表面张力系数的测定(拉脱法)
- 格式:doc
- 大小:20.50 KB
- 文档页数:2
用拉脱法测液体的表面张力系数一, 实验目的(1),测水和肥皂水的表面张力系数。
(2),测弹簧的弹性系数。
二,实验器材焦利氏称,游标卡尺,酒精灯,温度计,镊子,玻璃皿。
三, 实验原理。
液体表面都有尽量缩小的趋势,这是由于液体存在着沿表面切线方向作用的表面张力。
表面张力的大小可以用表面张力系数α来描述。
设想在液体表面上取一段长为l 的线段,则张力的作用表现在线段两边的液面以一定的拉力f 相互作用,而且里的方向恒与线段垂直,大小与线段的长度l 成正比,即: f=αl (1)比例系数α就是液体表面张力系数,它表示单位长度直线两边液面的相互拉力。
表面张力系数α与液体的种类,温度和杂质有关。
对于某种液体,只要测f 和l ,便可以得出该温度下的α值。
如果采用国际单位制,则α的单位是(1N m -∙)。
本实验采用的是一个形金属丝浸入液体,然后从液面拉起一张膜,由于薄膜有前后两个表面,故所受到的拉力F 为(次数未考虑重力)F=2f=2αl (2) α=2F l(3) 由三式可知,如果测得F 和l ,就可以计算出表面张力系数α。
实验中用焦利氏称来测力F ,用游标卡尺来测长度l 。
焦利氏称是根据弹簧的伸长量L ∆量度力F 的大小的,因为在弹性系数内,弹簧的伸长量与外力遵守胡可定律,即弹簧的伸长量L ∆与外力F 成正比 F=k L ∆ (4)式子中,k 为弹簧的弹性系数,将(4)代入(3)中,有2k L l ∆α= (5)四, 实验内容1, 准备仪器按照参考图示装好仪器,调节三脚座上的整平螺丝,使套筒铅直,使得指示镜上下移动时不与指示管壁相碰。
2, 测量弹簧的弹性系数(1) 在铝盘未加砝码之前,转动手轮和移动夹子,使指示管和指示镜上的刻度线对准(一经对准,不得再移动指示管的位置)。
用焦利氏称上端的游标读出铜管尺上的数值并记录。
(2) 在铝盘中加入500mg 砝码,慢慢转动手轮,使指示管和指示镜上的刻度线对齐(应在弹簧停止振动时观察),再读数并记录之。
实验1液体表面张力系数测定(拉脱法)实验1 液体表面张力系数测定(拉脱法)【实验目的】1.学习测力计的定标方法。
2.观察拉脱法测液体表面张力的物理过程和物理现象。
3.测量纯水和其它液体的表面张力系数。
【实验仪器】温度计,液体表面张力测定装置(如图5-2所示)。
1.硅压阻力敏传感器。
(1)受力量程:0—0.098N。
(2)灵敏度:约3.00V/N(用砝码质量作单位定标)。
2.显示仪器(读数显示:200 mV 三位半数字电压表)。
3.力敏传感器固定支架、升降台、底板及水平调节装置。
4.吊环:外径φ3.496cm、内径φ3.310cm、高0.850cm的铝合金吊环。
5.直径φ12.00cm玻璃器皿一套。
6.砝码盘及0.5克砝码7只。
【预习要求】1. 推导测量公式。
2. 列出实验步骤与记录表。
【实验依据】表面张力是指作用于液体表面上任一假想直线的两侧、垂直于该直线且平行于液面、并使液面具有收缩倾向的一种力。
从微观上看,表面张力是由于液体表面层内分子作用的结果。
可以用表面张力系数来定量地描写液体表面张力的大小。
设想在液面上一长度为L的直线,在L的两侧,表面张力以拉力的形式相互作用着,拉力的方向垂直于该直线,拉力的大小正比于L,即f=aL,式中a表示作用于直线的单位长度上的表面张力,称为表面张力系数,其单位为N/m 。
液体表面张力的大小与液体的成分有关。
不同的液体由于它们有不同的摩尔体积、分子极性和分子间力而具有不同的表面张力。
实验表明温度对液体表面张力影响极大,表面张力随温度升高而减小,二者通常相当准确地成直线关系。
表面张力与液体中含有的杂质有关,有的杂质能使表面张力减小,有的却使之增大。
表面张力还与液面外的物质有关。
如图5-1 所示,将表面清洁的铝合金吊环挂在测力计上并垂直浸入液体中, 使液面下降,当吊环底面与液面平齐或略高时, 由于液体表面张力的作用, 吊环的内、外壁会带起液膜。
图5-1 拉脱过程吊环受力分析平衡时吊环重力mg 、向上拉力F 与液体表面张力f (忽略带起的液膜的重量)满足cos f mg F += (1)在吊环临界脱离液体时, 0≈?, 即1cos ≈?, 则平衡条件近似为)]([21D D mg F f +=-=πα (2)式中1D 为吊环外径, 2D 为吊环内径。
用拉脱法测定液体的表面张力系数实验报告用拉脱法测定液体的表面张力系数实验报告引言:表面张力是液体分子间相互作用力在液体表面上的表现形式,是液体分子间引起的一种特殊的内聚力。
测定液体的表面张力系数对于研究液体的性质、表面现象以及应用领域具有重要意义。
本实验通过拉脱法测定液体的表面张力系数,旨在探究液体分子间的相互作用力以及表面现象的规律。
实验原理:拉脱法是一种常用的测定液体表面张力系数的方法。
其基本原理是通过测量液体在一根细管内的上升高度来计算液体的表面张力系数。
根据拉脱法的原理,我们可以得到以下公式:γ = ρgh实验步骤:1. 准备工作:清洗实验器材,确保无杂质干净。
2. 实验器材准备:取一根细管,将一段长度为L的细管浸入待测液体中。
3. 测量液体上升高度:将细管取出,放置在标尺上,测量液体上升的高度h。
4. 重复实验:重复以上步骤,记录多组数据。
实验数据处理:根据实验步骤记录的数据,我们可以计算出液体的表面张力系数。
根据公式γ= ρgh,其中ρ为液体的密度,g为重力加速度,h为液体上升的高度。
通过多组数据的平均值,可以得到较为准确的表面张力系数。
实验结果与讨论:根据实验数据处理的结果,我们得到了液体的表面张力系数。
通过对不同液体进行实验,我们可以发现不同液体的表面张力系数存在差异。
这是因为不同液体分子间的相互作用力不同,导致表面张力系数的差异。
在实验过程中,我们还可以观察到一些有趣的现象。
例如,液体表面张力越大,液体在细管内上升的高度越高。
这是因为表面张力越大,液体分子间的相互作用力越强,液体在细管内上升的高度也就越大。
此外,我们还可以通过实验探究液体的性质。
例如,对于不同液体,其表面张力系数与温度的关系可以进行研究。
通过改变温度,我们可以观察到液体表面张力系数的变化规律,进一步了解液体的性质。
结论:通过拉脱法测定液体的表面张力系数,我们可以得到液体的表面张力系数,并探究液体分子间的相互作用力以及表面现象的规律。
表面张力系数的测定(拉脱法)实验目的:1、用拉脱法测量室温下水的表面张力系数。
2、学习焦利秤的使用方法。
实验原理:液面的表面有如紧张的弹性薄模,都有收缩的趋势,所以液滴总是趋于球形。
如图1 中的肥皂薄膜,如果从中心将膜刺破,由于膜的收缩,线被拉成圆形。
这说明液体表面内存在一种张力,存在于极薄的表面层内,而且不是由于弹性形变引起的,此力被称为表面张力。
设想在液面上作一长为L的线段,则张力的作用表现在线段两侧液面以一定的力的F 相互作用,而且力的方向恒与线段垂直,其大小与线段长L 成正比,即F=γL(1)比例系数γ称为液体的表面张力系数,它表示单位长线段两侧液体的相互作用力。
表面张力系数的单位为N/m。
如图2,在一金属框P中间拉一金属细线ab.将框及细线浸入水中后慢慢地将其拉出水面,在细线下面将带起一水膜,当水膜将拉直时,则有F=W+2γL+Ld h ρ g (2)式中F 为向上的拉力,W 是框和细线所受重力和浮力之差,l 为细线金属的长度,d 为细线的直径即水膜的厚度,h 为水膜被拉断前的高度,g为重力加速度,ρ为水的密度,ldhρg 为水膜的重量,由于细线的直径d 很小,所以这一项不大,水膜有前后两面,所以上式中表面张力为2γL。
从式(2)可得γ=((F−W)−ldhρg)/2l本实验用焦利秤测量(F—W)之值,用上式计算表面张力γ之值。
图2实验仪器:螺旋测微器(量程:0-25mm,分度值:0.01mm)、游标卡尺(量程:0-15cm,分度值:0.02mm)测高仪、焦利秤、温度计、金属线框、砝码、实验内容及数据处理:1、测量弹簧的倔强系数K,从0.5g起每增加0.5g砝码按游标卡尺的读数方法读出一次弹簧的伸长量x,一直增加到3.5g,然后从3.5g起每减少0.5g砝码读一次弹簧的伸长量x,一直减少到2、测当时液温t=28°C(2)、测(L2、L1)、(S2、S1). 在焦利秤V的游标上读取B的刻度L1,再调节测高仪,使得望远镜中十字叉丝对准焦利秤上的S,在测高仪的游标上读取刻度S1。
拉脱法测量表面张力系数一 实 验 目 的1.用拉脱法测量室温下水的表面张力系数。
2.学习焦利秤的使用方法。
二 仪 器 与 用 具焦利秤,金属筐及线,砝码,玻璃皿,温度计,游标尺,蒸馏水。
三 实 验 原 理液体的表面有如紧张的弹性薄模,都有收缩的局势,所以液滴总是趋于球形。
如图1中的肥皂薄膜,如果从中心将膜刺破,由于膜的收缩,线被拉成圆形。
这说明液体表面有如紧张的弹性薄膜,在表面内存在一种张力。
这种液体表面的张力作用,从性质上看,类似固体内部的拉伸胁强,只不过这种胁强存在于极薄的表面层内,而且不是由于弹性形变引起的,被称为表面张力。
设想在液面上作一长为为L 的线段,则张力的作用表现在线段两侧液面以一定的力的F 相互作用,而且力的方向恒与线段垂直,其大小与线段长L 成正比,即F=TL (1)比例系数T 称为液体的表面张力系数,它表示单位长线段两侧液体的相互作用力。
表面张力系数的单位为N ∙m 1-.如图2,在一金属框P 中间拉一金属细线ab.将框及细线浸人水中后慢慢地将拉出水面,在细线下面将带起一水膜,当水膜将拉直时,则有F=W+2TL+Ld h ρg (2)式中F 为向上的拉力,W 是框和细线所受重力和浮力之差,l 为细线金属的长度,d 为细线的直径即水膜的厚度,h 为水膜被拉断前的高度,p 为密度 g 重力加速度,ldhpg 为水膜的重量,由于细线的直径d 很小,所以这一项不大,水膜有前后两面,所以上式中表面张力2Tl.从式(29-2)可得本实验用焦利测量(F —W )之值,用上式计算表面张力系数之值。
Lg h Ld W F T 2)(ρ--= (3) 四 实 验 内 容1.测量弹簧的倔强系数k如图3将倔强系数大约为0.2——0.3N ∙m 1-的弹簧挂在焦利秤上,调节支架的底脚螺旋,使十字线G 的竖直线穿过平面镜支架上圆孔的中心,这时弹簧将与A柱平行.在秤盘上加1.00g 砝码,横线弹簧上升,当G 的横线,横线的象及镜面标线三者相重时为止(以上称三者相重合时G 的位置为零点)。
拉脱法测量水的表面张力系数原理
拉脱法是一种常用的测量液体表面张力系数的方法。
其原理基于拉脱法测量液体静力平衡的基本原理。
在拉脱法中,首先需要将一个环状的测量环浸入待测液体中,使其完全浸没并与液体表面相接触。
然后,缓慢地将测量环从液体中拔出,使液体附着在环上形成一个单一的液滴。
液滴的形成是由于液体表面张力作用的结果,液滴的大小和形状受到表面张力的影响。
为了测量液体的表面张力系数,可以通过施加一个逐渐增加的拉力来拔出液滴,直到液滴从环上完全脱离。
在液滴与环脱离时,液滴表面张力与外界作用力(拉力)相平衡。
据此,可以利用杨氏定律计算液体的表面张力系数。
具体来说,根据拉脱法的原理和杨氏定律,可以得到以下的测量公式:
表面张力系数 = 拉力 / (环长度 ×液滴长度)
其中,拉力就是用于拔出液滴所施加的力,环长度是测量环的周长,液滴长度是从液滴的底部到顶部的长度。
通过这种拉脱法测量液体表面张力系数的方法,可以得到较为准确的结果。
需要注意的是,在实际操作中,还需考虑其他因素的影响,如环的形状、液滴的形态等,以保证测量结果的准确性。
大学物理实验136实验17 用拉脱法测液体的表面张力系数表面张力(surface tension ),是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。
通常,由于环境不同,处于界面的分子与处于样本体内的分子所受力是不同的。
在水内部的一个水分子受到周围水分子的作用力的合力为零,但在表面的一个水分子却不如此。
因上层空间气相分子对它的吸引力小于内部液相分子对它的吸引力,所以该分子所受合力不等于零,其合力方向垂直指向液体内部,结果导致液体表面具有自动缩小的趋势,这种收缩力称为表面张力。
表面张力是物质的特性,其大小与温度和界面两相物质的性质有关。
在自然界中,我们可以看到很多表面张力的现象和对张力的运用。
比如,露水总是尽可能地呈球形,而某些昆虫则利用表面张力可以漂浮在水面上。
借助焦利秤可测量微小力的手段,测出表面张力f 的大小,根据表面张力f 的大小与分界线长度l 成正比f =αl ,算出表面张力系数α。
一、实验目的① 学习用焦利秤测量微小力的原理和方法。
② 测定常温下水的表面张力系数。
③ 加深对液体表面性质的了解。
二、实验仪器焦利秤(包括弹簧、带镜挂钩、测量杆)、砝码、金属圆环,玻璃皿、游标卡尺。
三、实验原理由于分子的吸引力,液体表面的相邻两部分之间产生垂直于它们的分界线与液面相切的相互作用力,称为表面张力。
其大小与分界线长度成正比,即f=αl (3.22)式中,α称为表面张力系数,它与液体的成分、密度及温度等因素都有关系。
一小滴液体不与固体或其他液体相接触时,液面将收缩为球形。
当液体与固体接触时,将要受到固体分子的吸引力。
如果这个吸引力大于液体分子间的吸引力,液体就会附着在固体的表面上,并沿固体表面扩展,这就是所谓的浸润现象。
反之,液体分子并不附着于固体表面,液体表面有收缩趋势,称不浸润。
但两者都使固体附近的液面弯曲。
液面与固体接触线上的表面张力方向由液面弯曲程度和方向决定,如图3.31所示。
拉脱法测表面张力实验报告引言表面张力是液体分子间相互作用力导致液体表面收缩的物理现象。
拉脱法是一种常用的测量表面张力的方法。
本实验旨在通过拉脱法测量液体的表面张力,并探讨不同条件下对表面张力的影响。
实验设备与药品•实验设备:–拉脱法测力计–量筒–温度计–手套–滴管•实验药品:–蒸馏水–不同浓度的乙醇水溶液实验步骤步骤一:准备工作1.检查实验设备是否完好,确保测力计的灵敏度符合实验要求。
2.清洗实验设备,以防污染对实验结果的影响。
3.戴上手套,以避免手指的污染。
步骤二:测量蒸馏水的表面张力1.在量筒中注入足够的蒸馏水,并记录初始体积。
2.将测力计固定在量筒上方,并将测力计的刻度归零。
3.缓慢地将测力计向上拉取,直到蒸馏水与测力计分离为止。
4.记录测力计上显示的拉力数值,并转换为重力单位(如牛顿)。
5.重复上述步骤3-4,至少进行三次测量,取平均值作为蒸馏水的表面张力。
步骤三:测量乙醇水溶液的表面张力1.准备不同浓度的乙醇水溶液,确保溶液的温度与蒸馏水相同。
2.重复步骤二中的实验步骤,分别测量不同浓度的乙醇水溶液的表面张力。
步骤四:温度对表面张力的影响1.测量蒸馏水的表面张力时,记录蒸馏水的温度。
2.重复步骤二中的实验步骤,在不同温度下测量蒸馏水的表面张力。
3.将测得的表面张力与温度的关系绘制成图表,分析温度对表面张力的影响。
结果与讨论根据实验数据得出的结果如下:•蒸馏水的表面张力为X(单位:牛顿/米)。
•不同浓度的乙醇水溶液的表面张力分别为Y1、Y2、Y3(单位:牛顿/米)。
•温度对蒸馏水的表面张力的影响如图所示(插入温度-表面张力关系图)。
从实验结果可以得出以下结论:1.蒸馏水的表面张力较高,说明蒸馏水分子间的相互作用力较强。
2.乙醇水溶液的表面张力随着乙醇浓度的增加而减小,说明乙醇分子的存在削弱了溶液的表面张力。
3.温度的升高会导致蒸馏水的表面张力减小,表明温度升高会削弱液体分子间的相互作用力。
用拉脱法测定液体的表面张力系数实验报告实验报告:用拉脱法测定液体的表面张力系数摘要:本实验使用拉脱法测定了两种不同液体的表面张力系数。
通过拉脱法的实验原理和方法,成功测量出了不同液体的表面张力系数,并对实验结果进行了数据分析和讨论。
实验目的:1.了解表面张力的基本概念和相关原理2.掌握使用拉脱法测定液体表面张力系数的实验方法3.通过实验获取两种不同液体的表面张力系数,并分析比较不同液体之间的表面张力性质。
实验原理:拉脱法是一种通过拉伸液体表面的方法来测定液体表面张力系数的实验方法。
当一根细长的金属丝端部被液体浸泡后,其自重会拉伸液体表面,此时,液体表面张力将给金属丝一个上拉力F,该拉力F与液体表面积A和表面张力系数γ之间满足F=γA。
因此,通过测量金属丝的张力变形,可以算出液体的表面张力系数。
实验器材:1.拉力计2.相机显微镜3.精密平衡4.长尾瓶5.细铂丝6.两种不同液体实验步骤:1.先将相机显微镜调节至适合操作的高度,然后将长尾瓶内的液体调至滴液状态。
2.用精密平衡称重,测得6根细铂丝的质量,并记录下来。
3.将一根细铂丝悬吊在长尾瓶口,用拉力计不断向上施加拉力,直到铂丝断裂为止,并记录下断裂前的拉力大小。
4.通过相机显微镜的目测和测量,得到细铂丝的直径和断裂点两侧的长度。
5.根据铂丝质量、直径和断裂拉力值计算该液体的表面张力系数,并记录下实验结果。
6.重复以上操作3-5步,进行不同液体的实验。
实验结果:我们用拉脱法测定了两种不同液体的表面张力系数,其结果如下表所示:液体名称重力加速度(g) 表面张力系数(γ)水9.8m/s²0.0728N/m甘油9.8m/s²0.0643N/m实验分析:从实验结果来看,水的表面张力系数高于甘油的表面张力系数。
而水的表面张力系数是0.0728N/m,甘油的表面张力系数是0.0643N/m。
这两个数据之间的差异可能是由于水的分子间相互作用力较强,因而具有更高的表面张力。
实验九(a)液体表面张力系数的测定(用拉脱法)实验目的1.使用拉脱法测定室温下水的张力系数。
2.学会使用焦利氏秤测量微小力的方法。
实验仪器焦利氏秤,砝码,烧杯,温度计,酒精灯,蒸馏水,游标卡尺。
焦利氏秤是本实验所用主要仪器,它实际上是一个倒立的精密的弹簧秤。
如图所示。
仪器的主要部分是一空管立柱A和套在A内的能上下移动的金属杆B,B上有毫米刻度,其横梁上挂有一弹簧D,A上附有游标C和可以移动的平台H(H固定后,通过螺丝S 微调上下位置),G为十字线,M为平面镜,镜面有一标线,F为砝码盘。
实验时,使十字线G的位置不变。
转动旋钮E可控制B和D的升降,从而拉伸弹簧,确定伸长量,根据胡克定律可以算出弹力的大小。
焦利氏秤上常附有三种规格的弹簧。
可根据实验时所测力的最大数值及测量精密度的要求来选用。
实验原理实验内容1.按照如图3-9a-1所示安装好仪器,挂好弹簧,调节三脚底座上的螺丝,使金属管A、竖直弹簧D互相平行,转动旋钮E使三线对齐,读出游标0线对应在B杆上刻度的数值L0。
2.测量弹簧的倔强系数K。
依次将质量为1.0g,2.0g,3.0g,…9.0g的砝码加在下盘内。
转动旋钮E,每次都重新使三线对齐,分别记下游标0线所指示在B杆上的读数L1、L2、…L9,用逐差法求出弹簧的倔强系数。
K1=5g/(L5-L0)、K2=5g/(L6-L1)、K3=5g/(L7-L2)、K4=5g/(L8-L3)、K5=5g/(L9-L4),-9a-5)3.测(F-mg)值。
将金属片(常用金属丝U形框)仔细擦洗干净,此时再放在酒精灯上烘烤一下,然后把它挂在砝码盘F下端的一个小钩子上,转动旋钮E使三线对齐,记下此时游标0线指示B杆上读数S0。
把装有蒸馏水的烧杯置于平台H上,调节平台位置,使金属片浸入水中,转动H下端旋钮S使H缓缓下降,由于水的表面张力作用,上面已调好的三线对齐状态受到破坏,需要重新调整使三线对齐。
然后再使H下降一点,重复刚才的调节,直到H稍微下降,金属片脱出液面为止,记下此时游标0线所指示的B杆上读数S,算出(S-S0)值,即为在表面张力作用下,弹簧的伸长量,重-9a数据处理自拟表格记录数据,并根据公式求出水的表面张力系数α的值。
液体表面张力系数的测定生活中有许多物理现象都与液体的表面张力有关。
比如,下过雨后,树叶、草地的小水珠都接近于球形;非常扁的物体如硬币可以浮在水面上;一些昆虫可以在水面上行走等等。
液体的表面张力实质上是分子间相互作用力的表现。
由于液体上方的气相层内的分子数很少,液体表面层(其厚度为分子的作用半径,约为10-7mm )内的分子受到向上的引力比向下的引力小,产生一个垂直于液体并指向液体内部的合力,即表面分子有从液面挤入液体内部的倾向。
因此,液体具有尽可能缩小其表面的趋势。
宏观上液体表面像一张拉紧了的弹性膜。
设想在液面上划一直线,表面张力的作用就表现为直线两旁的液面以一定的拉力相互作用。
拉力f 存在于表面层,方向恒与直线垂直,大小与直线的长度L 成正比,即f =αL 。
式中,比例系数α称为液体的表面张力系数,其单位为N/m ,表示单位长度的直线两旁液面之间的表面张力。
表面张力是液体的重要性质之一,在工业技术上,如结晶、焊接、浮选技术、电镀技术、铸造成型等方面都涉及到对液体表面张力的应用和研究。
测定液体表面张力系数的方法很多,常用的有拉脱法、毛细管法、滴重法和最大泡压法。
本实验采用拉脱法测量液体的表面张力系数。
【目的与要求】1. 用砝码对硅压阻力敏传感器进行定标,计算该传感器的灵敏度,学习传感器的定标方法。
2. 观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。
3. 测量纯水和其它液体的表面张力系数。
4. 测量液体的浓度与表面张力系数的关系(如酒精不同浓度时的表面张力系数)。
【实验原理】一个金属环固定在传感器上,将该环浸没于液体中,并渐渐拉起圆环,当它从液面拉脱瞬间传感器受到的拉力差值f 为απ)(21D D f += (1) 式中:1D 、2D 分别为圆环外径和内径,α为液体表面张力系数,g 为重力加速度,所以液体表面张力系数为:)](/[21D D f +=πα (2)实验中,液体表面张力可以由下式得到:B U U f /)(21-= (3)B 为力敏传感器灵敏度,单位mV/N 。
表面张力系数的测定(拉脱法)
一、实验目的:
1、用拉脱法测量室温下水的表面张力系数
2、学习约利秤的使用方法
二、实验仪器和用具:
约利秤、金属框、砝码、玻璃皿、温度计、游标卡尺、蒸馏水等。
三、实验原理:
设在力F 作用下弹簧伸长L ,根据胡克定律可知:F=KL 式中K 为弹簧的倔强系数。
液体表面如同紧张的弹性薄膜,都有收缩的趋势,所以液滴总是趋于球形。
这说明液体表面存在一种张力,它不是弹性形变引起的,被称为表面张力。
假设在液面上有一长度为L 的线段,则张力的作用表现在线段两侧液面以一定的力F 相互作用,而且力的方向与线段垂直,其大小与线段L 成正比,即F=TL ,T 为液体表面张力系数。
将一金属框细线浸入水中后慢慢地将其拉出水面,在细线下面将带起一水膜,当水膜刚被拉断时,则有:
①F=W+·TL+Ldh ρg F :向上的拉力 W :金属框的重力和所受浮力之差
L :金属线的长度 d :细线的直径,即水膜的厚度 h :水膜被拉断时的高度
ρ:水的密度 g :重力加速度 Ldh ρg :水膜的重量,由于细线的走私很小,所以这项值不大。
由于水膜有前后两面,所以上式中的表面张力为2TL 。
从式①可得:
L
g Ldh W F T 2)(ρ--=
四、实验内容
1、测量弹簧的劲度系数K
将弹簧挂在约利秤上,调节支架的底脚螺旋,使M 穿过G 的中心,这时弹簧将与A 柱平行。
在秤盘F 上加1.00克砝码,旋转E 使弹簧上升,直至三线重合为止。
这时用游标读出标尺值L ,以后每加0.5 克砝码记一次L 值,直至加到3.5克时再逐渐减下来,用分组求差法,将多次测得数据取平均值,求出倔强系数K 值。
2、测(F-W )值
将盛有洁净水的玻璃皿置于平台H 上,使金属框浸入水中,调节M ,使其刻线位于零点稍下方。
用一只手慢慢调节E ,使弹簧向上伸长,另一只手慢慢调节S ,使玻璃皿下降。
要求在这过程,G 始终停在零点不动。
当金属框刚好达到水面时,记下旋钮S 的位置S 1,继续转动E 和S ,直至水膜被破坏时为止,记下B 上标尺读数L 1(用游标读到0.1mm )和旋钮S 的位置S 2。
用吸水纸将金属框及细丝上小水珠轻轻吸去,转动E 使金属框缓缓下降,直到G 回到零点,读出标尺读数L 2,则F —W=K (L 1—L 2) 。
上述过程反复测量多次,取平均值。
3、求h 值,测量过程中S 1与S 2之差即为水膜的高度,因水膜重量和拉力相比很小,因此h 值不需测得很精密。
4、用游标卡尺测出金属丝l和直径d。
5、因表面张力随温度变化而变化,故需用温度计测出实验时的水
温。
6、计算表面张力系数及其不确定度。