七年级数学频数分布表和频数分布直方图练习题
- 格式:doc
- 大小:315.50 KB
- 文档页数:13
7.4 频数分布表与频数分布直方图同步培优讲练综合1.组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围).2.频数分布表:把各个组别中相应的频数分布用表格的形式表示出来,所得表格就是频数分布表.频数分布表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.当数据在100个以内时,按照数据的多少,常分成5~12组.在分组时,要灵活确定组距,使所分组数合适,一般组数为的整数部分+1.组距(2)制作频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表.3.频数分布直方图根据频数分布表,用横轴表示各分组数据、纵轴表示各组数据的频数,绘制条形统计图.这样的条形统计图,直观地呈现了频数的分布特征和变化规律,称为频数分布直方图.4.画频数分布直方图的步骤(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.5. 频数分布直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数分布直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数分布直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数分布直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.一、组距【例1】一个样本最大值为143,最小值为50,取组距为10,则可以分成 组.【例2】一组数据的最大值与最小值的差为2.8 cm,若取组距为0.4 cm,应将该数据分为 组.二、 频数分布直方图【例1】某校为了解学生参与“凤城悦读”的情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t (单位:)min ,然后利用所得数据绘制成如图不完整的统计图表: 课外阅读时间频数分布表:根据图表中提供的信息,回答下列问题: (1)a = ,b = ; (2)将频数分布直方图补充完整;(3)若全校有1200名学生,估计该校有多少名学生平均每天的课外阅读时间不少于50min ?【例2】小文同学统计了他所在小区部分居民每天微信阅读的时间,绘制了直方图.得出了如下结论:①样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少;②样本中每天微信阅读不足20分钟的人数大约占16%;③选取样本的样本容量是60;④估计所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右.其中正确的是()A.①②③B.①②④C.①③④D.②③④【例3】为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②三、综合应用(与条形统计图、扇形图的结合)【例1】为了了解春节晚会群众喜爱节目类型(“歌舞类”、“语言类”、“戏曲类”、“其他”)情况,对某地区的部分群众的喜爱节目类型做了调查,其中每人只能填选一项,现根据调查情况绘制了如图直方图和扇形统计图.请根据图中信息解答下列问题:(1)此次调查中一共调查了多少人?(2)求所调查的群众中,喜爱“戏曲”的人数,并补全直方图的空缺部分;(3)若该地区共有人口360万人,估计该地区喜爱“语言类”约有多少人.【例2】某校为了解九年级学生休息日时每天学习的时长情况,随机抽取了n名九年级学生进行调查,据调查每名学生休息日时每天学习时长都少于5小时.该校将所收集的数据分组整理,绘制了如图所示的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是.(填写“全面调查”或“抽样调查”)(2)求n的值.(3)若该校九年级共有450名学生,请估计该校休息日时每天学习时长在3≤t<4范围的学生人数.3≤t<43≤t<4【例3】为了得到一种零件的加工精度,从中抽出40个进行检测,其尺寸数据如下(单位:cm):161 165 164 166 160 158 163162 168 159 147 170 167 151164 159 152 159 149 172 162157 162 169 156 164 163 157163 165 173 159 157 169 165154 153 163 168 169将数据适当分组,并绘制相应的频数分布直方图,图中所反映出这种零件的尺寸在哪个范围内的最多?1.某校组织部分学生参加安全知识竞赛,并将成绩整理后绘制成频数分布直方图,图中从左至右前四组的百分比分别是4%,12%,40%,28%,第五组的频数是8.则:①参加本次竞赛的学生共有100人;②第五组的百分比为16%;③成绩在70-80分的人数最多;④80分以上的学生有14人.其中正确的有( )A.1个B.2个C.3个D.4个2.某校在举办的“优秀小作文”评比活动中,共征集到小作文若干篇,对小作文评比的分数(分数均为整数)整理后,画出如图所示的频数分布直方图.已知从左到右5个小长方形的高的比为1∶3∶7∶6∶3,如果分数大于或等于80分以上的小作文有72篇,那么这次评比中共征集到的小作文有篇.3、三台县某中学“五.四”青年节举行了“班班有歌声”歌咏比赛活动.比赛聘请了10位教师和10位学生担任评委,其中甲班的得分情况如统计表和统计图.老师评委评分统计表:学生评委评分折线统计图师生评委评分频数分布直方图(1)补全频数分布直方图.(2)计分办法规定:老师评委、学生评委的评分各去掉一个最高分、一个最低分,并且按教师、学生各占60%、40%的方法计算各班最后得分,知甲班最后得分94.4分,试求统计表中的x.4、扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.每天课外阅读时间t/h 频数频率0<t≤0.5 240.5<t≤1 36 0.31<t≤1.5 0.41.5<t≤2 12 b合计 a 1根据以上信息,回答下列问题:(1)表中a= ,b= ;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1h的人数5、为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩的分布情况进行处理分析,制成如下图表(成绩得分均为整数):组别成绩分组频数A 47.5-59.5 2B 59.5-71.5 4C 71.5-83.5 aD 83.5-95.5 10E 95.5-107.5 bF 107.5-120 6图7-4-7根据图表中提供的信息解答下列问题:(1)在频数分布表中,a= ,b= ;在扇形统计图中,m= ,n= .(2)补全频数分布直方图.(3)已知全区八年级共有200个班(平均每班有40人),用这份试卷进行检测,108分及以上为优秀,预计优秀的人数约为人,72分及以上为及格,预计及格的人数约为人.。
第十章数据的收集、整理与描述10.2直方图基础过关全练知识点频数分布直方图1.(2022浙江金华中考)观察如图所示的频数分布直方图,其中99.5~124.5这一组的频数为( )20名学生每分钟跳绳次数的频数分布直方图A.5B.6C.7D.82.【新独家原创】“安全重于泰山,生命高于一切!”某校为强化师生安全意识,组织了安全知识竞赛活动.七年级(1)班将安全知识竞赛的成绩整理后绘制成直方图(每一组含前一个边界值,不含后一个边界值),图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是( )A.80分及以上的学生有14名B.该班有50名同学参赛C.成绩在70~80分的人数最多D.第五组的百分比为16%3.【教材变式·P150T1变式】小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图所示的频数分布直方图(每一组含前一个边界值,不含后一个边界值).根据图中信息,下列说法错误的是( )A.这栋居民楼共有居民125人B.每周使用手机支付在28~35次的人数最多的人每周使用手机支付在35~42次C.有15D.每周使用手机支付少于21次的有15人4.(2021重庆长寿期末)在一个样本中有50个数据,它们分别落在5个组内,已知第一、二、三、四、五组数据的个数分别为3,9,17,x,6,则第四组的频数为.5.【主题教育·中华优秀传统文化】【新独家原创】汉字是世界上使用时间最久、范围最广、人数最多的文字之一,汉字的创制和应用不仅推进了中华文化的发展,还对世界文化的发展产生了深远的影响.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.6.(2022福建厦门九中期末)新修订的《北京市生活垃圾管理条例》于2020年5月1日正式施行.新修订的分类标准将生活垃圾分为厨余垃圾、有害垃圾、其他垃圾和可回收物四类,为了促使居民更好地了解垃圾分类知识,小明所在的小区随机抽取了50名居民进行线上垃圾分类知识测试.将参加测试的居民的成绩进行收集、整理,绘制成不完整的频数分布表和频数分布直方图.a.线上垃圾分类知识测试成绩频数分布表如下:b.线上垃圾分类知识测试成绩频数分布直方图如下:c.成绩在80≤x<90这一组的成绩分别为80,81,82,83,83,85,86,86,87,88,88,89.根据以上信息,回答下列问题:(1)本次抽样调查的样本容量为,表中m的值为;(2)请补全频数分布直方图;(3)小明居住的社区大约有居民2 000人,若测试成绩为80分及以上为良好,那么估计小明所在的社区成绩良好的人数为; (4)若给测试成绩的前十五名颁发“垃圾分类知识小达人”奖章,已知居民A的得分为88分,请问居民A是否可以领到“垃圾分类知识小达人”奖章?能力提升全练7.(2021上海中考,4,★★☆)商店准备确定一种包装袋来包装大米,经市场调查后,作出如图所示的统计图,请问选择什么样的包装最合适( )A.2 kg/包B.3 kg/包C.4 kg/包D.5 kg/包8.(2020浙江温州中考,14,★☆☆)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5 kg及以上的生猪有头.9.【主题教育·生命安全与健康】(2022内蒙古包头中考,20,★★☆)2022年3月28日是第27个全国中小学生安全教育日.某校为调查本校学生对安全知识的了解情况,从全校学生中随机抽取若干名学生进行测试,测试后发现所有测试的学生成绩均不低于50分.将全部测试成绩x(单位:分)进行整理后分为五组(50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100),并绘制成如下的频数直方图.测试成绩频数直方图请根据所给信息,解答下列问题:(1)在这次调查中,一共抽取了名学生;(2)若测试成绩为80分及以上为优秀,请你估计全校960名学生对安全知识的了解情况为优秀的学生人数;(3)为了进一步做好学生安全教育工作,根据调查结果,请你为学校提一条合理化建议.素养探究全练10.【数据观念】(2022浙江温州中考)为了解某校400名学生在校午餐所需的时间,抽查了20名学生在校午餐所花的时间,由图示分组信息得:A ,C ,B ,B ,C ,C ,C ,A ,B ,C ,C ,C ,D ,B ,C ,C ,C ,E ,C ,C.某校被抽查的20名学生在校午餐所花时间的频数表(1)请填写频数表,并估计这400名学生午餐所花时间在C 组的人数; (2)在既考虑学生午餐用时需求,又考虑食堂运行效率的情况下,校方准备在15分钟,20分钟,25分钟,30分钟中选择一个作为午餐时间,你认为应选择几分钟为宜?说明理由.分组信息A 组:5<x ≤10B 组:10<x ≤15C 组:15<x ≤20D 组:20<x ≤25E 组:25<x ≤30注:x (分钟)为午餐时间!答案全解全析基础过关全练1.D由直方图可得,99.5~124.5这一组的频数是20-3-5-4=8,故选D.2.A该班参赛的学生有8÷(1-4%-12%-40%-28%)=50(名),故选项B 正确;80分及以上的学生有50×28%+8=22(名),故选项A错误;成绩在70~80分的人数最多,故选项C正确;第五组的百分比为8÷50×100%=16%,故选项D正确.故选A.3.D3+10+15+22+30+25+20=125(人),所以这栋居民楼共有居民125人,选项A正确;从题中频数分布直方图上可以看出,每周使用手机支付在28~35次的人数最多,选项B正确;每周使用手机支付在35~42次的人数所占的比例为25125=15,选项C正确;每周使用手机支付少于21次的有3+10+15=28(人),选项D错误.故选D.4.答案15解析由各组频数之和等于样本容量可得3+9+17+x+6=50,解得x=15,故答案为15.5.答案90解析由直方图可得,成绩为“优良”(80分及以上)的学生有60+30=90(人),故答案为90.6.解析(1)由题意可得,本次抽样调查的样本容量为50,表中m的值为50-3-9-12-8=18.(2)补全的频数分布直方图如图所示.=800(人).(3)2 000×12+850故估计小明所在的社区成绩良好的人数为800.(4)由题意可得,居民A是第10名或者第11名,故居民A可以领到“垃圾分类知识小达人”奖章.能力提升全练7.A由题图知1.5~2.5这组的人数最多,因此取1.5~2.5范围内的数据2(kg/包),故选A.8.答案140解析由频数直方图可得,质量在77.5 kg及以上的生猪有90+30+20=140(头).9.解析(1)4+6+10+12+8=40(名).故答案为40.(2)960×12+8=480(人),40故优秀的学生人数约为480.(3)通过多种形式,提高安全意识,结合校内、校外具体活动,提高避险能力(答案不唯一).素养探究全练10.解析(1)频数表填写如表所示.某校被抽查的20名学生在校午餐所花时间的频数表正正12×400=240(名).20∴估计这400名学生午餐所花时间在C组的有240名.(2)答案不唯一,如:选择20分钟,有18人能按时完成用餐,占比90%,可以鼓励最后两位同学适当加快用餐速度.。
频率分布直方图小练1.为增强市民的环保意识,某市面向全市增招环保知识义务宣传志愿者.从符合条件的志愿者中随机选取名志愿者,其年龄频率分布直方图如图所示,其中年龄(岁)分成五组:第组,第组,第组,第组,第组.得到的频率分布直方图(局部)如图所示.(1)求第组的频率,并在图中补画直方图;(2)从名志愿者中再选出年龄低于岁的志愿者名担任主要宣讲人,求这名主要宣讲人的年龄在同一组的概率.解析(1)0.3,图见:(1)第4组的频率为.....1分, ............................2分,则补画第4组的直方图如图所示:.............................................4分(2)设“从20名志愿者中再选出年龄低于30岁的志愿者3名担任主要宣讲人, 其年龄均在同一组”为事件A...............................................5分第一组的人数为人第二组的人数为人......................6分设第一组的志愿者为m,第二组的4名志愿者分别为a,b,c,d.......................7分从m, a,b,c,d中选出3名志愿者共有10种选取方法。
.........10分其中都在第二组的共有4种选取方法..........11分所以,所求事件的概率为........................12分2.某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取份,试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在的学生人数为6.(Ⅰ)估计所抽取的数学成绩的众数;(Ⅱ)用分层抽样的方法在成绩为和这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在恰有1人的概率.考点6.统计图表解析解:(Ⅰ)由频率分布直方图可知:样本的众数为75.…………3分(Ⅱ)由频率分布直方图可得:第三组的频率:,所以,…………………………………………4分第四组的频数:;第五组的频数:;用分层抽样的方法抽取5份得:第四组抽取:;第五组抽取:.……7分记抽到第四组的三位同学为,抽到第五组的两位同学为则从5个同学中任取2人的基本事件有:,,共10种.其中分数在恰有1人有:,共6种.所求概率:.……………………………12分3.某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间,将统计结果分成组:,,,,,绘制成如图所示的频率分布直方图.(Ⅰ)求直方图中的值;(Ⅱ)求续驶里程在的车辆数;(Ⅲ)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程为的概率.考点6.统计图表解析解:(Ⅰ)由直方图可得:∴.------------------3分(Ⅱ)由题意可知,续驶里程在的车辆数为:------------------5分(Ⅲ)由(Ⅱ)及题意可知,续驶里程在的车辆数为,分别记为,续驶里程在的车辆数为,分别记为,设事件“其中恰有一辆汽车的续驶里程为”----------------------7分从该辆汽车中随机抽取辆,所有的可能如下:共种情况,----------------10分事件包含的可能有共种情况,则.------------------12分4.某中学高三(1)班共有50名学生,他们每天自主学习的时间在180到330分钟之间,将全班学生的自主学习时间作分组统计,得其频率分布如下表所示:组序分组频数频率第一组[180,210)50.1第二组[210,240)100.2第三组[240,270)120.24第四组[270,300)a b第五组[300,330)6c(1)求表中a、b、c的值;(2)某课题小组为了研究自主学习时间与成绩的相关性,需用分层抽样的方法从这50名学生中随机抽取20名作统计分析,则在第二组学生中应抽取多少人?(3)已知第一组学生中有3名男生和2名女生,从这5名学生中随机抽取2人,求恰好抽到1名男生和1名女生的概率.某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间。
七年级数学下册数据的收集、整理与描述(直方图)练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.将容量为50的样本分成6组,其中,第1、2、3、4、5组的频率之和是0.96,那么第6组的频数是_________.2.某校对学生晚上完成作业的时间进行调查后,将所得的数据分成6组,第一组的频数是8,第二、三、四、五、六组的频率分别为0.15,0.25,0.2,0.15,0.05,则第三组的频数是________.3.某项目小组对新能源汽车充电成本进行抽测, 得到频数分布直方图(每一组含前一个边界值, 不含后一个边界值)如图所示, 其中充电成本在300元/月及以上的车有_________辆.4.老师在黑板上随手写下一串数字“002 200 220”,则数字“0”出现的频率是_______.5.某班学生参加环保知识竞赛,已知竞赛得分都是整数.把参赛学生的成绩整理后分为6小组,画出竞赛成绩的频数分布直方图(如图所示),根据图中的信息,可得成绩高于60分的学生占全班参赛人数的百分率是_____.6.频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了____,画在横轴上,纵轴表示各组数据的_____.二、单选题7.九年级体育测试某班跳绳成绩的频数分布表如下,跳绳次数x在160 ≤ x< 180的范围的学生占全班人数的()A.6%B.12%C.26%D.52%8.一组数据最大值与最小值的差为80,若确定组距为9,则分布的组数为()A.7B.8C.9D.129.某校从初二年级抽出40名女生的身高数据,分组整理出如下频数分布表:表中a,b,c分别是()A.6,12,0.30B.6,10,0.25C.8,12,0.30 D.6,12,0.2410.为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是()A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°;11.某面粉厂准备确定面粉包装袋的规格,市场调查员小李随机选择三家超市进行调查,收集三家超市一周的面粉销售情况,并整理数据、做出如图所示的统计图,则该面粉厂应选择面粉包装袋的规格为()A.2kg/包B.3kg/包C.4kg/包D.5kg/包12.在一个不透明的盒子中装有20个黄、白两种颜色的乒乓球,除颜色外其它都相同,小明进行了多次摸球实验,发现摸到白色乒乓球的频率稳定在0.2左右,由此可知盒子中黄色乒乓球的个数可能是()A.2个B.4个C.18个D.16个三、解答题13.为了调查本班学生对哪国动画片最喜欢,对班里20名学生进行调查,结果如下所示:(1)请完成表格:(2)根据上表画一张反映频数的条形统计图.14.在信息快速发展的社会,“信息消费”已成为人们生活的重要部分.泰州市的一个社区随机抽取了部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图.已知A、B两组户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.月消费额分组统计表(1)A组的频数是,本次调查样本的容量是;(2)补全直方图(需标明各组频数);(3)若该社区有3000户住户,请估计月信息消费额不少于200元的户数是多少?15.为了了解学生在2022年3月的学习情况,某校九年级1班组织了一次网上全班数学测试,任科老师从本班中抽取了n个学生的成绩(满分100分,且抽取的学生成绩均在[40,100]内)进行统计分析.按照成绩分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频数分布表和频率分布直方图.(1)求n,x的值,并补充完整频率分布直方图:(2)老师对小明说,估计你在这次的测试中成绩中等,请写出小明这次测试成绩在哪个分数段内的可能性最大?(3)在选取的样本中,从低于60分的学生中随机抽取两名学生,请用列表法或树状图求这两名学生在同一成绩分数段的概率?参考答案:1.2【详解】试题分析:频数分布表中,频率之和等于1.则第6组的频率为:1-0.96=0.04;频数=样本容量×频率=50×0.04=2.点睛:本题主要考查的就是频率、频数与样本容量之间的关系,属于中等难度的题目.所有的频数之和等于样本容量,所有的频率之和等于1.很多题目会已知前面几组的频率,然后根据频率之和得出最后一组的频率,从而根据样本容量=频数÷频率可以求出样本容量.2.10【分析】根据各组的频率之和等于1,再根据第二、三、四、五、六组的频率,即可求出第一小组的频率,根据总人数=第一组的频数÷第一组的频率,最后根据第三组的频数=总人数×第三组的频率进行计算即可.【详解】解:∵第二、三、四、五、六组的频率分别为015.,025.,02.,015.,005., ∵第一组的频率为10150250201500502-----=......,∵第三组的频数为80202510÷⨯=...故答案为:10.【点睛】本题考查频率及频数的计算,用到的知识点是频率=频数÷总数,灵活运用有关公式是解决本题的关键.3.14【分析】根据频数直方图中大于300的各组频数进行计算即可.【详解】解:9+3+2=14(辆)故答案为:14【点睛】本题考查了频数分布直方图,根据直方图得出各组频数是解题的关键.4.59【分析】结合题意,根据频率的性质计算,即可得到答案.【详解】根据题意,总共有9个数字,其中数字“0”出现5次∵数字“0”出现的频率是:59故答案为:59. 【点睛】本题考查了频率的知识;解题的关键是熟练掌握频率的定义,从而完成求解.5.80%.【分析】根据频数分布直方图可得全班的总人数及成绩高于60分的学生,从而得出答案.【详解】∵全班的总人数为3+6+12+11+7+6=45人,其中成绩高于60分的学生有12+11+7+6=36人,∵成绩高于60分的学生占全班参赛人数的百分率是36100%80%45,故答案为80%. 【点睛】本题主要考查频数分布直方图,根据频数分布直方图明确各分组人数是解题的关键.6. 分组 频数【解析】略7.C【分析】根据频数与频率的计算公式,即可得解.【详解】根据题意,得跳绳次数x 在160 ≤x < 180的范围的学生占全班人数的百分比为13100%26%2326136⨯=++++ 故选:C.【点睛】此题主要考查了读频数分布表获取信息的能力.必须认真观察、分析、研究,才能作出正确的判断和解决问题.8.C【详解】分析:根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.详解:在样本数据中最大值与最小值的差为80,已知组距为9,那么由于809=889,故可以分成9组. 故选C .点睛:本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.9.A【详解】根据题意,由频数分布表中各组的频率求出c,再由频数=总人数×频率可求出a 、b 的值. 解:由频数分布表中,各组的频数之和为样本容量,则c=1-0.05-0.15-0.35-0.15=0.3,根据题意,用150~155之间频率是0.15,而总人数为40人,a=40×0.15=6,b=40×0.3=12.“点睛”本题考查频率分别直方表的运用,以及数据的分析、处理的能力,注意结合题意,认真分析,查找数据时务必准确.10.D【分析】由80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,可得抽查总人数,即可判断A 选项;通过总人数减去其他各组人数,得到60~80分钟的人数,根据中位数的定义(一组数据从小到大或从大到小排序后,最中间的数为中位数)即可判断B 选项;由图中数据可得每天超过1小时的人数,然后用学校总人数乘以每天超过1小时的人数占抽查人数的比例即可判断C选项;根据扇形统计图圆心角得计算方法:360︒乘以该组人数所占抽查总人数得比例即可判断D选项.【详解】解:80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,∴抽查总人数为:74017.5%=,A选项正确;60~80分钟的人数为:40451678----=人,先对数据排序后可得:最中间的数在第20,21之间,459+=,91625+=,∴中位数落在60~80分钟这一组,故B选项正确;从图中可得,每天超过1小时的人数为:7815+=人,估算全校人数中每天超过1小时的人数为:1580030040⨯=人,故C选项正确;0~20分钟这一组有4人,扇形统计图中这一组的圆心角为:43603640︒⨯=︒,故D选项错误;故选:D.【点睛】题目主要考查通过条形统计图获取信息及估算满足条件的总人数,中位数,扇形统计图圆心角的计算等,理解题意,熟练掌握基础知识点是解题关键.11.A【分析】最合适的包装即顾客购买最多的包装,而顾客购买最多的包装质量即这组数据的众数,取所得范围的组中值即可.【详解】解:由图知这组数据的众数为1.5kg~2.5kg,取其组中值2kg,故选:A.【点睛】本题主要考查频数(率)分布直方图,解题的关键是根据最合适的包装即顾客购买最多的包装,并根据频数分布直方图得出具体的数据及众数的概念.12.D【分析】根据频率=频数÷总数,可以求得白色乒乓球的个数,从而得到黄色乒乓球个数.【详解】解:∵白色乒乓球的频率稳定在0.2左右∵白色乒乓球的个数=20×0.2=4个∵黄色乒乓球的个数=20-4=16个故选D.【点睛】本题主要考查了频率与频数的计算,解题的关键在于能够熟练掌握频率=频数÷总数.13.(1)填表见解析(2)画图见解析【分析】(1)通过调查,再把调查数据填入表格即可;(2)根据表格中的频数,画好条形图即可.(1)解:通过调查,填表如下:(2)解:画条形图如下:【点睛】本题考查的是频数分布表,频数直方图,掌握“频率=频数÷总数的计算方法;条形统计图的画法”是解本题的关键.14.(1)2;50(2)见解析(3)2280户【分析】(1)根据A、B两组户数直方图的高度比为1:5,即两组的频数的比是1:5,据此即可求得A组的频数;利用A和B两组的频数的和除以两组所占的百分比即可求得总数,即样本容量;(2)利用总数乘以百分比即可求得C组的频数,从而补全统计图;(3)利用总数3000乘以对应的百分比即可.(1)A组的频数是:10÷5=2调查样本的容量是:(2+10)÷(1-40%-28%-8%)=50故答案为:2;50.(2)A组的频数是:2C组的频数是:50×40%=20,D组的频数是:50×28%=14,E组的频数是:50×8%=4,补全直方图如图.(3)∵3000×(40%+28%+8%)=2280,答:估计月信息消费额不少于200元的户数是2280户.【点睛】本题考查频数分布直方图、频率分布表,解答本题的关键是明确题意,利用数形结合的思想解答.15.(1)206n x==,(2)[70,80)(3)1 3【分析】(1)用第一组的频数除以它的频率等到n的值,再用n的值分别减去其他组的频数即可得到x值,然后补全直方图即可.(2)根据中位数的意义即可求解.第 11 页 共 11 页 (3)在分数段[40,50)中的学生用A 表示,在分数段[50,60)内的学生用B 表示,画树状图展示所有可能的结果数,找出这两名学生在同一成绩分数段的结果数,然后根据概率公式求解.(1)n =1÷0.05=20,x =20﹣1﹣2﹣5﹣4﹣2=6;[70,80)这组的频率为620=0.3; 频率分布直方图为:(2)样本的中位数在[70,80)中,所以小明这次测试成绩在[70,80)这个分数段内的可能性最大;(3)低于60分的有3个,在分数段[40,50)中的学生用A 表示,在分数段[50,60)内的学生用B 表示, 画树状图为:共有6种等可能的结果数,其中这两名学生在同一成绩分数段的结果数为2, 所以这两名学生在同一成绩分数段的概率为21=63.【点睛】本题考查了列表法与树状图法及概率公式、掌握统计图并理解,再结合题意是解答本题的关键.。
一、选择题1.2018年1∼4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是( )A.1月份销量为2.2万辆B.从2月到3月的月销量增长最快C.4月份销量比3月份增加了1万辆D.1∼4月新能源乘用车销量逐月增加2.下面获取数据的方法不正确的是( )A.我们班同学的身高用测量方法B.快捷了解历史资料情况用观察方法C.抛硬币看正反面的次数用实验方法D.全班同学最喜爱的体育活动用访问方法3.如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有( )A.45人B.75人C.120人D.300人4.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是( )A.30,40B.45,60C.30,60D.45,405.某中学举行了“安全知识竞赛”,张岚将所有参赛选手的成绩(得分均为整数)进行整理,并绘制成如图所示的扇形统计图和频数直方图,部分信息如下:则下列结论不正确的是( )A.本次比赛参赛选手共有50人B.扇形统计图中“89.5∼99.5”这一组人数占参赛总人数的百分比为24%C.频数直方图中“84.5∼89.5”这一组人数为8D.扇形统计图中“89.5∼99.5”所对应的扇形的圆心角度数为90∘6.2016年温州市体育中考后,某校统计了本校300名学生的体育成绩,并绘制了如下的扇形统计图,则成绩是D档的学生人数为( )A.10人B.30人C.36人D.60人7.为了了解家里的用水情况,以便能更好的节约用水,小方把自己家1至6月份的用水量绘制成如图的折线图,那么小方家这6个月的月用水量最大是( )A.1月B.4月C.5月D.6月8.北京海淀区某中学经过食堂装修后重新营业,同学们很高兴品尝各种美食菜品某同学想要得到本校食堂最受同学欢迎的菜品,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的菜品;②去食堂收集同学吃饭时选择的菜品名称和人数;③绘制扇形图来表示各个种类产品所占的百分比;④整理所收集的数据,并绘制频数分布表;正确统计步骤的顺序是( )A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①9.爸爸有一袋一元硬币,小红想估计硬币的数量,想到如下办法:先从袋中拿出100枚硬币作好标记,再放回袋中摇均匀,然后再从袋中随机拿出100枚硬币,发现其中有5枚是作了标记,据此可估计袋中共有硬币( )A.500枚B.1000枚C.1500枚D.2000枚10.在下列调查方式中,较为合适的是( )A.为了解深圳市中小学生的视力情况,采用普查的方式B.为了解龙华区中小学生的课外阅读情况,采用普查的方式C.为了解某校七年级(1)班学生期末考试数学成绩情况,采用抽样调查的方式D.为了解我市市民对社会主义核心价值观的内容的了解情况,采用抽样调查的方式二、填空题11.如图,馨宏中学六年级200名同学参加课外活动小组人数的扇形统计图,则参加科技小组的学生有人.12. 某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生分别选了一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知“最喜爱机器人”的人数比“最喜爱 3D 打印”的人数少 5 人,则被调查的学生总人数为 .13. 一个班有 40 名学生,在期末体育考核中,优秀的有 18 人,在扇形统计图中,代表体育优秀的扇形圆心角度数是 .14. 为了估计鱼塘中有多少条鱼,我们从鱼塘中捕捞 200 条鱼做上标记,然后放回水塘,带标记的鱼完全混入鱼群后,再次捕捞上 200 条鱼,其中有标记的鱼有 25 条,则可估计鱼塘中约有 条鱼.15. 某校 500 名学生参加生命安全知识测试,测试分数均大于或等于 60 且小于 100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表中的信息,可测得测试分数在 80∼90 分数段的学生有 名.分数段60∼7070∼8080∼9090∼100频率0.20.250.2516. 某校为预测该校九年级 900 名学生"一分钟跳绳"项目的考试情况,从九年级随机抽取部分学生进行测试,并以测试数据为样本,绘制出如图所示的频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值).若次数不低于 130 次的成绩为优秀,估计该校成绩为优秀的人数是 .17.某中学开展以“我最喜欢的职业“为主题的调查活动,根据数据绘制的不完整统计图如图所示,图中工人部分所对应的圆心角为∘.三、解答题18.垃圾分类全民开始行动,为了了解学生现阶段对于“垃圾分类”知识的掌握情况,某校组织全校1000名学生进行垃圾分类答题测试,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图:分组/分频数频率50≤x<60120.1260≤x<70a0.1070≤x<80320.3280≤x<90200.2090≤x≤100c b合计100 1.00(1) 表中的a=,b=,c=;(2) 把上面的频数分布直方图补充完整;(3) 如果成绩达到80及80分以上者为测试通过,那么请你估计该校测试通过的学生大约有多少人;对于此结果你有什么建议.19.“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果制成如下不完整的统计图:根据统计图提供的信息,解答下列问题:(1) 本次共调查了名学生;(2) 请根据以上信息补全条形统计图;(3) 扇形统计图中m的值是,类别D所对应的扇形圆心角的度数是度;(4) 若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.20.某射击队为了解运动员的年龄情况,作了一次年龄调查,根据射击运动员的年龄(单位:岁),绘制出如图所示的统计图.(1) 求 m 的值;(2) 求该射击队运动员的平均年龄;(3) 小文认为,若从该射击队中任意挑选四名队员,则必有一名队员的年龄是 15 岁.你认为她的判断正确吗?为什么?21. 对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了调查同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取部分同学进行问卷测试,把测试成绩分成“优、良、中、差”四个等级,绘制了如下不完整的统计图: 根据以上统计信息,解答下列问题:(1) 求成绩是“优”的人数占抽取人数的百分比; (2) 求本次随机抽取问卷测试的人数; (3) 请把条形统计图补充完整;(4) 若该校学生人数为 3000 人,请估计成绩是“优”和“良”的学生共有多少人?22. 某路段某时段用雷达测速仪随机监测了 200 辆汽车的时速,得到如下频数分布表(不完整):注:30∼40 为时速大于或等于 30 千米而小于 40 千米,其它类同.数据段频数30∼40103650∼608060∼70 70∼8020(1) 请你把表中的数据填写完整;(2) 补全频数分布直方图;(3) 如果此路段该时间段经过的车有1000辆估计约有多少辆车的时速大于或等于60千米.23.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图的统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1) 求本次被调查的学生人数;(2) 将条形统计图补充完整;(3) 若该校共有1600名学生,请估计全校选择体育类的学生人数.24.根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如图所示(部分信息未给出):解答下列问题:(1) 求第六次人口普查小学学历的人数,并把条形统计图补充完整;(2) 求第五次人口普查中该市常住人口每万人中具有初中学历的人数;(3) 第六次人口普查结果与第五次相比,每万人中初中学历的人数增加了多少人?25.温州市政府计划投资百亿元开发瓯江口新区,打造出一个“东方时尚岛、海上新温州”.为了解温州市民对瓯江口新区的关注情况,某学校数学兴趣小组随机采访部分温州市民,对采访情况制作了统计图表的一部分如下:关注情况频数频率A.高度关注m0.1B.一般关注1000.5C.不关注30nD.不知道500.25(1) 根据上述统计表可得此次采访的人数为人;m=,n=;(2) 根据以上信息补全条形统计图;(3) 根据上述采访结果,估计25000名温州市民中高度关注瓯江口新区的市民约人.答案一、选择题1. 【答案】D【解析】由图可得,1月份销量为2.2万辆,故选项A正确,从2月到3月的月销量增长最快,故选项B正确,4月份销量比3月份增加了4.3−3.3=1万辆,故选项C正确,1∼2月新能源乘用车销量减少,2∼4月新能源乘用车销量逐月增加,故选项D错误.【知识点】折线统计图2. 【答案】B【解析】A.我们班同学的身高用测量方法是长度工具,可信度比较高;B.快捷了解历史资料情况用观察方法的可信度很低;C.抛硬币看正反面的次数用实验方法是事实事件,所以可信度很高;D.全班同学最喜爱的体育活动用访问方法是事实事件,可信度很高.【知识点】数据收集的过程3. 【答案】C【解析】参观温州数学名人馆的学生人数共有60÷20%=300(人),初中生有300×40%=120(人),故选:C.【知识点】扇形统计图4. 【答案】B【知识点】扇形统计图5. 【答案】D【解析】本次比赛参赛选手共有(2+3)÷10%=50(人),故A结论正确,不符合题意;扇形统×100%=24%,故B结论正确,不计图中“89.5∼99.5”这一组人数占参赛总人数的百分比为8+450符合题意;频数直方图中“84.5∼89.5”这一组人数为50×36%−10=8,故C结论正确,不符合=86.4∘,故D结论不题意;扇形统计图中“89.5∼99.5”所对应的扇形的圆心角度数为360∘×8+450正确,符合题意.【知识点】扇形统计图、频数分布直方图6. 【答案】B【解析】∵D档对应的百分比为1−(20%+46%+24%)=10%,∴成绩是D档的学生人数为300×10%=30(人).【知识点】扇形统计图7. 【答案】B【解析】由统计图可知,小方家这6个月的月用水量最大是15吨,对应月份是4月.故选:B.【知识点】折线统计图8. 【答案】D【解析】统计的一般步骤为:收集数据,整理数据,绘制统计图表,分析图表得出结论,从正确的步骤为②④③①.【知识点】统计表9. 【答案】D【解析】∵先从袋中拿出100枚硬币作好标记,再放回袋中摇均匀,然后再从袋中随机拿出100枚硬币,发现其中有5枚是作了标记,∴有标记的硬币出现的频率为5100=120,∴袋中共有硬币100÷120=2000(枚).【知识点】用样本估算总体10. 【答案】D【解析】A、了解深圳市中小学生的视力情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;B、了解龙华区中小学生的课外阅读情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;C、了解某校七年级(1)班学生期末考试数学成绩情况,比较容易做到,适于全面调查,采用普查,故本选项不符合题意;D、了解我市市民对社会主义核心价值观的内容的了解情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项符合题意.【知识点】全面调查与抽样调查二、填空题11. 【答案】70【解析】参加科技小组占1−20%−20%−25%=35%,有200×35%=70人.【知识点】百分数的应用、扇形统计图12. 【答案】50名【解析】设该校被调查的学生总人数为x名,则40%x−(1−40%−20%−10%)x=5,解得x=50.故被调查的学生总人数为50名.【知识点】扇形统计图13. 【答案】162°=162∘.【解析】体育优秀的扇形圆心角度数=360∘×1840【知识点】扇形统计图14. 【答案】1600【解析】设鱼塘里约有鱼x条,依题意得200:25=x:200,∴x=1600,∴估计鱼塘里约有鱼1600条.【知识点】用样本估算总体15. 【答案】150【知识点】数据的分布16. 【答案】400【知识点】用样本估算总体17. 【答案】36=200(人),【解析】调查总人数为4020%×360∘=36∘.∴工人部分对应圆心角为:20200【知识点】扇形统计图三、解答题18. 【答案】(1) 10;0.26;26(2) 由(1)得,a=10,c=26,可补全频数分布直方图.(3) 1000×(26%+20%)=460(人).由于测试通过的学生人数所占的百分比为46%,不到一半,因此测试通过率较低,还需进一步加强学习,宣传,增强“垃圾分类”的意识,自觉进行“垃圾分类”.【解析】(1) 12÷0.12=100(人),a=100×0.10=10(人),b=1−0.12−0.10−0.32−0.20=0.26,c=100×0.26=26(人).【知识点】频数分布直方图、用样本估算总体19. 【答案】(1) 50(2) B类人数:50×24%=12,D类人数:50−10−12−16−4=8.补全条形统计图如图所示:(3) 32;57.6(4) 800×(1−20%−24%)=448(名).答:估计该校有448名学生寒假在家做家务的总时间不低于20小时.【解析】(1) 本次共调查了10÷20%=50(名)学生.×100%=32%,即m=32,(3) 1650=57.6∘.类别D所对应的扇形圆心角的度数为360∘×850【知识点】扇形统计图、条形统计图、用样本估算总体20. 【答案】(1) 1−10%−30%−25%−15%=20%,故m的值是20.=15(岁),(2) 13×10%+14×30%+15×25%+16×20%+17×15%100%故该射击队运动员的平均年龄是15岁.(3) 小文的判断是错误的,可能抽到的是13岁、14岁、16岁、17岁.【知识点】扇形统计图、加权平均数21. 【答案】=20%;(1) 成绩是“优”的人数占抽取人数的百分比是72360(2) 本次随机抽取问卷测试的人数是40÷20%=200(人);(3) 成绩是“中”的人数是200−(40+70+30)=60(人).条形统计图补充如下:=1650(人).(4) 3000×40+70200答:成绩是“优”和“良”的学生共有1650人.【知识点】扇形统计图、条形统计图22. 【答案】(1) 60∼70的频数为200−(10+36+80+20)=54,补全表格如下:数据段频数30∼401040∼503650∼608060∼705470∼8020(2) 如图所示:(3) ∵200辆车中时速大于或等于60千米的有74辆,占74200=37%,∴1000×37100=370,答:估计约有370辆车的时速大于或等于60千米.【知识点】频数分布表及直方图、用样本估算总体23. 【答案】(1) 60÷30%=200(人),答:本次被调查的学生有200人;(2) 选择文学的学生有200×15%=30(人),选择体育的学生有200−24−60−30−16=70(人),补全的条形统计图如答图所示,(3) 1600×70200=560(人).答:全校选择体育类的学生有560人.【知识点】扇形统计图、用样本估算总体、条形统计图24. 【答案】(1) 450−36−55−180−49=130(万人);如图所示:(2) 初中学历所占比例:1−38%−17%−3%−10%=32%,10000×32%=3200(人),答:第五次人口普查中,该市常住人口每万人中具有初中学历的人数是3200人;(3) 180÷450×10000=4000(人),4000−3200=800(人).答:第六次人口普查结果与第五次相比,每万人中初中学历的人数增加了800人.【知识点】扇形统计图、条形统计图25. 【答案】(1) 200;20;0.15(2) 补全条形统计图如图所示.(3) 2500【解析】(1) 此次采访的人数为:100÷0.5=200(人),=0.15.m=200×0.1=20,n=30200(3) 25000×0.1=2500(人).答:计25000名温州市民中高度关注瓯江口新区的市民约2500人.【知识点】用样本估算总体、频数与频率、条形统计图。
1、某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…[80,90),[90,100].(Ⅰ)求频率分布图中a的值;(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;(Ⅲ)从评分在[40,60)的受访职工中,随机抽取2人,求此2人评分都在[40,50)的概率.2、名学生某次数学考试成绩(单位:分)的频数分布直方图如下: (Ⅰ)求频数直方图中a的值;(Ⅱ)估计这20名学生所在班级在本次数学考试中的平均成绩;(Ⅲ)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.频率/组距成绩(分)3a2a3、为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是,,,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生人数是多少?(3)估计在这次测试中,学生跳绳次数的中位数、众数、平均数。
10.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?11.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图,图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?18、初三两个班电脑参赛成绩(均为整数)整理后分成五组,绘出频率分布直方图,从左到右一、三、四、五小组的频率分别是, , , ,第二小组的频数是40。
10.2《直方图》同步练习知识点:频数分布直方图①组距:每个小组两个端点之间的距离②组数:组数②频数:数据出现的次数③频率:频数与数据总数的比同步练习1.下表是对某班50名学生如何到校问题进行的一次调查结果,根据表中已知数据填表:频数所占比步行9骑自行车28坐公共汽车20%其他 32.下表是某班学生在一次身高测量中得到的统计结果请回答:(1)这个班总人数是_____人;身高为______m 的人数最多,有____人.(2)身高最高、最低的分别是_____m 、_____m ,他们分别有____人,_____人;最高的与最低的相身高/m 1.40 1.45 1.49 1.54 1.57 1.60 1.62 1.68 1.72 1.78人数/人 1 3 4 6 11 15 96 3 2差______m.3.(25分)七年级13班其中40个同学某次数学测验成绩(单位:分):63 84 91 53 69 81 61 69 91 78 75 81 80 67 76 81 79 94 61 69 89 70 70 87 81 86 90 88 85 67 71 82 87 75 87 95 53 65 74 77 数学老师按10分的组距分段,进行统计分析:解:1、求极差:最高分,最低分。
极差: d2、列频率分布表:分组6050<≤x7060<≤x8070<≤x9080<≤x10090<≤x频数记录正正正频数2 9 14 5所占比例5% 35%4题图(每组含最低分数,但不含最高分数)120人数/人01234567860708090110100分数/分(1)请把频数分布表及频数分布直方图补充完整;(2)绘制频数折线图.4.某中学部分同学参加全国初中数学竞赛,取得了优异的成绩.指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分为120分),并且绘制了频率分布直方图(如图).请回答:(1)该中学参加本次数学竞赛的有多少名同学?(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?(3)图中还提供了其他信息,例如该中学没有获得满分的同学等.请再写出两条信息.10.2《直方图》同步练习题(1)答案:1.10 ;18%;56%; 6 %2.(1)60 ;1.60 ;15 ;(2)1.78 ;1.40 ;2 ; 1 ;0.383. 94 ;53 ;41 ;略4.32 ;43.75%;80到90分的人数最多;80到90分的人数的百分比为25%。
七下数学每日一练:条形统计图练习题及答案_2020年综合题版答案答案2020年七下数学:统计与概率_数据收集与处理_条形统计图练习题~~第1题~~(2019西湖.七下期末) 下图是某水果连锁店各分店某天桃子销售量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).组别( )频数40~45245~5050~55355~601某水果连锁店各分店某天桃子销售量的频数表某水果连锁店各分店某天桃子销售量的频数直方图(1) 求 的值。
(2) 若桃子的单价是8元 ,该水果连锁店这一天桃子的销售金额能否达到4100元?考点: 用样本估计总体;条形统计图;~~第2题~~(2019东阳.七下期末) 某校教职工为庆祝“建国70周年”开展学习强国知识竞赛,本次知识竞赛分为甲、乙、丙三组进行.下面两幅统计图反映了教师参加学习强国知识竞赛的报名情况,请你根据图中的信息回答下列问题:(1) 该校教师报名参加本次学习强国知识竞赛的总人数为人,并补全条形统计图;(2) 该校教师报名参加丙组的人数所占圆心角度数是;(3) 根据实际情况,需从甲组抽调部分教师到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名教师到丙组?考点: 扇形统计图;条形统计图;频数与频率;~~第3题~~(2019鄞州.七下期末) 某校开设了丰富多彩的实践类拓展课程,分别设置了体育类、艺术类、文学类及其它类课程(要答案答案求人人参与,每人只能选择一门课程)。
为了解学生喜爱的拓展类别,学校做了一次抽样调查.根据收集到的数据绘制成以下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1) 此次共调查了多少人?(2) 请将条形统计图补充完整.(3) 求文学类课程在扇形统计图中所占圆心角的度数.(4) 若该校有1500名学生,请估计喜欢体育类拓展课的学生人数.考点: 用样本估计总体;扇形统计图;条形统计图;利用统计图表分析实际问题;~~第4题~~(2019长兴.七下期末) 某县特色早餐种类繁多,色香味美,著名的种类有“干挑面”、“锅贴”、“青团子” “粢米饭”等。
1频率分布直方图【知识总结】 1.频率分布直方图(1)纵轴表示频率组距,即小长方形的高=频率组距;(2)小长方形的面积=组距×频率组距=频率;(3)各个小方形的面积总和等于1 . 2.频率分布表的画法第一步:求极差,决定组数和组距,组距=极差组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; 第三步:登记频数,计算频率,列出频率分布表. 3. 频率分布直方图中的常见结论(1)众数的估计值为最高矩形的中点对应的横坐标.(2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)中位数的估计值的左边和右边的小矩形的面积和是相等的.2【巩固练习】1、随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36. 根据上述数据得到样本的频率分布表如表所示.分组 频数 频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n 1 f 1(45,50] n 2 f 2(1)确定样本频率分布表中n 1,n 2,f 1和f 2的值;(2)根据上述频率分布表,画出样本频率分布直方图和频率分布折线图. 【答案】(1) n 1=7,n 2=2,f 1=0.28,f 2=0.08 (2)见解析【解析】(1)由所给数据知,落在区间(40,45]内的有7个,落在(45,50]内的有2个,故1n =7,2n =2,所以f 1=125n =725=0.28,f 2=225n =225=0.08. (2)样本频率分布直方图和频率分布折线图如图所示.32. 为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,则被抽查的美术生的人数是( )A .35B .48C .60D .75【答案】C【解析】设被抽查的美术生的人数为n ,因为后2个小组的频率之和为(0.0375+0.0125)×5=0.25,所以前3个小组的频率之和为0.75.又前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,所以前3个小组的频数分别为5,15,25,所以n =515250.75++=60.故选:C.3、某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为若低于60分的人数是15人,则该班的学生人数是( )A .B .C .D.【答案】B【解析】根据频率分布直方可知成绩低于60分的有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20,则成绩低于60分的频率P=(0.005+0.010)×20=0.3.又因为低于60分的人数是15人,所以该班的学生人数是15÷0.3=50.本题选择B选项.4、某校初三年级有400名学生,随机抽查了40名学生测试1分钟仰卧起坐的成绩(单位:次),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )4A.该校初三学生1分钟仰卧起坐的次数的中位数为25B.该校初三学生1分钟仰卧起坐的次数的众数为24C.该校初三学生1分钟仰卧起坐的次数超过30的人数约有80D.该校初三学生1分钟仰卧起坐的次数少于20的人数约为8[解析] 第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,∴中位数在第三组内,设中位数为25+x,则x×0.08=0.5-0.1-0.3=0.1,∴x=1.25,∴中位数为26.25,故A错误;第三组数据所在的矩形最高,第三组数据的中间值为27.5,∴众数为27.5,故B错误;1分钟仰卧起坐的次数超过30的频率为0.2,∴超过30次的人数为400×0.2=80,故C正确;1分钟仰卧起坐的次数少于20的频率为0.1,∴1分钟仰卧起坐的次数少于20的人数为400×0.1=40,故D错误.故选C.[答案] C5、某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用[)0,0.1[)0.1,0.2[)0.2,0.3[)0.3,0.4[)0.4,0.5[)0.5,0.6[)0.6,0.756水量频数132 49 26 5使用了节水龙头50天的日用水量频数分布表日用水量[)0,0.1[)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6频数151310165(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:7(2)估计该家庭使用节水龙头后,日用水量小于30.35m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案】(1)直方图见解析;(2)0.48;(3)347.45m . 【解析】(1)频率分布直方图如下图所示:(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于30.35m 的频率为0.20.110.1 2.60.120.050.48⨯+⨯+⨯+⨯=;因此该家庭使用节水龙头后日用水量小于30.35m 的概率的估计值为0.48; (3)该家庭未使用节水龙头50天日用水量的平均数为()110.0510.1530.2520.3540.4590.55260.6550.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为8()210.0510.1550.25130.35100.45160.5550.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水()()30.480.3536547.45m -⨯=.6、某电视台为宣传本省,随机对本省内1565~岁的人群抽取了n 人,回答问题“本省内著名旅游景点有哪些”统计结果如图表所示(1)分别求出a b x y 、、、的值;(2)从第234、、组回答正确的人中用分层抽样的方法抽取6人,求第234、、组每组各抽取多少人?(3)指出直方图中,这组数据的中位数是多少(取整数值)?【答案】(1)5a =,27b =,0.9x =,0.2y =;(2)2人,3人,1人;(3)42【解析】(1)由已知第4组人数为9250.36=,∴251000.02510n ==⨯,9由频率分布直方图得第一组人数为:1000.011010⨯⨯=,100.55a =⨯=,第二组人数为:1000.021020⨯⨯=,180.920x ==, 第三组人数为:1000.031030⨯⨯=,300.927b =⨯=,第五组人数为:1000.0151015⨯⨯=,30.215x ==. (2)第2、3、4组回答正确人数分别18、27、9,共54人,设第234、、组分别抽取,,x y z 人,则65418279x y z===,解得2,3,1x y z ===. (3)第1、2组频率和为0.10.20.3+=,第4、5组频率和为0.250.150.4+=,第3组频率为0.3,设中位数为m ,则350.50.3100.3m --=,241423m =≈. ∴中位数为42.7、某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.10(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数.【答案】(1)0.0075x =;(2)众数是230,中位数为224. 【解析】(1)由直方图的性质可得(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=,∴0.0075x =.(2)月平均用电量的众数是2202402302+=, ∵(0.0020.00950.011)200.450.5++⨯=<, 月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.0020.00950.011)200.0125(220)0.5a ++⨯+⨯-=,可得224a =, ∴月平均用电量的中位数为2248、为参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了一次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计,以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.频率分布表组别分组频数频率1 [50,60) 9 0.182 [60,70) a3 [70,80) 20 0.404 [80,90) 0.085 [90,100] 2 b合计 1请根据以上频率分布表和频率分布直方图,回答下列问题:(1)求出a,b,c,d的值;(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内.1112【答案】(1) a =15,b =0.04,c =0.03,d =0.004 (2) 70≤x <80 【解析】(1)样本容量为9÷0.18=50,50×0.08=4, 所以a =50-9-20-4-2=15,b =2÷50=0.04,c =15÷50÷10=0.03,d =0.04÷10=0.004.(2)因为样本容量为50,则样本的中位数是第25,26个数据的平均数, 而第25,26个数据均位于70≤x <80范围内, 所以小王的测试成绩在70≤x <80范围内.9、某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.分数段[)50,60[)60,70[)70,80[)80,90:x y1∶12∶13∶44∶513(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[)50,90之外的人数. 【答案】(1)0.005a =;(2)73(分);(3)10.【解析】(1)由频率分布直方图知(20.020.030.04)101a +++⨯=,解得0.005a =. (2)由频率分布直方图知这100名学生语文成绩的平均分为550.00510650.0410750.0310850.0210950.0051073⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=(分).(3)由频率分布直方图知语文成绩在[)50,60,[)60,70,[)70,80,[)80,90各分数段的人数依次为:0.005101005,0.041010040,0.031010030,0.021010020⨯⨯=⨯⨯=⨯⨯=⨯⨯=由题中给出的比例关系知数学成绩在上述各分数段的人数依次为1455,4020,3040,2025234⨯=⨯=⨯=.故数学成绩在[50,90)之外的人数为100(5204025)10-+++=.10.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分[75,85) [85,95) [95,105) [105,115) [115,125) 组频数 6 26 38 22 8(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?14【答案】(1)见解析;(2)平均数100,方差为104;(3)不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.【解析】(1)直方图如图,(2)质量指标值的样本平均数为x=⨯+⨯+⨯+⨯+⨯=.800.06900.261000.381100.221200.08100质量指标值的样本方差为22222s=-⨯+-⨯+⨯+⨯+⨯=.(20)0.06(10)0.2600.38100.22200.08104(3)质量指标值不低于95的产品所占比例的估计值为++=,0.380.220.080.68由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.11、从某企业生产的某种产品中随机抽取100件,测量这些产品的某项质量指标,由测量1516结果得到如下频数分布表:质量指标值分组[)75,85[)85,95[)95,105[)105,115[)115,125频数62638228()1在图中作出这些数据的频率分布直方图;()2估计这种产品质量指标值的平均数、中位数(保留2位小数);()3根据以上抽样调査数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?【答案】(1)直方图见解析;(2)平均数100,中位数99.74;(3)不能. 【解析】()1由已知作出频率分布表为:质量指标值分组[)75,85 [)85,95 [)95,105 [)105,115 [)115,12517频数 6 26 38 22 8频率0.06 0.26 0.38 0.22 0.08由频率分布表作出这些数据的频率分布直方图为:()2质量指标值的样本平均数为:800.06900.261000.381100.221200.08100x =⨯+⨯+⨯+⨯+⨯=,[)75,95内频率为:0.060.260.32+=,∴中位数位于[)95,105内,设中位数为x ,则0.50.260.06951099.740.38x --=+⨯≈,∴中位数为99.74.()3质量指标值不低于95 的产品所占比例的估计值为0.380.220.080.68++=.由于该估计值小于0.8,故不能认为该企业生产的这种产品“质量指标值不低于95 的产品至少要占全部产品80%的规定.18。
直方图同步测试试题(一)一.选择题1.2018年11月贵阳市教育局对某校七年级学生进行体质监测共收集了200名学生的体重,并绘制成了频数分布直方图,从左往右数每个小长方形的长度之比为2:3:4:1,其中第三组的频数为()A.80人B.60人C.20人D.10人2.小明在做“抛一枚正六面体骰子”的实验时,他连续抛了10次,共抛出了3次“6”向上,则出现“6”向上的频率是()A.B.C.D.3.一个班有40名学生,在期末体育考核中,达到优秀的有18人,合格(但没达到优秀)的有17人,则这次体育考核中,不合格人数的频率是()A.0.125B.0.45C.0.425D.1.254.如图是某班一次数学测试成绩的频数直方图,则成绩在69.5~89.5分范围内的学生共有()A.24人B.10人C.14人D.29人5.数学老师将数学期末模拟考试的成绩整理后,绘制成如图所示的频数分布直方图,下列说法错误的是()A.得分在70~80分的人数最多B.该班的总人数为40C.人数最少的分数段的频数为2D.得分及格(≥60分)约有12人6.某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数不少于20的频率为()A.0.1B.0.17C.0.33D.0.97.某校随机抽查若干名学生,测试了1分钟仰卧起坐的次数,把所得数据绘制成频数分布直方图(如图),则仰卧起坐次数不小于15次且小于20次的频率是()A.0.1B.0.2C.0.3D.0.48.合肥市教育教学研究室为了解该市所有毕业班学生参加2019年安徽省中考一模考试的数学成绩情况(满分:150分,等次:A等,130~150分;B等,110分~129分;C等,90分~109分;D等,89分及以下),从该市所有参考学生中随机抽取部分学生进行调查,并根据调查结果制作了如下的统计图表(部分信息未给出):2019年合肥市一模数学成绩频数分布表等次频数频率A0.2BC6D20.1合计1根据图表中的信息,下列说法中不正确的是()A.这次抽查了20名学生参加一模考试的数学成绩B.这次一模考试中,考生数学成绩为B等次的频率为0.4C.根据频数分布直方图制作的扇形统计图中等次C所占的圆心角为105°D.若全市有20000名学生参加中考一模考试,则估计数学成绩达到B等次及以上的人数有12000人9.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%10.体育老师对八年级(2)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成如图所示的折线统计图.由图可知,最喜欢篮球的学生的频率是()A.16%B.24%C.30%D.40%二.填空题11.一个样本容量为50的样本最大值为127,最小值为60,组距为10,则可分成组.12.在某个频数分布直方图中,共有11个小长方形,若中间一个长方形的高等于其它10个小长方形高之和的,且样本容量是60,则中间一组的频数是.13.对一次抽样调查收集的数据进行分组,绘制了如表不完整的频数分布表(每一组包含左端点,不包含右端点):分组49.5~59.559.5~69.569.5~79.578.5~89.589.5~99.5频数9151612已知第三小组(69.5~79.5)出现的频数是最后一组(89.5~99.5)频数的2倍,则这次调查抽取的样本容量是.14.某中学为了了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是.15.小宇调查了初一年级三个班学生的身高,并进行了统计,列出如频数分布表:若要从每个班级中选取10名身高在160cm和170cm之间同学参加学校的广播操展示,不考虑其他因素的影响,则(填“1班”,“2班”或“3班”)的可供挑选的空间最大.身高/厘米频数班级150≤x<155155≤x<160160≤x<165165≤x<170170≤x<175合计1班1812145402班10151032403班510108740三.解答题16.受新冠病毒影响,2020年春浙江省中小学延期开学,复学后,某校为了解学生对防疫知识的掌握情况,学校组织全体学生进行防疫知识竞赛.从中抽取了8%的学生的竞赛成绩(满分100,成绩为整数)作为样本,整理后绘制成如图所示的频数直方图.请结合直方图解答下列问题:(1)求此次抽取的样本容量及全校学生人数.(2)求竞赛成绩在84.5~89.5这一组的频率.(3)如果竞赛成绩在90分以上(含90分)的同学可以获得奖励,请估计全校学生中约有多少人获得奖励.17.在抗击新冠疫情期间,市教委组织开展了“停课不停学”的活动.为了解此项活动的开展情况,市教委督导部门准备采用以下调查方式中的一种进行调查:A.从某所普通中学校随机选取200名学生作为调查对象进行调查;B.从市内某区的不同学校中随机选取200名学生作为调查对象进行调查;C.从市教育部门学生学籍档案中随机抽取200名学生作为调查对象进行调查.(1)在上述调查方式中,你认为比较合理的一个是(填番号).(2)如图,是按照一种比较合理的调查方式所得到的数据制成的频数分布直方图,在这个调查中,所抽取200名学生每天“停课不停学”的学习时间在1~2小时之间的人数m =.(3)已知全市共有100万学生,请你利用(2)问中的调查结果,估计全市每天“停课不停学”的学习时间在1~2小时及以上的人数有多少?(4)你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.18.某地区共有1800名九年级学生,为了解这些学生的体质健康状况,开学初随机选取部分学生进行体质健康测试,以下是根据测试成绩绘制的部分统计图表:等级测试成绩(分)频数优秀45≤x≤50140良好37.5≤x<4536及格30≤x<37.5不及格x<306根据以上信息,解答下列问题:(1)求参加本次测试的学生数,并将频数分布表补充完整;(2)求体质健康成绩属于“不及格”等级的频率;(3)试估计该地区九年级学生开学初体质健康状况达到“良好”及以上等级的学生数.19.2020年3月25日是全国中小学生安全教育日,常德芷兰实验学校为加强学生的安全意识,组织了全校8000名学生参加安全知识竞赛,从中抽取了部分学生成绩进行统计.请根据尚未完成的频率分布表和频数分布直方图解题.频率分布表分数段频数频率50.5~60.5160.0860.5~70.5400.270.5~80.5500.2580.5~90.5m0.3590.5~100.524n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m=,n=;(2)补全频数分布直方图.(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?参考答案与试题解析一.选择题1.【解答】解:根据题意知,第三组的频数为200×=80(人),故选:A.2.【解答】解:由题意得,出现“6”向上的频率是,故选:A.3.【解答】解:不合格人数为40﹣18﹣17=5,∴不合格人数的频率是=0.125,故选:A.4.【解答】解:成绩在69.5~89.5分范围内的学生共有:10+14=24(人),故选:A.5.【解答】解:A、得分在70~80分的人数最多,正确,本选项不符合题意.B、该班的总人数为40,正确,本选项不符合题意.C、人数最少的分数段的频数为2,正确,本选项不符合题意.D、得分及格(≥60分)约有12人,错误,应该有36人,本选项符合题意.故选:D.6.【解答】解:由图知,学生仰卧起坐次数不少于20的人数为10+12+5=27(人),所以学生仰卧起坐次数不少于20的频率为27÷30=0.9,故选:D.7.【解答】解:仰卧起坐次数不小于15次且小于20次的频率是:=0.1;故选:A.8.【解答】解:A.本次抽查的学生数学成绩数量为2÷0.1=20,此选项正确;B.A等次的数量为20×0.2=4,则B等次的数量为20﹣(4+6+2)=8,所以考生数学成绩为B等次的频率为8÷20=0.4,此选项正确;C.根据频数分布直方图制作的扇形统计图中等次C所占的圆心角为360°×=108°,此选项错误;D.估计数学成绩达到B等次及以上的人数有20000×(0.2+0.4)=12000人,此选项正确;故选:C.9.【解答】解:优胜者的频率是18÷(1+19+22+18)=0.3=30%,故选:B.10.【解答】解:读图可知:共有(4+12+6+20+8)=50人,其中最喜欢篮球的有20人,故频率最喜欢篮球的频率=20÷50=0.4.故选:D.二.填空题(共5小题)11.【解答】解:∵样本最大值为127,最小值为60,∴极差为127﹣60=67,∵组距为10,∴67÷10=6.7,∴此样本可分成7组,故答案为:7.12.【解答】解:设中间一组的频率是x,那么其它各组频率的和是1,根据题意得x+4x=1,解得x=0.2,60×0.2=12.故中间一组的频数是12.故答案为:12.13.【解答】解:∵第三小组(69.5~79.5)出现的频数是最后一组(89.5~99.5)频数的2倍,且最后一组的频数为12,∴第三组的频数为24,则这次调查抽取的样本容量是9+15+24+16+12=76,故答案为:76.14.【解答】解:3000×[10(0.002+0.006+0.012)]=600,答:这3000名学生在该次数学考试中成绩小于60分的学生数是600人.故答案为:600人.15.【解答】解:身高在160cm和170cm之间同学人数:一班26人,二班13人,三班18人,因此可挑选空间最大的是一班,故答案为:1班.三.解答题(共4小题)16.【解答】解:(1)样本容量:4+10+16+13+7=50,全校学生数:50÷8%=625(人),答:此次抽取的样本容量是50,全校学生人数为625人;(2)16÷50=0.32,答:竞赛成绩在84.5~89.5这一组的频率是0.32;(3)625×=250(人),答:全校学生中约有250人获得奖励.17.【解答】解:(1)由题意可得,从市教育部门学生学籍档案中随机抽取200名学生作为调查对象进行调查比较合理,故选:C;(2)m=200﹣92﹣36﹣18=54,故答案为:54;(3)100×=54(万),答:全市每天“停课不停学”的学习时间在1~2小时及以上的人数有54万人;(4)这个调查设计有不合理的地方,如在100万人的总体中,随机抽取的200人作为样本,样本容量偏小,会导致调查的结果不够准确,建议增大样本容量.18.【解答】解:(1)140÷0.7=200(人)答:参加本次测试的学生数为200人,200﹣140﹣36﹣6=18(人),故答案为:18;(2)6÷200=0.03,答:体质健康成绩属于“不及格”等级的频率为0.03;(3)1800×=1584(人),答:达到“良好”及以上等级的学生数为1584人.19.【解答】解:(1)16÷0.08=200,m=200×0.35=70,n=24÷200=0.12;故答案为200,70;0.12;(2)如图,(3)8000×(0.08+0.2)=2240,所以该校安全意识不强的学生约有2240人.。
频数分布表和直方图练习题1. 2019年3月教育局对某校七年级学生进行体质监测共收集了200名学生的体重,并绘制成了频数分布直方图,从左往右数每个小长方形的长度之比为2:3:4:1,其中第三组的频数为( )A.80人B.60人C.20人D.10人2. 小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28∼35次的人数最多③有1的人每周使用手机支付的次数在35∼42次5④每周使用手机支付不超过21次的有15人其中正确的是()A.①②B.②③C.③④D.④3. 某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是()A.该班有50名同学参赛B.第五组的百分比为16%C.成绩在70∼80分的人数最多D.80分以上的学生有14名4. (3分)某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25∼30之间的频率为________.5. 某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5∼46.5;B:46.5∼53.5;C:53.5∼60.5;D:60.5∼67.5;E:67.5∼74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是________,并补全频数分布直方图;(2)C组学生的频率为________,在扇形统计图中D组的圆心角是________度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?6. 2011年我市体卫站对某校九年级学生体育测试情况进行调研,从该校360名九年级学生中抽取了部分学生的成绩(成绩分为A、B、C三个层次)进行分析,绘制了频数分布表与频数分布直方图(如图),请根据图表信息解答下列问题:(1)补全频数分布表与频数分布直方图;(2)如果成绩为A等级的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平?7. 某校一学生社团参加数学实践活动,和交警一起在金山大道入口用移动测速仪监测一组汽车通过的时速(千米/小时),在数据整理统计,绘制频数直方图的过程中,不小心墨汁将表中数据污染(见下表),请根据下面不完整的频数分布表和频数分布直方图,解答问题:(注:50∼60指时速大于等于50千米/小时而小于60千米/小时,其他类同)(1)请用你所学的数学统计知识,补全频数分布直方图.(2)如果此地汽车时速不低于80公里即为违章,求这组汽车的违章频率.(3)如果请你根据调查数据绘制扇形统计图,那么时速在70∼80范围内的车辆数所对应的扇形圆心角的度数是________.8. 每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是________;(2)补全频数分布直方图,求扇形图中“6吨−−9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?。
数学: 12.3频数分布表和频数分布直方图
一、选择题
1、( 0 7 湖州)如图1是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是( )
A.该班总人数为50人
B.步行人数为30人
C.骑车人数占总人数的20%
D.乘车人数是骑车人数的2.5倍
2、(08温州)体育老师对九年级(1)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成频数分布直方图(如图2).由图可知,最喜欢篮球的频率是( )
A .0.16
B .0.24
C .0.3
D .0.4
步行
30%
乘车50% 骑车 图1
图2
二、解答题
3、(07义乌) 每年的6月6日是全国的爱眼日,让我们行动起来,爱护我们的眼睛!某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查,下图3是利用所得数据绘制的频数分布直方图(视力精确到0.1).
图3
请你根据此图提供的信息,回答下列问题:
(1)本次调查共抽测了名学生;
(2)视力在4.9及4.9以上的同学约占全校学生比例为多少?
(3)如果视力在第1,2,3组范围内(视力在4.9以下)均属视力不良,应给予治疗、矫
正.请计算该校视力不良学生约有多少名?
4、(08宁德) “五一”期间,新华商场贴出促销海报,内容如图4.在商场活动期间,王莉和同组同学随机调查了部分参与活动的顾客,统计了200人次的摸奖情况,绘制成如
图
5的频数分布直方图.
“五一”大派送为了回馈广大顾客,本商场在4月30日至5月6日期间
举办有奖购物活动.每购
买100元的商品,就有一
次摸奖的机会,奖品为 一等奖:50元购物券 二等奖:20元购物券 三等奖:5元购物券
图4
购物券
人次
图5
(1)补齐频数分布直方图;
(2)求所调查的200人次摸奖的获奖率;
(3)若商场每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元?
5、(08湛江)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学
生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题.
(1) 指出这个问题中的总体.
(2) 求竞赛成绩在79.5~89.5这一小组的频率.
(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.
6、(08西宁)中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有50名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A B C D ,,,四等,并绘制成下面的频数分布表(注:6~7的意义为大于等于6分且小于7分,其余类似)和扇形统计图(如图9).
频数分布表
等级
分值 跳绳(次/1分钟)
频数 A
9~10
150~170 4 8~9
140~150 12 B 7~8
130~140
17
图8
图9
6~7 120~130 m
5~6 110~120 0
C
4~5 90~110 n
3~4 70~90 1
D
0~3 0~70 0
,的值;
(1)求m n
(2)在抽取的这个样本中,请说明哪个分数段的学生最多?
请你帮助老师计算这次1分钟跳绳测试的及格率(6分以上含6分为及格).
7、(08湘潭市)某县七年级有15000名学生参加安全应急预案知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统计:
频率分布表
请你根据不完整的频率分布表. 解答下列问题: (1)补全频率分布表; (2)补全频数分布直方图;
(3)若将得分转化为等级,规定得分低于59.5分评为“D ”,59.5~69.5分评为“C ”,
69.5~89.5分评为“B ”,89.5~100.5分评为“A ”,这次15000名学生中约有多少人评为“D ”?如果随机抽取一名参赛学生的成绩等级,则这名学生的成绩评为“A ”、“B ”、“C ”、“D ”哪一个等级的可能性大?请说明理由.
成绩(分)
49.5 59.5 79.5 图10
8、(08常州)为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量, 所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):
5
104.5——119.5 6 0.15
合计40 1.00
根据表中提供的信息解答下列问题:
(1)频数分布表中的a =________,b=________,c =_________;
(2)补充完整频数分布直方图;
(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?
图12
10、(08台州)八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A B C D E ,,,,五个等级.
老师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图. 学生帮父母做家务活动时间频数分布表
(1)求a b ,的值;
(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间; (3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.
B A
E D
C 40% (第22题)
学生帮父母做家务活动评价
等级分布扇形统计图
参考答案
1、B;
2、D ;
3、解:(1)由条形统计图可得,本次调查共抽测学生人数为:10+20+30+40+60=160 (2)视力在4.9及4.9以上的人数为40+20=60(人),所占的比例为:603
=
1608 (3)视力在第1,2,3组的人数在样本中所占的比例为1005
=.
1608
∴该校视力不良学生约有
5
20001250
⨯=(人).
8
4、解:⑴获得20元购物劵的人次:200-(122+37+11)=30(人次).
补齐频数分布直方图,如图所示:
⑵摸奖的获奖率:%39%1002078=⨯. ⑶675.6200501120305370122=⨯+⨯+⨯+⨯=x . 6.675×2000=13350(元)
估计商场一天送出的购物券总金额是13350元.
5、 解: (1) 总体是某校2000名学生参加环保知识竞赛的成绩.
(2)15150.256912151860
==++++ 答:竞赛成绩在79.5~89.5这一小组的频率为0.25.
(3)9200030069121518
⨯=++++ 答:估计全校约有300人获得奖励.
6、解:(1)根据题意,得50(412171)16m n +=-+++=;
购物券
人次
30
171006450m +⨯=%%. 则161732
m n m +=⎧⎨+=⎩①② 解之,得151
m n =⎧⎨=⎩ (2)7~8分数段的学生最多
及格人数412171548=+++=(人),及格率481009650
=
⨯=%% 答:这次1分钟跳绳测试的及格率为96%.
7. 解:(1)略; (2)略 ;
(3)150000.05750⨯=(人) B Q 的频率为0.20.310.51+=,大于A 、C 、D 的频率,故这名学生评为B 等的可能性最大.
8、略
9、(1)a=8,b=12,c=0.3.(每对一个给1分)
(2)略
(3)算出样本中噪声声级小于75dB 的测量点的频率是0.3
0.3×200=60
∴在这一时噪声声级小于75dB 的测量点约有60个.
10、略。