九年级数学切线
- 格式:pdf
- 大小:1.04 MB
- 文档页数:8
九年级数学切线知识点数学是一门充满挑战和智慧的学科,而数学的学习过程中,我们常常会遇到各种各样的概念和知识点。
在九年级数学中,切线是一个很重要的概念,它与曲线的性质和函数的导数密切相关。
本文将从几何和数学的角度,深入探讨九年级数学中的切线知识点。
一、什么是切线切线是几何学中的一个重要概念,它是与曲线相切,并且只与曲线在切点相交的一条直线。
在数学中,我们通常把切线定义为对应曲线在该点处的斜率的直线。
换句话说,切线是曲线上某一点的附近逼近曲线的线段。
二、切线的性质切线有一些重要的性质,首先是切线与曲线的切点。
在切点处,切线与曲线相切。
其次,切线的斜率与曲线在切点处的斜率相等,这被称为切线的斜率性质。
另外,切线上的任意一点到曲线的距离都是0,这表明切线是曲线上所有点中离该点最近的直线。
三、如何确定切线在数学中,我们通常通过求导数来确定曲线上的切线。
导数是函数在某一点处的变化率,也是切线的斜率。
如果我们要确定曲线上某一点的切线,我们需要求该函数在该点的导数。
具体的求导过程可以通过极限的思想来解释。
通过求导数,我们可以得到切线的斜率,并且知道切点的坐标,从而确定切线的方程。
四、常见曲线的切线切线知识点在九年级数学中的应用广泛,特别是在几何和函数领域。
我们先来看一些常见曲线的切线知识点。
1. 直线的切线:直线是最简单的曲线,它在任意一点的切线都是其本身。
因为直线在任意一点的斜率都是常数,所以切线的斜率也是常数。
2. 圆的切线:对于圆,切线是与圆相切且只与圆在切点处相交的直线。
在圆的切线性质中,切线的斜率等于与切线垂直的半径的斜率的相反数。
3. 抛物线的切线:抛物线是一个常见的曲线模型,它的切线与曲线在切点处相切。
抛物线切线的斜率是对应点处的函数导数。
4. 指数函数和对数函数的切线:指数函数和对数函数是一类具有特殊性质的函数,它们的切线与曲线在切点处相切。
同时,指数函数和对数函数的导数具有特殊的性质,可以通过计算导数来得到切线的斜率。
数学九年级切线知识点在数学的学习中,切线是一个重要的概念,广泛应用于几何和微积分等领域。
本文将介绍九年级学生需要了解的切线知识点,帮助学生更好地理解和掌握这一概念。
1. 切线的定义在几何中,切线是指与曲线仅有一个交点并且在该交点处与曲线相切的直线。
切线与曲线在切点处有相同的斜率。
对于抛物线、圆等常见曲线,可以通过求解切线与曲线的交点坐标和斜率来确定切线方程。
2. 切线与曲线的关系切线是曲线在某一点的局部性质,切线方程的斜率代表了曲线在对应点的斜率。
当曲线是直线时,切线与曲线重合;当曲线是曲线段或者曲线的一部分时,切线只与曲线在切点处相切。
3. 求解切线的方法求解切线可以通过不同的方法进行。
对于直线和圆等简单曲线,可以通过求解切点坐标和斜率来确定切线方程。
对于复杂曲线,可以通过导数的概念来求解切线。
导数代表了曲线的斜率,因此可以通过求解导数函数在对应点的值来确定切线的斜率,再结合切点坐标来确定切线方程。
4. 切线的性质切线有以下一些重要性质:- 切线与曲线在交点处相切,切点是切线与曲线的唯一交点。
- 切线与曲线在切点处具有相同的斜率。
- 切线的斜率可以通过对应点处曲线的导数来确定。
- 曲线的切线可以通过切点和切线的斜率来唯一确定。
5. 切线的应用切线在数学中有广泛的应用,特别是在几何和微积分中。
以下是一些常见的应用场景:- 切线可以用于求解曲线在某一点的斜率,进而求解曲线的性质和特征。
- 切线可以用于确定函数图像的开口方向和凹凸区间。
- 切线可以用于近似计算函数在某一点的函数值,特别是在微积分的切线近似和微分中。
- 切线可以用于求解曲线与直线的交点坐标。
总结:切线是数学中的重要概念,九年级学生需要了解切线的定义、性质、求解方法以及应用场景。
掌握切线的知识可以帮助学生更好地理解几何和微积分等学科内容,提升数学解题能力。
通过练习和实际应用,学生可以逐渐掌握切线的概念并灵活运用于解决问题。
切线长定理【学习目标】1.了解切线长定义,掌握切线长定理;2.了解圆外切四边形定义及性质;3. 利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点进阶:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点进阶:切线长定理包含两个结论:线段相等和角相等.要点二、圆外切四边形的性质1.圆外切四边形四边形的四条边都与同一个圆相切,那这个四边形叫做圆的外切四边形.2.圆外切四边形性质圆外切四边形的两组对边之和相等.【典型例题】类型一、切线长定理例1.已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.(1)若PA=6,求△PCD的周长.(2)若∠P=50°求∠DOC.例2.如图,△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,E为BC中点.求证:DE是⊙O切线.举一反三:【变式】已知:如图,⊙O为ABC∆的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF∠,过点A作AD BF⊥于点D.求证:DA为⊙O的切线.OFDCBA3421OFDCBA例3.如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积()A.12B.24C.8D.6类型二、圆外切四边形例4.已知四边形ABCD中,AB∥CD,⊙O为内切圆,E为切点.(Ⅰ)如图1,求∠AOD的度数;(Ⅱ)如图1,若AO=8cm,DO=6cm,求AD、OE的长;(Ⅲ)如图2,若F是AD的中点,在(Ⅱ)中条件下,求FO的长.举一反三:【变式】在圆外切四边形ABCD中,AB:BC:CD:AD只可能是().A.2:3:4:5B.3:4:6:5C.5:4:1:3D.3:4:2:5【巩固练习】 一、选择题1. 下列说法中,不正确的是 ( )A .三角形的内心是三角形三条内角平分线的交点B .锐角三角形、直角三角形、钝角三角形的内心都在三角形内部C .垂直于半径的直线是圆的切线D .三角形的内心到三角形的三边的距离相等2.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( ) A.21(a +b +c )r B.2(a +b +c ) C.31(a +b +c )r D.(a +b +c )r3.如图,点P 在⊙O 外,PA 、PB 分别与⊙O 相切于A 、B 两点,∠P=50°,则∠AOB 等于( )A .150°B .130°C .155°D .135°4. 如图所示,⊙O 的外切梯形ABCD 中,如果AD ∥BC ,那么∠DOC 的度数为( ) A.70° B.90° C.60° D.45°第4题图 第5题图5.如图,PA 、PB 分别是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,已知∠BAC=35°,∠P 的度数为( )A.35°B.45°C.65°D.70°6.已知如图所示,等边△ABC 的边长为2cm ,下列以A 为圆心的各圆中, 半径是3cm 的圆是( )二、填空题7.如图,⊙I 是△ABC 的内切圆,切点分别为点D 、E 、F ,若∠DEF=52o,则∠A 的度为________.第7题图 第8题图 第9题图8.如图,一圆内切于四边形ABCD ,且AB=16,CD=10,则四边形ABCD 的周长为________.9.如图,已知⊙O 是△ABC 的内切圆,∠BAC=50o,则∠BOC 为____________度.10.如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且 60=∠AEB ,则=∠P ____度.第10题图 第11题图11.如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA上一点,若∠ABC=32°,则∠P 的度数为 .12.已知点P是半径为1的⊙O外一点,PA切⊙O于点A,且PA=1,AB是⊙O的弦,AB=,连接PB,则PB= .三、解答题13.已知,如图,A是⊙O外一点,AB,AC分别与⊙O相切于点B,C,P是BC上任意一点,过点P 作⊙O的切线,交AB于点M,交AC于点N,设AO=d,BO=r.求证:△AMN的周长是一个定值,并求出这个定值.14. 已知:如图,PA,PB,DC分别切⊙O于A,B,E点.(1)若∠P=40°,求∠COD;(2)若PA=10cm,求△PCD的周长.15.如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.。
切线的概念、切线的判定和性质-人教版九年级数学上册教案一、切线的概念1. 切线的定义在圆上取一点P,连接P与圆心O,若通过点P的直线与圆相交于点P,则这条直线称为该圆在点P处的切线。
2. 切线的性质切线只与圆相交于切点,且垂直于半径。
二、切线的判定1. 判定方法1在圆上任取一点P,连接P与圆心O。
若连接P与圆心O的线段与已知直线L 垂直,则L与圆的交点就是切点,而L即为此点处的切线。
2. 判定方法2在圆上任取一点P,连接P与圆心O。
作过点P并与已知直线L平行的直线,与圆相交于点Q。
再连接点Q与圆心O,则Q与L的交点即为圆在点P处的切点,L即为点P处的切线。
三、切线性质的应用1. 切线定理若一条直线与圆相交于点A、B,则与这条直线垂直的切线分别过点A、B。
2. 判定定理在圆上任取两点P、Q,以这两点为端点连一条线段,若该线段平分圆周角,则它的延长线必过圆的圆心。
3. 弦割定理两条互相垂直的弦互相垂直。
4. 弦长定理两条互相垂直的弦所对圆周的两段弧相等。
5. 弧上点角定理圆周上一点的任意两个角所对的弧长相等。
四、练习题1.已知圆O,半径为3.4cm,P为圆上一点,PA为一条直线,且PA=8.1cm。
求PA的垂线与OP的夹角。
2.已知圆的直径是20cm,D,E,F,G均在圆上。
若DE⊥FG,DE=12cm,FG=9cm,求DG的长。
3.已知圆心角ACB的弧度是20度,线段AB上一点D是圆上的一点,求角ADC的角度。
五、课堂小结1.切线的定义和性质。
2.切线判定方法和定理。
3.切线性质的应用。
4.练习题的解答。
六、作业1.完成课堂练习题。
2.独立思考,将切线定理、判定定理、弦割定理、弦长定理和弧上点角定理的证明写出来。