(新)人教版九年级数学上册:第二十四章《圆》课时检测试题专题 与切线有关的角度计算
- 格式:pdf
- 大小:29.74 KB
- 文档页数:1
新人教版九年级数学上册《第24章圆》一、选择题1.下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°3.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6 B.8 C.10 D.124.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为485.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.56.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A.4cm B.3cm C.2cm D.1cm7.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定8.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm9.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm10.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°二、填空题11.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=.12.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.13.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA的位置关系是.14.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG 的边长为.15.已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为cm.16.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.三、解答题17.圆锥底面圆的半径为3m,其侧面展开图是半圆,求圆锥母线长.18.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,能否完全装下?若未能装满,求杯内水面离杯口的距离.19.(8分)如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.20.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O 的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD 于点F )EF为2米.求所在⊙O的半径DO.21.△ABC是⊙O的内接三角形,BC=.如图,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.22.如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB 与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.23.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.24.如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.新人教版九年级数学上册《第24章圆》一、选择题1.B;2.B;3.C;4.A;5.C;6.C;7.C;8.A;9.D;10.B;二、填空题11.80°;12.3<r<5;13.相离;14.2;15.4π;16.;三、解答题17.圆锥底面圆的半径为3m,其侧面展开图是半圆,求圆锥母线长.解:设母线长为x,根据题意得2πx÷2=2π×3,解得x=6.故圆锥的母线长为6m.18.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,能否完全装下?若未能装满,求杯内水面离杯口的距离.解:设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据题意得π•()2•x=π•()2•18,解得x=12.5,∵12.5>10,∴不能完全装下.19.如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.证明:设圆的半径是r,ON=x,则AB=2x,在直角△CON中,CN==,∵ON⊥CD,∴CD=2CN=2,∵OM⊥AB,∴AM=AB=x,在△AOM中,OM==,∴OM=CD.20.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O 的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD 于点F )EF为2米.求所在⊙O的半径DO.解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.21.△ABC是⊙O的内接三角形,BC=.如图,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.解:图形如图所示,直线l与⊙O相切.理由:作OF⊥l于F,CE⊥l于E,∵AC是直径,∴∠ABC=90°,∵l⊥BD,∴∠BDE=90°,∵OF⊥l,CE⊥l,∴AD∥OF∥CE,∵AO=OC,∴DF=FE,∴OF=(AD+CE),设AD=a,则AB=2AD=2a,∵∠ABC=∠BDE=∠CED=90°,∴四边形BDEC是矩形,∴CE=BD=3a,∴OF=2a,∵在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2a,∴AC=4a,∴OF=OA=2a,∴直线l是⊙O切线.22.如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB 与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.解:(1)直线OB与⊙M相切,理由:设线段OB的中点为D,连结MD,如图1,∵点M是线段AB的中点,所以MD∥AO,MD=4.∴∠AOB=∠MDB=90°,∴MD⊥OB,点D在⊙M上,又∵点D在直线OB上,∴直线OB与⊙M相切;,(2)解:连接ME,MF,如图2,∵A(﹣8,0),B(0,6),∴设直线AB的解析式是y=kx+b,∴,解得:k=,b=6,即直线AB的函数关系式是y=x+6,∵⊙M与x轴、y轴都相切,∴点M到x轴、y轴的距离都相等,即ME=MF,设M(a,﹣a)(﹣8<a<0),把x=a,y=﹣a代入y=x+6,得﹣a=a+6,得a=﹣,∴点M的坐标为(﹣,).23.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.24.如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.解:(1)如图,∵△ABC是等边三角形,∴∠B=∠A=∠C=60°.又∵EF∥AC,∴∠BFE=∠A=60°,∠BEF=∠C=60°,∴△BFE是等边三角形,PE=EB,∴EF=BE=PE=BF;(2)当点E是BC的中点时,四边形是菱形;∵E是BC的中点,∴EC=BE,∵PE=BE,∴PE=EC,∵∠C=60°,∴△PEC是等边三角形,∴PC=EC=PE,∵EF=BE,∴EF=PC,又∵EF∥CP,∴四边形EFPC是平行四边形,∵EC=PC=EF,∴平行四边形EFPC是菱形;(3)如图所示:当点E是BC的中点时,EC=1,则NE=ECcos30°=,当0<r<时,有两个交点;当r=时,有四个交点;当<r<1时,有六个交点;当r=1时,有三个交点;当r>1时,有0个交点.。
11月新人教版九年级上第24章《圆》单元检测题含答案人教版九年级上册(新 )第24章《圆》单元检测题一、 选择题(每题4分,共40分)1.已知⊙O 的直径为10,点P 到点O 的距离大于8,那么点P 的位置( )(A )一定在⊙O 的内部 (B) 一定在⊙O 的外部(C ) 一定在⊙O 的上 (D) 不能确定2.已知:如图,弦AB 的垂直平分线交⊙O 于点C 、D ,则下列说法中不正确的是 ( )(A) 弦CD 一定是⊙O 的直径 (B) 点O 到AC 、BC 的距离相等 (C) ∠A 与∠ABD 互余 (D) ∠A 与∠CBD 互补(2题图) (3题图) (6题图)3.如图,已知⊙O 中∠AOB 度数为100°,C是圆周上的一点,则∠ACB 的度数为( )(A)130° (B) 100° (C) 80° (D) 50° 4.假如⊙O1与⊙O2的圆心都在x轴上,⊙O1的圆心坐标为(7,0),半径为1,⊙O2的圆心坐标为(m,0),半径为2,则当2<m<4时,两圆的位置关系是( ).(A)相交 (B)相切 (C)相离 (D)内含 5.假如圆的半径为6,那么60°的圆心角所对的弧长为 ( )(A)π (B)2π (C)3π (D) 6π6.如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段的OM 的长的取值范畴是( ) (A)3≤OM ≤5; (B)4≤OM ≤5; (C)3<OM <5; (D) 4<OM <57.圆柱形油桶(有盖)的底面直径为0.6m,母线长为1m,则油桶的表面积为( ) (A)1.92π (B)0.78π (C) 0.69π (D) 0.6π8如图,BC 是O 的直径,P 是CB 延长线上的一点,PA 切O 于点A ,假如PA =3,PB =1, 那么∠APC 等于 ( )(A)15° (B)30° (C) 45° (D) 60° 9如图,AB 是⊙O 的直径,∠C =30°,则∠ABD 等于 ( )(A) 30° (B) 40° (C) 50° (D) 60°(8题图) (9题图)10.两圆内切,一个圆的半径是3,圆心距是2,那么另一个圆的半径为( ) (A) 1 (B) 3 (C) 2或3. (D) 1或5.二、 填空题(每题4分,共32分)11.已知:如图,AB 是⊙O 的直径,BD =OB ,∠CAB =30°,请依照已知条件和图形,写出三个正确的结论(AO =BO =BD 除外)________;_____________;____________.(11题图) (12题图) 12.如图,∠AOB=300,OM=6,那么以M 为圆心,4为半径的圆与直OA 的位置关系是_________________. 13.如图,△ABC 内接于⊙O,∠B=∠OAC,OA=8㎝,则AC 的长等于_______㎝。
1第24章 圆一、与圆有关的中档题:与圆有关的证明(证切线为主)和计算(线段长、面积、三角函数值、最值等) 1. 如图,BD 为⊙O 的直径,AC 为弦,AB AC =,AD 交BC 于E ,2AE =,4ED =. (1)求证:ABE ADB △∽△,并求AB 的长;(2)延长DB 到F ,使BF BO =,连接FA ,判断直线FA 与⊙O 的位置关系,并说明理由.1.解:AB AC =,ABC C ∴=∠∠C D =∠∠,ABC D ∴=∠∠. 又BAE DAB =∠∠,ABE ADB ∴△∽△. AB AEAD AB∴=. ()()224212AB AD AE AE ED AE ∴==+=+⨯=.AB ∴=(舍负).(2)直线FA 与O 相切.连接OA .BD 为O 的直径,90BAD ∴=∠.在Rt ABD ∆中,由勾股定理,得BD ====1122BF BO BD ∴===⨯= 2AB =,BF BO AB ∴==.(或BF BO AB OA ∴===,AOB ∴∆是等边三角形,F BAF ∠=∠.60OBA OAB ∴∠=∠=︒,30F BAF ∠=∠=︒.) 90OAF ∴=∠.OA ∴⊥AF .又点A 在圆上,∴直线FA 与O 相切.2. 已知:如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC 、BC 分别交于点D 、E ,过点D 作DF ⊥BC ,垂足为F .(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求DF 的长; (3)求图中阴影部分的面积.2.(1)证明:连接DO .∵ABC ∆是等边三角形 ,∴∠C =60°,∠A =60°, ∵OA =OD , ∴OAD ∆是等边三角形. ∴∠ADO =60°. ∵DF ⊥BC ,∴∠CDF =30°.∴∠FDO =180°-∠ADO -∠CDF = 90°.∴DF 为⊙O 的切线.(2)∵OAD ∆是等边三角形,∴CD =AD =AO =21AB =2. Rt CDF ∆中,∠CDF =30°,∴CF =21CD =1. ∴DF =322=-CF CD . (3)连接OE ,由(2)同理可知E 为CB 中点,∴2=CE .∵1=CF ,∴1=EF . ∴233)(21=⋅+=DF OD EF S FDOE直角梯形. ∴ππ323602602=⨯=DOES 扇形.∴π32233-=-DOE FDOE S S 扇形直角梯形.3、如图,已知圆O 的直径AB 垂直于弦CD 于点E ,连接CO 并延长交AD 于点F ,且CF AD ⊥.(1)请证明:E 是OB 的中点; (2)若8AB =,求CD 的长.3、(1)证明:连接AC ,如图CF AD ⊥,AE CD ⊥且CF AE ,过圆心OAC AD ∴=,AC CD =,ACD ∴△是等边三角形. 30FCD ∴∠=在Rt COE △中,12OE OC =,12OE OB ∴=∴点E 为OB 的中点(2)解:在OCE t ∆R 中8AB =,142OC AB ∴==又BE OE =,2OE ∴=3241622=-=-=∴OE OC CE 243CD CE ∴==4.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠BAC = 60︒,P 是OB 上一点,过P 作AB 的垂线与AC 的延长线交于点Q ,连结OC ,过点C 作OC CD ⊥交PQ 于点D .FEDCBOA1CEF (1)求证:△CDQ 是等腰三角形; (2)如果△CDQ ≌△COB ,求BP :PO 的值.4. (1)证明:由已知得∠ACB =90°,∠ABC =30°,∴∠Q =30°,∠BCO =∠ABC =30°. ∵CD ⊥OC ,∴∠DCQ =∠BCO =30°,∴∠DCQ =∠Q ,∴△CDQ 是等腰三角形. (2)解:设⊙O 的半径为1,则AB =2,OC =1,AC =121=AB ,BC =3. ∵等腰三角形CDQ 与等腰三角形COB 全等,∴CQ =BC =3.∵AQ =AC +CQ =1+3,AP =23121+=AQ , ∴BP =AB -AP =2332312-=+- PO =AP -AO =2131231-=-+, ∴BP ∶PO =3.5. 已知:如图, BD 是半圆O 的直径,A 是BD 延长线上的一点,BC ⊥AE ,交AE 的延长线于点C , 交半圆O 于点E,且E 为DF 的中点. (1)求证:AC 是半圆O 的切线;(2)若662AD AE ==,,求BC 的长.5.解:(1)连接OE , ∵E 为DF 的中点,∴DE EF =. ∴ OBE CBE ∠=∠.∵OE OB =,∴OEB OBE ∠=∠.∴ OEB CBE ∠=∠.∴OE ∥BC. ∵BC ⊥AC , ∴∠C=90°. ∴ ∠AEO =∠C =90°. 即OE ⊥AC . 又OE 为半圆O 的半径,∴ AC 是半圆O 的切线. (2)设O 的半径为x ,∵OE AC ⊥,∴222(6)(62)x x +-=. ∴3x =. ∴12AB AD OD OB =++=. ∵OE ∥BC,∴AOE ABC △∽△.∴AO OE AB BC =. 即9312BC= ∴4BC =.6.如图,ABC △内接于⊙O,过点A 的直线交⊙O 于点P ,交BC 的延长线于点D ,且AB 2=AP ·AD (1)求证:AB AC =;(2)如果60ABC ∠=,⊙O 的半径为1,且P 为弧AC 的中点,求AD 的长.OPDCB6.解:(1)证明:联结BP .∵ AB 2=AP·AD ,∴ AB AP =ADAB.∵ ∠BAD=∠PAB ,∴ △ABD ∽△APB, ∴ ∠ABC =∠APB ,∵∠ACB =∠APB , ∴ ∠ABC =∠ACB.∴ AB=AC.(2)由(1)知AB=AC . ∵∠ABC=60°,∴△ABC 是等边三角形.∴∠BAC=60°, ∵P 为弧AC 的中点,∴∠AB P =∠PAC=12 ∠A BC=30°,∴∠BAP=90°, ∴ BP 是⊙O 的直径, ∴ BP=2, ∴ AP =12BP=1,在Rt △PAB 中,由勾股定理得 AB 2= BP 2-AP 2=3, ∴ AD =AB2AP=3.7.如图,在△ABC 中,∠C =90°, AD 是∠BAC 的平分线,O 是AB 上一点, 以OA 为半径的⊙O 经过点D .(1)求证: BC 是⊙O 切线;(2)若BD =5, DC =3, 求AC 的长. 7.(1)证明: 如图1,连接OD .∵ OA =OD , AD 平分∠BAC , ∴ ∠ODA =∠OAD , ∠OAD =∠CAD .∴ ∠ODA =∠CAD . ∴ OD //AC . ∴ ∠ODB =∠C =90︒. ∴ BC 是⊙O 的切线. 图1(2)解法一: 如图2,过D 作DE ⊥AB 于E .∴ ∠AED =∠C =90︒. 又∵ AD =AD , ∠EAD =∠CAD ,∴ △AED ≌△ACD .∴ AE =AC , DE =DC =3.在Rt △BED 中,∠BED =90︒,由勾股定理,得 BE =422=-DE BD . 图2设AC =x (x >0), 则AE =x .在Rt △ABC 中,∠C =90︒, BC =BD +DC =8, AB =x +4, 由勾股定理,得x 2 +82= (x +4) 2. 解得x =6. 即 AC =6. 解法二: 如图3,延长AC 到E ,使得AE =AB .∵ AD =AD , ∠EAD =∠BAD ,∴ △AED ≌△ABD .∴ ED =BD=5.在Rt △DCE 中,∠DCE =90︒, 由勾股定理,得 CE =422=-DC DE . ………… ……………5分D1在Rt △ABC 中,∠ACB =90︒, BC =BD +DC =8, 由勾股定理,得 AC 2 +BC 2= AB 2.即 AC 2 +82=(AC +4) 2.解得 AC =6.8.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD⊥AB 于E,连结AC 、OC 、BC.(1)求证:∠ACO=∠BCD;(2)若BE=2,CD=8,求AB 和AC 的长.8、证明:(1)连结BD,∵AB 是⊙O 的直径,CD⊥AB ,∴. ∴∠A=∠2.又∵OA=OC ,∴∠1=∠A.∴∠1=∠2.即:∠ACO=∠BCD. 解:(2)由(1)问可知,∠A=∠2,∠AEC=∠CE B.∴△ACE∽△CBE.∴.CEAEBE CE =∴CE 2=BE·AE. 又CD=8,∴CE=DE=4.∴AE=8.∴AB=10.∴AC=.548022==+CE AE9.如图,已知BC 为⊙O 的直径,点A 、F 在⊙O 上,BC AD ⊥,垂足为D ,BF 交AD 于E ,且BE AE =.(1)求证:AF AB =; (2)如果53sin =∠FBC ,54=AB ,求AD 的长.9.解:(1)延长AD 与⊙O 交于点G .∵ 直径BC ⊥弦AG 于点D ,∴ . ∴ ∠AFB =∠BAE .∵ AE =BE ,∴ ∠ABE =∠BAE .∴ ∠ABE =∠AFB . ∴ AB =AF . (2)在Rt △EDB 中,sin ∠FBC =53=BE ED . 设ED =3x ,BE =5x ,则AE =5x ,AD =8x ,在Rt △EDB 中,由勾股定理得BD =4x . 在Rt △ADB 中,由勾股定理得BD 2+AD 2=AB 2.∵ AB =45,∴ 222)54()8()4(=+x x .AB=GBABCDEO GFOG FH A BC DECBA∴ x =1(负舍).∴ AD =8x =8.10.如图,已知直径与等边ABC ∆的高相等的圆O 分别与边AB 、BC 相切于点D 、E,边AC 过圆心O 与圆O 相交于点F 、G 。
人教版数学九上圆一、单选题1.下列语句中正确的是( )A.长度相等的两条弧是等弧B.圆上一条弧所对的圆心角等于它所对圆周角的一半C.垂直于圆的半径的直线是圆的切线D.三角形有且只有一个外接圆2.如图,OA,OC是⊙O的半径,点B在⊙O上,若AB∥OC,∠BCO=21°,则∠AOC的度数是( )A.42°B.21°C.84°D.60°3.如图,在矩形ABCD中,AD=8,以AD的中点O为圆心,以OA长为半径画弧与BC相切于点E,则阴影部分的面积为( )A.8―4πB.16―4πC.32―4πD.32―8π4.如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接CE,若AB=4,CD=1,则CE的长为( )A.13B.4C.10D.155.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是( )A.B.C.D.6.如图.将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,连接AC.若OA=2,则图中阴影部分的面积是( )A.2π3―32B.2π3―3C.π3―32D.π37.如图,⊙O是正△ABC的外接圆,△DOE是顶角为120°的等腰三角形,点O与圆心重合,点D,E 分别在圆弧上,若⊙O的半径是6,则图中阴影部分的面积是( )A.4πB.12π―9 3C.12π―923D.24π―9 38.如图,在正方形ABCD中,点E,F分别是边BC和CD上的动点(不与端点重合),∠EAF=45°,AF、AE分别与对角线BD交于点G和点H,连接EG.以下四个结论:(1)BE+DF=EF;(2)△AGE是等腰直角三角形;(3)S△AGH:S△AEF=1:2;(4)AB+BE=2BG,其中正确结论的个数是( )A.1B.2C.3D.49.【情境】如图是某数学项目学习小组设计的“鱼跃龙门”徽章图案,已知A,B,C,D,E是圆的5个等分点,连结BD,CE交于点F.设鱼头部分的四边形ABFE的面积为S1,鱼尾部分的△CDF的面积为S2.【问知】设S1:S2=n:1,则n的值为( )A.43―1B.3+5C.1+25D.35―110.如图,半径为5的圆中有一个内接矩形ABCD,AB>BC,点M是ABC的中点,MN⊥AB于点N,若矩形ABCD的面积为30,则线段MN的长为()A.10B.522C.702D.210二、填空题11.如图,在⊙O的内接五边形ABCDE中,∠EBD=31°,则∠A+∠C= °.12.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为 cm.13.如图,⊙O是△ABC的外接圆,∠A=45°,BC=2,则⊙O的直径为 .14.如图,将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,若OA=2,则OC的长为 .15.如图,半径为5的⊙O与y轴相交于A点,B为⊙O在x轴上方的一个动点(不与点A重合),C 为y轴上一点且∠OCB=60°,I为△BCO的内心,则△AIO的外接圆的半径的取值(或取值范围)为 .16.如图,已知△ABC是⊙O的内接三角形,⊙O的半径为2,将劣弧AC沿AC折叠后刚好经过弦BC的中点D.若∠ACB=60°,则弦AC的长为 .三、解答题17.如图,直径为1m的圆柱形水管有积水(阴影部分),水面的宽度AB为0.8m,求水的最大深度CD.18.如图,在⊙O中,半径OA⊥OB,∠B=28°,求∠BOC的度数.19.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连结BD.(1)求证:∠BAD=∠CBD.(2)若∠AEB=125°,求BD的长.(结果保留π)20.如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线:(2)若∠DFA=30°,DF=4,求阴影部分的面积.21.在直角坐标系中,以M(3,0)为圆心的⊙M交x轴负半轴于A,交x轴正半轴于B,交y轴于C、D.其中C点坐标为(0,4).(1)求点A坐标.(2)如图,过C作⊙M的切线CE,过A作AN⊥CE于F,交⊙M于N,求AN的长度.(3)在⊙M上,若∠CPM=45°,求出点P的坐标.22.圆内接四边形若有一组邻边相等,则称之为等邻边圆内接四边形.(1)如图1,四边形ABCD为等邻边圆内接四边形,AD=CD,∠ADC=60°,直接写出∠ABD的度数;(2)如图2,四边形ADBC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,若四边形ADBC为等邻边圆内接四边形,AD=BD,求CD的长.(3)如图3,四边形ABCD为等邻边圆内接四边形,BC=CD,AB为⊙O的直径,且AB=48.设BC= x,四边形ABCD的周长为y,试确定y与x的函数关系式,并求出y的最大值.答案解析部分1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】D6.【答案】B7.【答案】B8.【答案】D9.【答案】B10.【答案】A11.【答案】21112.【答案】1613.【答案】2214.【答案】2π315.【答案】53316.【答案】621717.【答案】解:∵⊙O的直径为1m,∴OA=OD=0.5m.∵OD⊥AB,AB=0.8m,∴AC=0.4m,∴OC=OA2―AC2=0.52―0.42=0.3m,∴CD=OD―OC=0.5―0.3=0.2m.答:水的最大深度为0.2m.18.【答案】解:∵OA⊥OB,∴∠AOB=90°,∴∠A=90°﹣∠B=90°﹣28°=62°,∵OA=OC,∴∠ACO=∠A=62°,而∠ACO=∠BOC+∠B,∴∠BOC=62°﹣28°=34°.19.【答案】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD.∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:如图,连结OD.∵∠AEB= 125°,∴∠AEC= 55°.∵AB为⊙O的直径,∴∠ACE=90°,∴∠CAE= 35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴BD的长为70×π×3180=7 6π.20.【答案】(1)证明:∵C,A,D,F在⊙O上,AF⊥AC,∴∠D=∠CAF=90°,∵AB⊥CD,BG⊥DF,∴∠BED=∠G=90°,∴四边形BEDG中,∠ABG=90°,∴半径OB⊥BG,∴BG是⊙O的切线;(2)解:连接CF,∵∠CAF=90°,∴CF是⊙O的直径,∴OC=OF,∵直径AB⊥CD于E,∴CE=DE,∴OE是△CDF的中位线,∴OE=12DF=2,∵∠AFD=30°,∴∠ACD=∠AFD=30°,∴∠CAE=90°―∠ACE=60°,∵OA=OC,∴△AOC是等边三角形,∵CE⊥AB,∴E为AO的中点,∴OA=2OE=4,OB=4,AE=2,∴BE=OB+OE=6,DE=CE=23,∵∠BED=∠D=∠G=90°,∴四边形BEDG是矩形,∴S阴影=S矩形BEDG―S梯形OEDF―S扇形BOF=6×23―12×(2+4)×23―60π⋅42360=63―83π.21.【答案】(1)解:连接CM,∵M(3,0),C(0,4),∴OM=3,OC=4,∴CM=5,即⊙M的半径为5,∴MA=5,∴AO=AM-OM=2,∴A(―2,0);(2)连接CM,作MH⊥AN于H,∵CE为⊙M的切线,∴MC⊥EC,即∠MCE=90°.∵AN⊥CE于F,即∠AFC=90°.又∵MH⊥AN于H,即∠MHA=90°.∴在四边形FHMC中,∠CMH=90°=∠CMO+∠AMH.∵在Rt△AHM中,∠HAM+∠AMH=90°,∴∠HAM=∠CMO.∵在Rt△COM中,∠CMO+∠OCM=90°,∴∠OCM=∠AMH.∵在△AMH与△MCO中,{∠HAM=∠CMOMC=MA∠OCM=∠AMH∴△AMH≌△MCO(ASA),故AH=MO=3.即AN=HN+AH=3+3=6;(3)解:结合题意,可知PM=CM,△CMP为等腰三角形,同时因为∠CPM=45°=∠PCM,因此△CMP也是等腰直角三角形,即∠CMP=90°且CM=PM=5.①当P在CM右侧时,作PE垂直x轴于E.∵∠CMP=90°,∴∠CMO+∠PME=90°.又∵在Rt△PEM中,∠PME+∠MPE=90°,∴∠CMO=∠MPE.∴同理可得∠MCO=∠PME.在△MCO与△PME中,{∠CMO=∠MPECM=PM∠MCO=∠PME∴△MCO≌△PME(ASA)∴OM=PE=3,ME=OC=4,即存在P1(7,3);②当P在CM左侧时(设为P2),作PF垂直x轴于F.根据圆的对称性,结合①的结论,易证:△MCO≌△PMF,∴OM=PF=3,FM=OC=4,即存在P2(―1,―3).22.【答案】(1)解:60°(2)解:连接CD,过点A作AH⊥CD,交CD于点H.如图:在Rt△AHC中,∵∠ACH=∠ABD=45°,AC=6,∴CH=AH=32,此时△ADB为等腰直角三角形,AD=BD=52,在Rt△AHD中,∵AH=32,AD=52,∴DH=42,∴CD=CH+DH=72.(3)解:如图,连接OC,BD.∵BC=CD,OB=OD,∴OC垂直平分BD,∵O为AB中点,∴OF为△BDA的中位线,有OF=12AD,OF//AD,设OF=t,则CF=24―t,AD=2t,y=48+x+x+2t=2t+2x+48,在Rt△BFC中,B F2=B C2―C F2=x2―(24―t)2,在Rt△BFO中,B F2=B O2―O F2=242―t2,于是有:x2―(24―t)2=242―t2,整理得,t=―148x2+24,∴y=―124x 2+2x+96=―124(x―24)2+120,当x=24时,y max=120。
word版初中数学第二十四章《圆》专题练习目录专题1 与圆周角有关的辅助线作法 (1)专题2圆周角定理 (3)专题3 证明切线的两种常用方法 (4)专题4与切线长有关的教材变式 (5)专题5与圆的切线有关的计算与证明 (6)专题6 求阴影部分的面积 (8)专题1 与圆周角有关的辅助线作法类型1 构造同弧或等弧所对的圆周角或圆心角1.如图,点A ,B ,C ,D 在⊙O 上,∠AOC =140°,点B 是AC ︵的中点,则∠D 的度数是( )A .70°B .55°C .35.5°D .35°2.如图,点A ,B ,C ,D 分别是⊙O 上的四点,∠BAC =50°,BD 是直径,则∠DBC 的度数是( )A .40°B .50°C .20°D .35°3.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOD =50°,AO ∥DC ,则∠B 的度数为( ) A .50°B .55°C .60°D .65°4.如图,A ,B ,C 在⊙O 上,∠ACB =40°,点D 在ACB ︵上,M 为半径OD 上一点,则∠AMB 的度数不可能为( )A .45°B .60°C .75°D .85°类型2 利用直径构造直角三角形5.如图,在⊙O 中,∠OAB =20°,则∠C 的度数为 .6.如图,在⊙O 中,AB 为直径,∠ACB 的平分线交⊙O 于点D ,AB =6,则BD = .7.如图,⊙A 过点O ,C ,D ,点C 的坐标为(3,0),点B 是x 轴下方⊙A 上的一点,连接BO ,BD ,已知∠OBD =30°,则⊙A 的半径等于 .8.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于点D ,AC =5,DC =3,AB =42,则⊙O 的半径为 .类型3 构造圆内接四边形9.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60°C.80° D.100°10.如图,已知A,B,C,D是⊙O上的四个点,⊙O的直径AB=2 3.若∠ACD=120°,则线段AD的长为.专题2 圆周角定理1.如图,四边形APBC 是圆内接四边形,延长BP 至E ,若∠EPA =∠CPA ,判断△ABC 的形状,并证明你的结论.2.如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC =∠APC =60°. (1)求证:△ABC 是等边三角形; (2)求圆心O 到BC 的距离OD.3.如图,点A ,B ,C ,D 在同一个圆上,且C 点为一动点(点C 不在BAD ︵上,且不与点B ,D 重合),∠ACB =∠ABD =45°.(1)求证:BD 是该圆的直径; (2)连接CD ,求证:2AC =BC +CD.专题3 证明切线的两种常用方法类型1 直线与圆有交点:连半径,证垂直 (一)借助角度转换证垂直1.如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,AB 与CD 交于点E ,点P 是CD 延长线上的一点,AP =AC ,且∠B =2∠P.求证:PA 是⊙O 的切线.(二)利用平行证垂直2.如图,AB 是⊙O 的直径,点F ,C 是⊙O 上两点,且点C 为BF ︵的中点,连接AC ,AF ,过点C 作CD ⊥AF 交AF 延长线于点D.求证:CD 是⊙O 的切线.(三)利用全等证垂直3.如图,AB 是⊙O 的直径,BC ⊥AB 于点B ,连接OC 交⊙O 于点E ,弦AD ∥OC.求证: (1)DE ︵=BE ︵; (2)CD 是⊙O 的切线.(四)利用勾股定理的逆定理证垂直4.(南充中考改编)如图,C 是⊙O 上一点,点P 在直径AB 的延长线上,⊙O 的半径为3,PB =2,PC =4.求证:PC 是⊙O 的切线.类型2 不确定直线与圆是否有交点:作垂直,证半径5.如图,△ABC 为等腰三角形,O 是底边BC 的中点,腰AB 与⊙O 相切于点D ,OB 与⊙O 相交于点E.求证:AC 是⊙O 的切线.专题4 与切线长有关的教材变式1.如图,AB ,BC ,CD 分别与⊙O 相切于点E ,F ,G ,若∠BOC =90°,求证:AB ∥CD.2.如图,⊙O的直径AB=12 cm,AM和BN是它的两条切线,DE与⊙O相切于点E,并与AM,BN分别相交于D,C 两点.设AD=x,BC=y,求y关于x的函数解析式.3.如图,Rt△ABC的内切圆⊙O与AB,BC,AC分别相切于点D,E,F,且AC=13,AB=12,∠ABC=90°,则⊙O 的半径为.4.如图,△ABC的周长为18,其内切圆⊙O分别切三边于D,E,F三点,AF=3,FC=4,则BE=.5.已知一个三角形的三边长分别为5,7,8,则其内切圆的半径为()A.32B.32C. 3 D.2 3专题5 与圆的切线有关的计算与证明1.如图,过⊙O 外一点P 引⊙O 的两条切线PA ,PB ,切点分别是A ,B ,OP 交⊙O 于点C ,点D 是优弧ABC ︵上不与点A ,点C 重合的一个动点,连接AD ,CD.若∠APB =80°,则∠ADC 的度数是( )A .15°B .20°C .25°D .30°2.如图,将正方形ABCD 绕点A 按逆时针方向旋转30°,得正方形AB 1C 1D 1,B 1C 1交CD 于点E ,AB =3,则四边形AB 1ED 的内切圆半径为( )A.3+12 B.3-32 C.3+13 D.3-333.如图,矩形ABCD 中,AB =4,BC =3,连接AC ,⊙P 和⊙Q 分别是△ABC 和△ADC 的内切圆,则PQ 的长是( )A.52B. 5C.52D .2 24.如图,⊙O 是△ABC 的外接圆,BC 为⊙O 的直径,点E 为△ABC 的内心,连接AE 并延长交⊙O 于点D ,连接BD 并延长至点F ,使得BD =DF ,连接CF ,BE.求证: (1)DB =DE ;(2)直线CF 为⊙O 的切线.5.如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E,若⊙O的半径为3,PC=4.求弦CE的长.6.如图,PA,PB是⊙O的切线,A,B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O 的半径为1,求菱形ACBP 的面积.7.如图,⊙O 是边长为6的等边△ABC 的外接圆,点D 为BC ︵的中点,过点D 作DE ∥BC ,DE 交AC 的延长线于点E ,连接AD ,CD.(1)DE 与⊙O 的位置关系是相切; (2)求△ADC 的内切圆半径r.专题6 求阴影部分的面积类型1 直接利用公式求面积1.如图,从一块直径为2 m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为( ) A.π2 m 2 B.32π m 2 C .π m 2 D .2π m 2类型2 利用和差法求面积2.如图,在Rt △ABC 中,∠ACB =90°,AC =23,以点B 为圆心,BC 的长为半径作弧,交AB 于点D.若点D 为AB 的中点,则阴影部分的面积是( )A .23-23πB .43-23πC .23-43π D.23π3.如图,在扇形AOB 中,∠AOB =90°,正方形CDEF 的顶点C 是AB ︵的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为( )A .2π-4B .4π-8C .2π-8D .4π-44.如图,分别以五边形ABCDE 的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为( )A.32π B .3π C.72π D .2π5.如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O ′,B ′,连接BB ′,则图中阴影部分的面积是( )A.2π3 B .23-π3 C .23-2π3 D .43-2π36.如图,在正方形ABCD 中,AB =12,点E 为BC 的中点,以CD 为直径作半圆CFD ,点F 为半圆的中点,连接AF ,EF ,图中阴影部分的面积是( )A .18+36πB .24+18πC .18+18πD .12+18π7.如图,在平行四边形ABCD 中,AB <AD ,∠D =30°,CD =4,以AB 为直径的⊙O 交BC 于点E ,则阴影部分的面积为 .8.如图,在Rt △ABC ,∠B =90°,∠C =30°,O 为AC 上一点,OA =2,以O 为圆心,以OA 为半径的圆与CB 相切于点E ,与AB 相交于点F ,连接OE ,OF ,则图中阴影部分的面积是 .类型3 利用等积转化法求面积9.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分的面积为( )A .2πB .Π C.π3 D.2π310.如图,在正方形ABCD中,O为对角线交点,将扇形AOD绕点O顺时针旋转一定角度得到扇形EOF,则在旋转过程中图中阴影部分的面积()A.不变 B.由大变小C.由小变大 D.先由小变大,后由大变小11.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC =10 cm,∠BAC=36°,则图中阴影部分的面积为()A.5π cm2 B.10π cm2 C.15π cm2 D.20π cm212.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD =6,EF=8.则图中阴影部分的面积是()A.252π B.10π C.24+4π D.24+5π13.如图,在△ACB中,∠BAC=90°,AC=2,AB=3,现将△ACB绕点A逆时针旋转90°得到△AC1B1,则阴影部分的面积为.参考答案:专题1 与圆周角有关的辅助线作法1.D2.A3.D4.D5.110°__.67.1.829.D11.3.专题2 圆周角定理——教材P90T14的变式与应用1.解:△ABC是等腰三角形,理由:∵四边形APBC是圆内接四边形,∴∠EPA=∠ACB.∵∠EPA=∠CPA,∠CPA=∠ABC,∴∠ACB=∠ABC.∴AB=AC.∴△ABC是等腰三角形.2.解:(1)证明:∵∠ABC=∠APC=60°,∠BAC=∠APC=60°,∴∠ABC=∠BAC=60°.∴△ABC是等边三角形.(2)连接OB ,OC.可得∠BOC =2∠BAC =2×60°=120°. ∵OB =OC ,∴∠OBD =∠OCD =12×(180°-120°)=30°.∵∠ODB =90°,∴OD =12OB =4.3.证明:(1)∵∠ACB =∠ADB =45°, ∠ABD =45°, ∴∠BAD =90°. ∴BD 是该圆的直径.(2)在CD 的延长线上截取DE =BC ,连接EA. ∵∠ABD =∠ADB ,∴AB =AD.∵∠ADE +∠ADC =180°,∠ABC +∠ADC =180°,∴∠ABC =∠ADE. 在△ABC 和△ADE 中, ⎩⎪⎨⎪⎧AB =AD ,∠ABC =∠ADE ,BC =DE ,∴△ABC ≌△ADE (SAS ). ∴∠BAC =∠DAE.∴∠BAC +∠CAD =∠DAE +∠CAD. ∴∠BAD =∠CAE =90°.∵∠ACD=∠ABD=45°,∴△CAE是等腰直角三角形.∴2AC=CE.∴2AC=DE+CD=BC+CD.专题3 证明切线的两种常用方法1.证明:连接OA,AD.∵∠B=2∠P,∠B=∠ADC.∴∠ADC=2∠P.又∵AP=AC,∴∠P=∠ACP.∴∠ADC=2∠ACP.∵CD为直径,∴∠DAC=90°.∴∠ADC=60°,∠ACD=30°.∴△ADO为等边三角形.∴∠AOP=60°.而∠P=∠ACP=30°,∴∠OAP=90°.∴OA⊥PA.又∵AO为⊙O的半径,∴PA是⊙O的切线.2.证明:连接OC,∵CF ︵=CB ︵,OA =OC , ∴∠DAC =∠BAC =∠ACO. ∴AD ∥OC. ∵CD ⊥AF 于点D , ∴∠DCO =90°. 又∵OC 为⊙O 的半径, ∴CD 为⊙O 的切线. 3.证明:(1)连接OD. ∵AD ∥OC ,∴∠DAO =∠COB ,∠ADO =∠DOC. 又∵OA =OD ,∴∠DAO =∠ADO. ∴∠COB =∠COD. ∴DE ︵=BE ︵.(2)由(1)知∠DOE =∠BOE , 在△COD 和△COB 中, ⎩⎪⎨⎪⎧CO =CO ,∠DOC =∠BOC ,OD =OB ,∴△COD ≌△COB (SAS ). ∴∠CDO =∠B.又∵BC ⊥AB ,∴∠CDO =∠B =90°.∵点D在⊙O上,∴CD是⊙O的切线.4.证明:连接OC.∵⊙O的半径为3,∴OC=OB=3.又∵BP=2,∴OP=5.在△OCP中,OC2+PC2=32+42=52=OP2,∴△OCP为直角三角形,∠OCP=90°.∴OC⊥PC.∵C是⊙O上一点,∴PC为⊙O的切线.5.证明:连接OA,OD,作OF⊥AC于点F,垂足为F. ∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC.∵AB与⊙O相切于点D,∴OD⊥AB.而OF⊥AC,∴OF=OD.∴AC是⊙O的切线.专题4 与切线长有关的教材变式1.证明:∵∠BOC=90°,∴∠OBC+∠OCB=90°.又∵BE与BF为⊙O的切线,∴BO为∠EBF的平分线.∴∠OBE=∠OBF.同理可得∠OCB=∠OCG.∴∠OBE+∠OCG=90°.∴∠OBC+∠OCB+∠OBE+∠OCG=180°,即∠ABF+∠DCF=180°.∴AB∥CD.2.解:过点D作DF⊥BC于点F.∵AD,BC分别是⊙O的切线,∴∠OAD=∠OBF=90°.又∵DF⊥BC,∴四边形ABFD为矩形.∴DF=AB=12 cm,BF=AD.∵AD,BC,DC分别为⊙O的切线,∴DE=DA=x,CE=CB=y.∴DC=x+y,CF=y-x.在Rt △DCF 中,由勾股定理,得DC 2=CF 2+DF 2,即(x +y )2=(y -x )2+122,整理,得xy =36.∴y =36x. ∴y 关于x 的函数解析式y =36x(x>0). 3.2.4.2.5.C专题5 与圆的切线有关的计算与证明1.C2.B3.B4.证明:(1)∵E 为△ABC 的内心,∴∠DAC =∠DAB ,∠CBE =∠EBA.又∵∠DBC =∠DAC ,∠DBE =∠DBC +∠CBE ,∠DEB =∠EAB +∠EBA ,∴∠DBE =∠DEB.∴DB =DE.(2)连接OD.∵BD =DF ,O 是BC 的中点,∴OD ∥CF.又∵BC 为⊙O 的直径,OB =OD ,∴∠ODB =∠DBO =∠DAC =45°.∴∠OCF =∠BOD =90°.∴OC ⊥CF.又∵OC 为⊙O 的半径,∴直线CF 为⊙O 的切线.5.解:(1)证明:过点O 作OD ⊥PB ,连接OC.∵AP 与⊙O 相切,∴OC ⊥AP.又∵OP 平分∠APB ,∴OD =OC.∴PB 是⊙O 的切线.(2)过点C 作CF ⊥PE 于点F.在Rt △OCP 中,OP =OC2+CP2=5.∵S △OCP =12OC ·CP =12OP ·CF ,∴CF =125. 在Rt △COF 中,OF =CO2-CF2=95. ∴FE =3+95=245.在Rt △CFE 中,CE =CF2+EF2=1255. 6.解:(1)证明:连接AO ,BO.∵PA ,PB 是⊙O 的切线,∴∠OAP =∠OBP =90°,PA =PB ,∠APO =∠BPO =12∠APB =30°. ∴∠AOP =60°.∵OA =OC ,∴∠OAC =∠OCA.∴∠AOP =∠CAO +∠ACO.∴∠ACO =30°.∴∠ACO =∠APO.∴AC =AP.同理BC =PB ,∴AC =BC =BP =AP.∴四边形ACBP 是菱形.(2)连接AB 交PC 于点D ,则AD ⊥PC.在Rt △AOD 中,∠AOD =60°,∴∠OAD =30°.∴OD =12OA =12. ∴AD =OA2-OD2=12-(12)2=32.∴PA =2AD =3,AB =2AD = 3.∴OP =OA2+PA2=2,PC =OP +OC =2+1=3.∴菱形ACBP 的面积为12AB ·PC =332. 7.解:∵D 为BC ︵的中点,∴BD ︵=DC ︵.∴∠BAD =∠DAC =30°.又∵AB =AC ,∴AD 垂直平分BC.∴AD 为⊙O 的直径.∴∠ACD =90°.在Rt △ACD 中,∠DAC =30°,设DC =x ,则AD =2x.由勾股定理,得AD 2=DC 2+AC 2,即(2x )2=x 2+62.解得x =2 3.∴DC =23,AD =4 3.作Rt △ADC 的内切圆⊙O ′,分别切AD ,AC ,DC 于点F ,G ,H ,易知CG =CH =r , ∴AG =AF =6-r ,DH =DF =23-r.∵AF +DF =AD ,∴6-r +23-r =4 3.∴r =3- 3.专题6 求阴影部分的面积1.A2.A3.A4.C5.C6.C73823 9.D10.A11.B12.A13.94π.。
数学第二十四章圆测试题附参考答案时间:45分钟分数:100分一、选择题(每小题3分,共33分)1.(2005·资阳)若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为()A.2ba+B.2ba-C.22baba-+或D.baba-+或2.(2005·浙江)如图24—A—1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4 B.6 C.7 D.83.已知点O为△ABC的外心,若∠A=80°,则∠BOC的度数为()A.40°B.80°C.160°D.120°4.如图24—A—2,△ABC内接于⊙O,若∠A=40°,则∠OBC的度数为()A.20°B.40°C.50°D.70°5.如图24—A—3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位B.10个单位C.1个单位D.15个单位6.如图24—A—4,AB为⊙O的直径,点C在⊙O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°7.如图24—A—5,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为()A.5 B.7 C.8 D.108.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m,母线长为3m,为防雨需图24—A—5图24—A—1 图24—A—2 图24—A—3 图24—A—4在粮仓顶部铺上油毡,则这块油毡的面积是( )A .26m B .26m π C .212m D .212m π 9.如图24—A —6,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD=13,PC=4,则两圆组成的圆环的面积是( )A .16πB .36πC .52πD .81π10.已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( ) A .310 B .512 C .2 D .3 11.如图24—A—7,两个半径都是4cm 的圆外切于点C ,一只蚂蚁由点A 开始依A 、B 、C 、D 、E 、F 、C 、G 、A 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断爬行,直到行走2006πcm 后才停下来,则蚂蚁停的那一个点为( ) A .D 点 B .E 点 C .F 点 D .G 点 二、填空题(每小题3分,共30分) 12.如图24—A —8,在⊙O 中,弦AB 等于⊙O 的半径,OC ⊥AB 交⊙O 于点C ,则∠AOC= 。
新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷并且可以用于解决一些圆的问题。
在圆O中,圆心角∠XXX和∠AEB相等,则弦AB和DE相等,弦BC和BD相等,弦AC和AD相等,且弦心距相等。
七、切线与切点1、切线定义:过圆上一点的直线称为圆的切线;2、切点定义:圆上与切线相切的点称为切点;3、定理:切线垂直于半径,切点在切线上,且切点到圆心的距离等于半径长。
在圆O中,点A在圆上,线段AB是圆O上的一条切线,点B是切点,且AB垂直于半径OA,AB上的点与圆心O的距离等于半径OA的长度。
参考答案:一、圆的概念集合形式的概念:圆是到定点的距离等于定长的点的集合。
圆的外部是到定点的距离大于定长的点的集合,圆的内部是到定点的距离小于定长的点的集合。
轨迹形式的概念:圆是到定点的距离等于定长的点的轨迹,以定点为圆心,定长为半径的圆。
垂直平分线是到线段两端距离相等的点的轨迹,角的平分线是到角两边距离相等的点的轨迹,到直线的距离相等的点的轨迹是平行于这条直线且到这条直线的距离等于定长的两条直线,到两条平行线距离相等的点的轨迹是平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系点在圆内的距离小于半径,点在圆上的距离等于半径,点在圆外的距离大于半径。
三、直线与圆的位置关系直线与圆相离的距离大于半径,直线与圆相切的距离等于半径,直线与圆相交的距离小于半径。
四、圆与圆的位置关系圆与圆外离的距离大于两圆半径之和,圆与圆外切的距离等于两圆半径之和,圆与圆相交的距离在两圆半径之差和之和之间,圆与圆内切的距离等于两圆半径之差,圆与圆内含的距离小于两圆半径之差。
五、垂径定理垂径定理是指垂直于弦的直径平分弦且平分弦所对的弧。
推论1包括平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧,弦的垂直平分线经过圆心并且平分弦所对的两条弧,平分弦所对的一条弧的直径垂直平分弦并且平分弦所对的另一条弧。
六、圆心角定理圆心角定理是指同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
可编辑修改精选全文完整版九年级数学上册《第二十四章圆》单元测试卷带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.如L是⊙O的切线,要判定AB⊥L,还需要添加的条件是()A.AB经过圆心O B.AB是直径C.AB是直径,B是切点D.AB是直线,B是切点2.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25∘,则∠BOD的度数是()A.25∘B.30∘C.40∘D.50∘3.如图,⊙O的半径OD垂直于弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,则EC的长为()A.2√15B.8C.2√10D.2√134.如图在Rt△ABC中,∠ACB=90°,AC=6,BC=8,⊙O是△ABC的内切圆,连接AO,BO.则图中阴影部分的面积之和()A.10−32πB.14−52πC.12 D.145.如图,点A,B,C在⊙O上,若∠BOC=72∘,则∠BAC的度数是( )A.72∘B.36∘C.18∘D.54∘6.如图,在半径为5的⊙O中AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )A.3B.4C.3√2D.4√27.如图,已知OB为⊙C的半径,且OB=10cm,弦CD⊥OB于M,若OM:MB=4:1,则CD长为( )A.3cm B.6cm C.12cm D.24cm8.如图,在平面直角坐标系中,⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,若点P的坐标是(−1,2),则点Q的坐标是( )A.(−4,2)B.(−4.5,2)C.(−5,2)D.(−5.5,2)二、填空题9.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120∘,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为.(结果保留π)10.在半径为3cm的圆中,120∘的圆心角所对的弧长等于.11.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,若∠C=50∘,则∠AOD=.12.如图所示,点P为弦AB上一点,连接OP,过P作PC⊥OP,PC交⊙O于点C,若AP= 4,PB=2则PC的长为.13.如图,CD是⊙O的直径,弦AB⊥CD于点E,若AB=6,CE:ED=1:9则⊙O的半径是.三、解答题14.已知:点I是△ABC的内心,AI的延长线交外接圆于D.则DB与DI相等吗?为什么?15.如图,∠DAE是⊙O的内接四边形ABCD的一个外角,且∠DAE=∠DAC.求证:DB=DC.16.如图,AD是⊙O的弦,AB经过圆心O交⊙O于点C,∠A=∠B=30°,连接BD.求证:BD是⊙O的切线.17.如图,四边形ABCD是⊙O的内接四边形,AD的延长线与BC的延长线相交于点E,DC=DE.(1)求证:∠A=∠AEB;(2)如果DC⊥OE,求证:△ABE是等边三角形.18.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC.(2)若PC=2 √5,求⊙O的半径.参考答案1.C2.A3.C4.B5. B6. C7. C8. A9. 350πcm210. 2πcm11. 80°12. 2√213. 514.解:ID=BD.理由:如图所示:连接BI.由三角形的外角的性质可知:∠1+∠2=∠BIA.∵点I是△ABC的内心∴∠1=∠4,∠2=∠3.又∵∠4=∠5∴∠1+∠2=∠3+∠4=∠3+∠5,即∠BIA=∠IBD.∴ID=BD.15.证明:∵∠DAE是⊙O的内接四边形ABCD的一个外角,∴∠DAE=∠DCB,又∠DAE=∠DAC,∴∠DCB=∠DAC,又∠DAC=∠DBC,∴∠DCB=∠DBC,∴DB=DC16.解:如图,连接OD∵OD=OA∴∠ODA=∠DAB=30°∴∠DOB=∠ODA+∠DAB=60°∴∠ODB=180°﹣∠DOB﹣∠B=180°﹣60°﹣30°=90°即OD⊥BD∴直线BD与⊙O相切.17.(1)证明:∵四边形ABCD是⊙O的内接四边形∴∠A=∠DCE∵DC=DE∴∠DCE=∠DEC∴∠A=∠AEB(2)证明:∵DC⊥OE∴DF=CF∴OE是CD的垂直平分线∴ED=EC,又DE=DC∴△DEC为等边三角形∴∠AEB=60°,又∠A=∠AEB∴△ABE是等边三角形.18.(1)证明:连接OB∵OB=OP∴∠OPB=∠OBP∵∠OPB=∠APC∴∠OBP=∠APC∵AB与⊙O相切于点B∴OB⊥AB∴∠ABO=90°∴∠ABP+∠OBP=90°∵OA⊥AC∴∠OAC=90°∴∠ACB+∠APC=90°∴∠ABP=∠ACB∴AB=AC(2)证明:设⊙O的半径为r在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2 在Rt△ACP中,AC2=PC2﹣PA2AC2=(2 √5)2﹣(5﹣r)2∵AB=AC∴52﹣r2=(2 √5)2﹣(5﹣r)2 解得:r=3则⊙O的半径为3。