,则∠AOC 的度数为( )
A .122°
B .120°
C .61°
D .58°
2.下列结论中,正确的是( )
A .同一条弦所对的两条弧一定是等弧
B .等弧所对的圆心角相等
C .相等的圆心角所对的弧相等
D .长度相等的两条弧是等弧
3.如图,在⊙O 中,若C 是AB ︵的中点,∠A =50°,则∠BOC 等于( )
A .40°
B .45°
C .50°
D .60°
4.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =
60°,则∠COD 的度数是________.
5.如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠BOC =40°,则∠AOE =
________°.
6.在⊙O 中,若弦AB 的长恰好等于半径,则弦AB 所对的圆心角的度数为________.
7.如图,在⊙O 中,AB ,CD 是两条直径,弦CE ∥AB ,EC ︵的度数是40°,求∠BOD
的度数.
8.已知:如图,在⊙O 中,弦AB 的长为8,圆心O 到AB 的距离为3.
(1)求⊙O 的半径;
(2)若P 是AB 上的一动点,试求OP 的最大值和最小值.
9.如图,已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C ,D.
(1)求证:AC =BD ;
(2)若大圆的半径R =10,小圆的半径r =8,且圆心O 到直线AB 的距离为6,求AC 的长.
10.如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为D.要使四边形OACB 为菱形,还需添加一个条件,这个条件可以是( )
A .AD =BD
B .OD =CD
C .∠CA
D =∠CBD
D .∠OCA =∠OCB
11.如图,AB 是⊙O 的弦,AB 的长为8,P 是⊙O 上一个动点(不与
点A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为________.
12.如图,AB是⊙O的直径,AB=4,M是OA的中点,过点M的直
线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为________.
13.已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3 cm,BC=10 cm,以BC 为直径作⊙O交射线AQ于E,F两点,求:
(1)圆心O到AQ的距离;
(2)线段EF的长.
14.如图,某地有一座圆弧形拱桥,圆心为O,桥下水面宽度AB为7.2 m,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4 m.现有一艘宽3 m、船舱顶部为方形并高出水面2 m的货船要经过拱桥,则此货船能否顺利通过这座拱桥?
15.如图,AB,CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,试求PA+PC的最小值.
课后练习
1.圆是轴对称图形,____________都是它的对称轴,因此圆有________条对称轴.
2.如图,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论中不一定正确的
是( )
A .CE =DE
B .AE =OE
C.BC ︵=BD ︵ D .△OCE ≌△ODE
3.在⊙O 中,非直径的弦AB =8 cm ,OC ⊥AB 于点C ,则AC 的长为( )
A .3 cm
B .4 cm
C .5 cm
D .6 cm
4.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D .若⊙O 的半径为5,AB =8,
则CD 的长是( )
A .2
B .3
C .4
D .5
5.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( )
A .2
B .4
C .6
D .8
6.如图,AB 是⊙O 的直径,C 是⊙O 上的一点.若BC =6,AB =10,
OD ⊥BC 于点D ,则OD 的长为________.
7.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,
则⊙O 的半径为________.
8.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A ,B ,外圆半径OC ⊥AB 于点D 交外圆于点C.测得CD =10 cm ,AB =60 cm ,则这个车轮的外圆半径是________cm .。