高中物理课时跟踪检测十气体实验定律的微观解释鲁科版选修3_3
- 格式:doc
- 大小:73.00 KB
- 文档页数:3
高中物理学习材料唐玲收集整理第二节气体实验定律的微观解释建议用时实际用时满分实际得分90分钟100分一、选择题(本题包括9小题,每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得7分,选对但不全的得3分,有选错或不选的得0分,共63分)1. 在一定温度下,当一定量气体的体积增大时,气体的压强减小,这是由于()A.单位体积内的分子数变少,单位时间内对单位面积器壁碰撞的次数减少B.气体分子的密集程度变小,分子对器壁的吸引力变小C.每个分子对器壁的平均撞击力变小D.气体分子的密集程度变小,单位体积内分子的重量变小2.对一定质量的理想气体,下列说法正确的是()A.体积不变,压强增大时,气体分子的平均动能一定增大B.温度不变,压强减小时,气体的密度一定减小C.压强不变,温度降低时,气体的密度一定减小D.温度升高,压强和体积都可能不变3.如图1所示,一定质量的某种气体的等压线,等压线上的a、b 两个状态比较,下列说法正确的是()A.在相同时间内撞在单位面积上的分子数b状态较多B.在相同时间内撞在单位面积上的分子数a状态较多C.在相同时间内撞在相同面积上的分子数两状态一样多D.单位体积的分子数两状态一样多4.有关气体压强,下列说法中正确的是()A.气体分子的平均速率增大,则气体的压强一定增大B.气体分子的密集程度增大,则气体的压强一定增大C.气体分子的平均动能增大,则气体的压强一定增大D.气体分子的平均动能增大,气体的压强有可能减小5.(广东高考)封闭在汽缸内的一定质量的气体,如果保持气体体积不变,当温度升高时,以下说法正确的是()A.气体的密度增大B.气体的压强增大C.气体分子的平均动能减小D.每秒撞击单位面积器壁的气体分子数增多6.密闭容器中气体的压强是()A.由于重力产生的B.由于分子间的相互作用力产生的C.大量气体分子频繁碰撞器壁产生的D.在失重的情况下,密闭容器内的气体对器壁没有压强图17.下述说法正确的是( )A.气体分子的平均动能越大,每个气体分子的温度就越高B.气体的压强是由气体的重力引起的C.封闭容器内气体对各个方向的压强大小相等D.对一定质量的气体,温度改变,体积、压强均不变是不可能的8.对于一定质量的气体,下列四个论述中正确的是( )A.当分子热运动变剧烈时,压强必增大B.当分子热运动变剧烈时,压强可以不变C.当分子间平均距离变大时,压强必变大D.当分子间平均距离变大时,压强必变小 9.下面是某地区1~7月份气温与气压的对照表:7月份与1月份相比较( ) A.空气分子无规则热运动加剧 B.空气分子无规则热运动减弱C.单位时间内空气分子对地面的撞击次数增多了D.单位时间内空气分子对地面的撞击次数减少了二、填空题(本题共7分。
气体实验定律的微观解释一、教学目标1.在物理知识方面的要求:(1)能用气体分子动理论解释气体压强的微观意义,并能知道气体的压强、温度、体积与所对应的微观物理量间的相关联系。
(2)能用气体分子动理论解释三个气体实验定律。
2.通过让学生用气体分子动理论解释有关的宏观物理现象,培养学生的微观想像能力和逻辑推理能力,并渗透“统计物理”的思维方法。
3.通过对宏观物理现象与微观粒子运动规律的分析,对学生渗透“透过现象看本质”的哲学思维方法。
二、重点、难点分析1.用气体分子动理论来解释气体实验定律是本节课的重点,它是本节课的核心内容。
2.气体压强的微观意义是本节课的难点,因为它需要学生对微观粒子复杂的运动状态有丰富的想像力。
三、教具计算机控制的大屏幕显示仪;自制的显示气体压强微观解释的计算机软件。
四、主要教学过程(一)引入新课先设问:气体分子运动的特点有哪些?答案:特点是:(1)气体间的距离较大,分子间的相互作用力十分微弱,可以认为气体分子除相互碰撞及与器壁碰撞外不受力作用,每个分子都可以在空间自由移动,一定质量的气体的分子可以充满整个容器空间。
(2)分子间的碰撞频繁,这些碰撞及气体分子与器壁的碰撞都可看成是完全弹性碰撞。
气体通过这种碰撞可传递能量,其中任何一个分子运动方向和速率大小都是不断变化的,这就是杂乱无章的气体分子热运动。
(3)从总体上看气体分子沿各个方向运动的机会均等,因此对大量分子而言,在任一时刻向容器各个方向运动的分子数是均等的。
(4)大量气体分子的速率是按一定规律分布,呈“中间多,两头少”的分布规律,且这个分布状态与温度有关,温度升高时,平均速率会增大。
今天我们就是要从气体分子运动的这些特点和规律来解释气体实验定律。
(二)教学过程设计1.关于气体压强微观解释的教学首先通过设问和讨论建立反映气体宏观物理状态的温度(T)、体积(V)与反映气体分子运动的微观状态物理量间的联系:温度是分子热运动平均动能的标志,对确定的气体而言,温度与分子运动的平均速率有关,温度越高,反映气体分子热运动的平均速率体积影响到分子密度(即单位体积内的分子数),对确定的一定质量的理想气体而言,分子总数N是一定的,当体积为V时,单位体积内n越小。
高中物理选修3-3“气体”知识点总结
1、气体实验定律
①玻意耳定律:pV C =(C 为常量)→等温变化
微观解释:一定质量的理想气体,温度保持不变时,分子的平均动能是一定的,在这
适用条件:压强不太大,温度不太低 图象表达:1p V
-
②查理定律:p C T =(C 为常量)→等容变化 微观解释:一定质量的气体,体积保持不变时,分子的密集程度保持不变,在这种情
适用条件:温度不太低,压强不太大 图象表达:p V -
③盖吕萨克定律:V C T =(C 为常量)→等压变化 微观解释:一定质量的气体,温度升高时,分子的平均动能增大,只有气体的体积同时增大,使分子的密集程度减少,才能保持压强不变
适用条件:压强不太大,温度不太低 图象表达:V T -
2、理想气体
宏观上:严格遵守三个实验定律的气体,在常温常压下实验
气体可以看成理想气体
微观上:分子间的作用力可以忽略不计,故一定质量的理想 气体的内能只与温度有关,与体积无关 理想气体的方程:pV C T
= 3、气体压强的微观解释
大量分子频繁的撞击器壁的结果
影响气体压强的因素:①气体的平均分子动能(温度)②分子的密集程度即单位体积内的分子数(体积)
V V。
4 气体实验定律的图像表示及微观解释[学习目标] 1.理解气体实验定律的p -V 、p -1V、V -T 、p -T 图像及其物理意义.2.能用气体分子动理论解释三个实验定律.一、气体实验定律的图像表示1.一定质量的某种气体在等温、等容、等压变化中的规律,既可以用公式表示,也可用图像表示.2.一定质量的某种气体做等温变化时,在p -V 图线中,气体的温度越高,等温线离坐标原点越远.3.一定质量的某种气体做等容变化时,在p -T 图线中,气体的体积越大,等容线的斜率越小.4.一定质量的某种气体做等压变化时,在V -T 图线中,气体的压强越大,等压线的斜率越小.二、气体实验定律的微观解释 1.玻意耳定律一定质量的某种气体,分子总数不变,温度保持不变时,分子平均动能也保持不变.当气体体积减小时,单位体积内的分子数将增多,气体的压强也增大;当气体体积增大时,单位体积内的分子数将减少,气体的压强也就减小. 2.查理定律一定质量的某种气体,在体积保持不变时,单位体积内的分子数保持不变.当温度升高时,分子平均动能增大,气体的压强也增大;当温度降低时,分子平均动能减小,气体的压强也减小.3.盖吕萨克定律一定质量的某种气体,当气体的温度升高时,分子平均动能增大,气体的压强随之增大,为了保持压强不变,单位体积的分子数需要相应减小,对于一定质量的气体,分子总数保持不变,气体的体积必然相应增大. [即学即用]判断下列说法的正误.(1)一定质量的气体等温变化的p -V 图像是通过原点的倾斜直线.(×) (2)一定质量的气体的p -T 图像是双曲线.(×)(3)V -T 图像的斜率大,说明压强小.(√)(4)若T 不变,p 增大,则V 减小,是由于分子撞击器壁的作用力变大.(×)(5)若p 不变,V 增大,则T 增大,是由于分子密集程度减小,要使压强不变,分子的平均动能增大.(√)(6)若V 不变,T 增大,则p 增大,是由于分子密集程度不变,分子平均动能增大,而使单位时间内撞击单位面积器壁的分子数增多,气体压强增大.(×)一、p -V 图像[导学探究] (1)如图1甲所示为一定质量的气体不同温度下的p -V 图线,T 1和T 2哪一个大?(2)如图乙所示为一定质量的气体不同温度下的p -1V图线,T 1和T 2哪一个大?图1答案 (1)T 1>T 2 (2)T 1<T 2 [知识深化]1.p -V 图像:一定质量的气体等温变化的p -V 图像是双曲线的一支,双曲线上的每一个点均表示气体在该温度下的一个状态.而且同一条等温线上每个点对应的p 、V 坐标的乘积是相等的.一定质量的气体在不同温度下的等温线是不同的双曲线,且pV 乘积越大,温度就越高,图2中T 2>T 1.图22.p -1V 图像:一定质量气体的等温变化过程,也可以用p -1V图像来表示,如图3所示.等温线是过原点的倾斜直线,由于气体的体积不能无穷大,所以原点附近等温线应用虚线表示,该直线的斜率k =pV ,故斜率越大,温度越高,图中T 2>T 1.图3特别提醒 (1)p -V 图像与p -1V图像都能反映气体等温变化的规律,分析问题时一定要注意区分两个图线的不同形状.(2)p -1V图像是一条直线,分析时比较简单,p -V 图像是双曲线的一支,但p 和V 的关系更直观.例1 如图4所示是一定质量的某种气体状态变化的p -V 图像,气体由状态A 变化到状态B 的过程中,气体分子平均速率的变化情况是( )图4A .一直保持不变B .一直增大C .先减小后增大D .先增大后减小 答案 D解析 由题图可知,p A V A =p B V B ,所以A 、B 两状态的温度相等,在同一等温线上.由于离原点越远的等温线温度越高,如图所示,所以从状态A 到状态B ,气体温度应先升高后降低,分子平均速率先增大后减小.例2 (多选)如图5所示,D →A →B →C 表示一定质量的某种气体状态变化的一个过程,则下列说法正确的是( )图5A .D →A 是一个等温过程B .A →B 是一个等温过程C .T A >T BD .B →C 过程中,气体体积增大、压强减小、温度不变 答案 AD解析 D →A 是一个等温过程,A 正确;BC 是等温线,而A 到B 温度升高,B 、C 错误;B →C 是一个等温过程,V 增大,p 减小,D 正确.由玻意耳定律可知,pV =C (常量),其中C 的大小与气体的质量、温度和种类有关,对同种气体质量越大、温度越高,C 越大,在p -V 图像中,纵坐标的数值与横坐标的数值的乘积越大,在p -1V图像中,斜率k 也就越大.二、p -T 图像与v -T 图像[导学探究] (1)如图6所示为一定质量的气体在不同体积下的p -T 图像,V 1、V 2哪个大?图6 图7(2)如图7所示为一定质量的气体在不同压强下的V -T 图像,p 1、p 2哪个大? 答案 (1)V 2>V 1 (2)p 2>p 1 [知识深化]1.p -T 图像,如图8所示:图8(1)p -T 图中的等容线是一条过原点的倾斜直线.(2)p -t 图中的等容线不过原点,但反向延长线交t 轴于-273.15℃.(3)无论p -T 图像还是p -t 图像,其斜率都能判断气体体积的大小,斜率越大,体积越小. 2.V -T 图像,如图9所示:图9(1)V -T 图中的等压线是一条过原点的倾斜直线.(2)V -t 图中的等压线不过原点,但反向延长线交t 轴于-273.15℃.(3)无论V -T 图像还是V -t 图像,其斜率都能判断气体压强的大小,斜率越大,压强越小. 3.p -T 图像与V -T 图像的比较例3 图10甲是一定质量的气体由状态A 经过状态B 变为状态C 的V -T 图像,已知气体在状态A 时的压强是1.5×105Pa.图10(1)根据图像提供的信息,计算图中T A 的值.(2)请在图乙坐标系中,作出由状态A 经过状态B 变为状态C 的p -T 图像,并在图线相应位置上标出字母A 、B 、C ,如果需要计算才能确定有关坐标值,请写出计算过程. 答案 (1)200K (2)见解析解析 (1)根据盖吕萨克定律可得V A T A =V BT B所以T A =V A V B T B =0.40.6×300K =200K.(2)根据查理定律得p B T B =p CT Cp C =T C T B p B =400300p B =43p B =43×1.5×105Pa =2.0×105Pa则可画出由状态A →B →C 的p -T 图像如图所示.1.在根据图像判断气体的状态变化时,首先要确定横、纵坐标表示的物理量,其次根据图像的形状判断各物理量的变化规律.2.在气体状态变化的图像中,图线上的一个点表示一定质量气体的一个平衡状态,一个线段表示气体状态变化的一个过程.例4 (多选)一定质量的气体的状态经历了如图11所示的ab 、bc 、cd 、da 四个过程,其中bc 的延长线通过原点,cd 垂直于ab 且与水平轴平行,da 与bc 平行,则气体体积在( )图11A .ab 过程中不断增加B .bc 过程中保持不变C .cd 过程中不断增加D .da 过程中保持不变 答案 AB解析 首先,因为bc 的延长线通过原点,所以bc 是等容线,即气体体积在bc 过程中保持不变,B 正确;ab 是等温线,压强减小则体积增大,A 正确;cd 是等压线,温度降低则体积减小,C 错误;如图所示,连接aO 交cd 于e ,则ae 是等容线,即V a =V e ,因为V d <V e ,所以V d <V a ,所以da 过程中气体体积变大,D 错误.三、气体实验定律的微观解释[导学探究] (1)如何从微观角度来解释气体实验定律?(2)自行车的轮胎没气后会变瘪,用打气筒向里打气,打进去的气越多,轮胎会越“硬”.你怎样用分子动理论的观点来解释这种现象?(假设轮胎的容积和气体的温度不发生变化)答案(1)从决定气体压强的微观因素上来解释,即气体分子的平均动能和气体分子的密集程度.(2)轮胎的容积不发生变化,随着气体不断地打入,轮胎内气体分子的密集程度不断增大,温度不变意味着气体分子的平均动能没有发生变化,单位时间内单位面积上碰撞次数增多,故气体压强不断增大,轮胎会越来越“硬”.[知识深化]1.用气体分子动理论解释玻意耳定律一定质量(m)的气体,其分子总数(N)是一个定值,当温度(T)保持不变时,则分子的平均速率(v)也保持不变,当其体积(V)增大为原来的n倍时,单位体积内的分子数(N0)则变为原来的n分之一,因此气体的压强也减为原来的n分之一;反之若体积减小为原来的n分之一,压强则增大为原来的n倍,即压强与体积成反比.这就是玻意耳定律.2.用气体分子动理论解释查理定律一定质量(m)的气体的总分子数(N)是一定的,体积(V)保持不变时,其单位体积内的分子数(N0)也保持不变,当温度(T)升高时,其分子运动的平均速率(v)也增大,则气体压强(p)也增大;反之当温度(T)降低时,气体压强(p)也减小.这与查理定律的结论一致.3.用气体分子动理论解释盖吕萨克定律一定质量(m)的气体的总分子数(N)是一定的,要保持压强(p)不变,当温度(T)升高时,气体分子运动的平均速率(v)会增加,那么单位体积内的分子数(N0)一定要减小(否则压强不可能不变),因此气体体积(V)一定增大;反之当温度降低时,同理可推出气体体积一定减小.这与盖吕萨克定律的结论是一致的.特别提醒(1)温度不变时,一定质量的气体体积减小,单位体积内的分子数增加.(2)体积不变时,一定质量的气体温度升高,分子的平均动能增大.(3)压强不变时,一定质量的气体温度升高,气体体积增大,单位体积内的分子数减少.例5(多选)关于一定质量的气体,下列说法中正确的是( )A.体积不变,压强增大,气体分子的平均动能一定增大B.温度不变,压强减小时,气体的密集程度一定减小C.压强不变,温度降低时,气体的密集程度一定减小D.温度升高,压强和体积可能都不变答案AB解析体积不变,分子的密集程度就保持不变,压强增大,说明分子的平均撞击力变大了,即分子的平均动能增大了,A正确.温度不变,分子平均动能不变,压强减小,说明单位时间内撞击器壁的分子数在减小,表明气体的密集程度减小了,B正确.温度降低,分子平均动能减小,分子撞击器壁的作用力减小,要保持压强不变,则要增大单位时间内撞击器壁的分子数,即气体的密集程度要增大,C错误.温度升高,压强、体积中至少有一个发生改变,D错误.对气体实验定律的解释,注意从两个途径进行分析:一是从微观角度分析,二是从理想气体状态方程分析.1.(p-V图像)(多选)如图12所示,一定质量的气体由状态A变到状态B再变到状态C的过程,A、C两点在同一条双曲线上,则此变化过程中( )图12A.从A到B的过程温度升高B.从B到C的过程温度升高C.从A到C的过程温度先降低再升高D.A、C两点的温度相等答案AD解析作出过B点的等温线如图所示,可知T B>T A=T C,故从A到B的过程温度升高,A项正确;从B到C的过程温度降低,B项错误;从A到C的过程温度先升高后降低,C项错误;A、C两点在同一等温线上,D项正确.2.(p-T图像)(多选)如图13所示为一定质量的气体的三种变化过程,则下列说法正确的是( )图13A.a→d过程气体体积增加B.b→d过程气体体积不变C.c→d过程气体体积增加D.a→d过程气体体积减小答案AB解析在p-T图像中等容线是延长线过原点的倾斜直线,且气体体积越大,直线的斜率越小.因此,a状态对应的体积最小,c状态对应的体积最大,b、d状态对应的体积相等,故A、B正确.3.(V-T图像)(多选)一定质量的某种气体自状态A经状态C变化到状态B,这一过程在V -T图上的表示如图14所示,则( )图14A.在AC过程中,气体的压强不断变大B.在CB过程中,气体的压强不断变小C.在状态A时,气体的压强最大D.在状态B时,气体的压强最大答案AD解析气体由A→C的变化过程是等温变化,由pV=C(C是常数)可知,体积减小,压强增大,故A正确.由C→B的变化过程中,气体的体积不发生变化,即为等容变化,由pT=C(C是常数)可知,温度升高,压强增大,故B错误.综上所述,由A→C→B的过程中气体的压强始终增大,所以气体在状态B时的压强最大,故C错误,D正确.4.(气体实验定律的微观解释)在一定的温度下,一定质量的气体的体积减小时,气体的压强增大,这是由于( )A.单位体积内的分子数增多,单位时间内分子对器壁碰撞的次数增多B.气体分子的密度变大,分子对器壁的吸引力变大C.每个气体分子对器壁的平均撞击力变大D.气体分子数密度增大,单位体积内分子重量变大答案 A解析温度一定说明气体分子的平均动能不变,即分子对器壁的平均撞击力不变,但气体的压强还与单位时间内分子对器壁的撞击次数有关,而分子数密度——单位体积内的气体分子个数决定了单位时间内单位面积上分子与器壁的平均撞击次数,气体体积减小时,单位体积内分子对器壁的撞击次数增多,故气体的压强增大.故选项A正确.一、选择题考点一气体实验定律的图像1.(多选)某同学用同一个注射器做了两次验证玻意耳定律的实验,操作完全正确.根据实验数据却在p-V图上画出了两条不同的双曲线,如图1所示.造成这种情况的可能原因是( )图1A.两次实验中空气质量不同B.两次实验中温度不同C.两次实验中保持空气质量、温度相同,但所取的气体压强的数据不同D.两次实验中保持空气质量、温度相同,但所取的气体体积的数据不同答案AB解析实验时若两次所封气体的质量不同,在同一坐标系上会画出不同的等温线,A对.在质量一定的情况下,温度不同,得出的等温线也不同,B对.质量、温度都不变,压强与体积成反比,得到的是同一条等温线,C、D错.2.一定质量的气体的V-t图像如图2所示,在气体由状态A变化到状态B的过程中,气体的压强( )图2A.一定不变B.一定减小C.一定增加D.不能判定怎样变化答案 D解析若BA的延长线交于t轴上-273.15°C,则是等压变化,气体压强一定不变.若与t 轴交点位于-273.15°C的右方,则气体的压强一定减小,若与t轴的交点位于-273.15°C 的左方,则气体的压强一定增大.3.如图3所示,一向右开口的汽缸放置在水平地面上,活塞可无摩擦移动且不漏气,汽缸中间位置有小挡板.初始时,外界大气压为p0,活塞紧压小挡板处,现缓慢升高缸内气体温度,则如图所示的p-T图像能正确反映缸内气体压强变化情况的是( )图3答案 B解析初始时刻,活塞紧压小挡板,说明汽缸中的气体压强小于外界大气压强;在缓慢升高汽缸内气体温度时,气体先做等容变化,温度升高,压强增大,当压强等于大气压时活塞离开小挡板,气体做等压变化,温度升高,体积增大,A、D错误;在p-T图像中,等容线为过原点的直线,所以C错误,B正确.4.在下列图中,不能反映一定质量的气体经历了等温变化→等容变化→等压变化后,又可以回到初始状态的图是( )答案 D解析根据p-V、p-T、V-T图像的物理意义可以判断,其中D显示的是气体经历了等温变化→等压变化→等容变化,与题意不符.5.(多选)如图4所示为一定质量的气体沿着箭头所示的方向发生状态变化的过程,则该气体压强的变化是( )图4A.从状态c到状态d,压强减小B.从状态d到状态a,压强不变C.从状态a到状态b,压强增大D.从状态b到状态c,压强增大答案AC解析在V-T图上,等压线是延长线过原点的倾斜直线,对一定质量的气体,图线上的点与原点连线的斜率表示压强的倒数,斜率大的压强小,因此A、C正确,B、D错误.考点二气体实验定律的微观解释6.一定质量的气体,在压强不变的条件下,温度升高,体积增大,从分子动理论的观点来分析,正确的是( )A.此过程中分子的平均速率不变,所以压强保持不变B.此过程中每个气体分子碰撞器壁的平均冲击力不变,所以压强保持不变C.此过程中单位时间内气体分子对单位面积器壁的碰撞次数不变,所以压强保持不变D.以上说法都不对答案 D解析压强与单位时间内碰撞到器壁单位面积的分子数和每个分子的冲击力有关,温度升高,分子与器壁的平均冲击力增大,单位时间内碰撞到器壁单位面积的分子数应减小,压强才可能保持不变.7.(多选)一定质量的某种气体经历等温压缩时,气体的压强增大,从气体分子动理论的观点分析,这是因为( )A.气体分子每次碰撞器壁的冲击力加大B.气体分子对器壁的碰撞更频繁C.气体分子数增加D.气体分子密集程度加大答案BD解析温度不变即分子平均动能不变,体积减小即单位体积内分子数增多,分子碰撞器壁频率增加,可见选项B、D正确.8.如图5所示是一定质量的某种气体的等压线,比较等压线上的a、b两个状态,下列说法正确的是( )图5A .在相同时间内撞在单位面积上的分子数b 状态较多B .在相同时间内撞在单位面积上的分子数a 状态较多C .在相同时间内撞在相同面积上的分子数两状态一样多D .单位体积内的分子数两状态一样多答案 B解析 由V -T 图像知,气体在a 、b 两状态压强相等,a 状态温度较低,体积较小,故单位时间内a 状态撞在单位面积上的分子数较多,故B 正确,A 、C 、D 错误.二、非选择题9.(气体实验定律的应用及气体压强的微观解释)一定质量的理想气体由状态A 经状态B 变化到状态C ,其中A →B 过程为等压变化,B →C 过程为等容变化.已知V A =0.3m 3,T A =T C =300K ,T B =400K.(1)求气体在状态B 时的体积;(2)说明B →C 过程压强变化的微观原因.答案 (1)0.4m 3 (2)见解析解析 (1)A →B 过程,由盖吕萨克定律,V A T A =V BT BV B =T B T A V A =400300×0.3m 3=0.4m 3 (2)B →C 过程,气体体积不变,分子密集程度不变,温度降低,分子平均动能减小,平均每个分子对器壁的冲击力减小,压强减小.10.(气体实验定律的图像)如图6所示,一定质量的气体从状态A 经B 、C 、D 再回到A .问AB 、BC 、CD 、DA 经历的是什么过程?已知气体在状态A 时的体积是1L ,求在状态B 、C 、D 时的体积各为多少,并把此图改为p -V 图像.图6答案 见解析解析 A →B 为等容变化,压强随温度升高而增大.B →C 为等压变化,体积随温度升高而增大.C →D 为等温变化,体积随压强减小而增大.D →A 为等压变化,体积随温度降低而减小.由题意知V B =V A =1L .因为B →C 的等压变化,由盖吕萨克定律有V B T B =V C T C ,所以V C =T C T B V B =900450×1L =2L .因C →D 为等温变化,由玻意耳定律有p C V C =p D V D ,得V D =p C p D V C =31×2L =6L .所以V B =1L ,V C =2L ,V D =6L .根据以上数据,题中四个过程的p -V 图像如图所示.。
课后集训基础过关1.对一定量的气体,若用N 表示单位时间内与器壁单位面积碰撞的分子数,则( )A.当体积减小时,N 必定增加B.当温度升高时,N 必定增加C.当压强不变而体积和温度变化时,N 必定变化D.当压强不变而体积和温度变化时,N 可能不变1.解析:对一定量的气体,单位时间内与器壁单位面积碰撞的分子数取决于分子运动的平均速率和单位体积内的分子数.当体积减小时,单位体积内的分子数增多,但若温度下降使分子运动的平均速率减小,N 可能减少也可能不变,A 选项错误.同理,B 选项也是错误的.根据动量定理可得,气体的压强p=v Nm 2,当压强不变而体积和温度变化时,v 发生变化,则N 一定变化.正确的选项为C.答案:C2.对一定质量的某种理想气体,以下说法中正确的是…( )A.气体体积是气体分子体积的总和B.气体分子平均速率越大,气体的压强一定越大C.气体温度越高,气体分子平均速率越大D.气体分子平均速率越大,气体内能越大解析:温度是分子平均动能的标志.温度越高,平均速率越大.答案:C3.在一个上下温度相同的水池中,一个小空气泡缓慢向上浮起时,下列对空气泡内气体分子的描述中正确的是( )A.气体分子的平均速率不变B.气体分子数密度增加C.气体分子单位时间内,碰击气泡与液体界面单位面积的分子数增加D.气体分子无规则运动加剧解析:温度不变,由于压强减小,故体积增大.答案:A4.下列说法中,正确的是( )A.温度升高,每个分子的动能都增大,使得压强有增大的倾向B.体积增大,分子数的密度增大,使得压强有增大的倾向C.温度升高,大量分子的平均动能增大,使得压强有增大的倾向D.体积减小,分子数的密度增大,使得压强有增大的倾向解析:温度升高时,并不是每个分子动能都增大,是分子平均动能增大.答案:CD综合运用5.对于一定质量的理想气体,下列说法中正确的是( )A.温度不变时,压强增大n 倍,单位体积内的分子数一定也增大n 倍B.体积不变时,压强增大,气体分子热运动的平均速率也一定增大C.压强不变时,若单位体积内的分子数增大,则气体分子热运动的平均速率一定减小D.气体体积增大时,气体的内能可能增大解析:对于一定质量的理想气体,其压强与单位体积内的分子数(n=气体体积总分子数)有关,与气体分子热运动的平均速率(v 由温度决定)有关.因此,根据实验定律pV=恒量、V p =恒量和TV =恒量,可知选项A 、B 、C 正确. 另外,一定质量的理想气体的内能由温度决定,气体的体积增大时,由T pV =恒量知温度有可能升高,因此D 选项正确.答案:ABCD6.让一定质量的理想气体发生等温膨胀,在该过程中…( )A.气体分子平均动能不变B.气体压强减小C.气体分子的势能减小D.气体密度不变解析:温度是物体分子平均动能的标志,温度不变,气体分子平均动能不变,所以A 正确,由密度定义及题意得到D 错误.理想气体没有分子势能,故C 错.由玻意耳定律知气体等温膨胀时其压强减小.答案:AB。
第2节气体实验定律的微观解释思维激活把小皮球拿到火炉上面烘一下,它就会变得更硬一些(假设忽略球的体积的变化).你有这种体验吗?你怎样解释这种现象?提示:皮球内单位体积的气体分子数没发生变化,把小球拿到火上烘烤,意味着球内气体分子的平均动能变大,故气体的压强增大,球变得比原来会更硬.自主整理一、理想气体从宏观上看,严格遵守3个实验定律的气体叫做____________.从微观角度看,理想气体分子可看成没有大小的质点,分子间除了碰撞外,分子间既无引力又无斥力,分子势能为____________,其内能只是所有分子热运动动能的总和.理想气体的内能只与气体的____________有关,而与气体____________无关.二、对气体实验定律的微观解释1.玻意耳定律一定质量的气体,温度保持不变时,分子的____________是一定的.在这种情况下,体积减小时,分子的____________增大,气体的____________就增大.2.查理定律一定质量的气体,体积保持不变时,分子的____________保持不变.在这种情况下,温度升高时,分子的平均动能____________,气体的压强就____________.3.盖·吕萨克定律一定质量的气体,温度升高时,分子的平均动能____________.只有气体的体积同时____________,使分子的密集程度____________,才能保持压强____________.高手笔记压强取决于两个微观因素,一是单位体积内的分子数,另一个是分子的平均动能.对于质量一定的气体,两个微观因素分别对应两个宏观物理量:单位体积的分子数的变化由体积反映出来;分子平均动能大小的变化由气体的温度反映出来.一定质量气体的状态变化规律都可以从这两个宏观因素对压强的影响得到解释.总之,从微观上看,气体压强的大小跟两个因素有关:一是气体分子的平均动能,另一个单位体积内的分子数(即分子密集程度).从宏观上看,气体压强与温度和体积有关.名师解惑大气压强的实质剖析:大气压强的实质,是大量做无规则运动的空气分子之间或与器壁之间不断碰撞而产生的.由于空气分子向各个方向碰撞的几率相等,所以就大气中的某一点而言,向着各个方向的大气压强也都相等.根据分子运动论,我们可得出该点的压强与单位体积内的气体分子数,和分子的平均动能.由于气体分子的平均动能与气体的绝对温度成正比,当温度不变时,气体的压强只与单位体积内的分子数成正比,至于说大气压强随高度的变化,那主要是由于重力的影响使大气中空气分子的分布上疏下密所造成的,如果温度不变,大气压强将随高度的增加而按指数规律递减.有人会问,既然大气压强的实质是因大量空气分子相互碰撞而产生的,那么大气压强的值与大气的重力有何关系呢?也就是说,我们从空气具有重力出发所得到的大气压强值,与从大量空气分子相互碰撞而得出的大气压强值是否相等呢?我们设想在大气中分割出一个竖直的空气柱,它的横截面积是从它的上端直达大气顶,然后我们来看大气中其他空气分子对这个空气柱的作用.这个空气柱的上端已无空气,也就没有空气分子的碰撞,所以它上端面的压力为零.这个空气柱的前后、左右四个面所受的水平方向的压力又都是相互对称,彼此平衡,相互抵消,唯独它的底面受到别的大量空气分子的向上碰撞,因而产生了对底面的向上的压强p,使底面受到竖直向上的压力F=pS.同时因空气具有重力,这样该空气柱在竖直方向上就只受底面向上的压力F=p·S和自重G,而现在大气能保持静止状态,则p·S=G,由此得p=G/S,这就说明了从上述两方面所得到的压强是相等的.这也就是我们能用与液体类比的方式讲大气压强产生的道理.讲练互动【例1】对一定质量的气体,下列说法正确的是()A.压强增大,体积增大,分子的平均动能一定增大B.压强减小,体积减小,分子的平均动能一定增大C.压强减小,体积增大,分子的平均动能一定增大D.压强增大,体积减小,分子的平均动能一定增大解析:体积增大,分子密集程度减小,单位时间对器壁碰撞次数减少,压强增大,说明分子对单位面积器壁的作用力增大,这说明分子的平均动能增大,选项A 是正确的,选项B 错误.在C 、D 两种说法中,分子的平均动能都不能确定是增大还是减小.综上所述,正确选项为A.答案:A绿色通道温度是分子平均动能的大小的标志.可由理想气体状态方程TpV =C (常量)进行判断T 的变化.变式训练1.对于一定质量的气体,当它们的压强和体积发生变化时,以下说法正确的是( )A.压强和体积都增大时,其分子平均动能不可能不变B.压强和体积都增大时,其分子平均动能有可能减小C.压强增大,体积减小时,其分子平均动能一定不变D.压强减小,体积增大时,其分子平均动能可能增大答案:AD【例2】 对一定质量的理想气体,下列说法正确的是( )A.体积不变,压强增大时,气体分子的平均动能一定增大B.温度不变,压强减小时,气体的密度一定减小C.压强不变,温度降低时,气体的密度一定减小D.温度升高,压强和体积都可能不变解析:根据气体压强、体积、温度的关系可知,体积不变,压强增大时,气体分子的平均动能一定增大,选项A 正确.温度不变,压强减小时,气体体积增大,气体的密度减小,压强不变,温度降低时,体积减小,气体密度增大,温度升高,压强、体积中至少有一个发生改变.综上所述,正确选项为A、B.答案:AB绿色通道对于这类定性判断的问题可从两个途径进行分析:一是从微观角度分析;二是从理想气体状态方程分析.变式训练2.封闭在容积不变的容器中的气体,当温度升高时,则气体的()A.分子的平均速率增大B.气体对器壁的压强变大C.分子的平均速率减小D.气体对器壁的压强变小答案:AB【例3】对于一定质量的气体,下列四个论述中正确的是()A.当分子热运动变剧烈时,压强必变大B.当分子热运动变剧烈时,压强可以不变C.当分子间的平均距离变大时,压强必变小D.当分子间的平均距离变大时,压强必变大解析:当分子的热运动变剧烈时,分子的平均动能变大,使气体产生的压强有增大的趋势;如果同时气体的体积也增大,这将使分子的密集程度减小,使气体的压强有减小的趋势.因此,只告诉分子的热运动变剧烈这一条件,气体的压强是变大、变小还是不变是不确定的.同理,当分子间的平均距离变大时,分子的密集程度减小,使气体的压强有减小的趋势;若同时气体的温度升高,分子的平均动能增大,使气体的压强有增大的趋势.显然在只知道分子间的平均距离增大的情况下,无法确定压强的变化结果.故本题正确选项为B.答案:B绿色通道气体压强的变化取决于两个因素,若认为两个因素之一发生变化,压强就会发生变化,就会错选答案.所以深刻地理解决定气体压强的微观因素是解决该题的前提条件.变式训练3.对一定质量的理想气体,用p、V、T分别表示其压强、体积和温度,则有()A.若T不变,p增大,则分子热运动的平均动能增大B.若p不变,V增大,则分子热运动的平均动能减小C.若p不变,T增大,则单位体积中的分子数减小D.若V不变,p减小,则单位体积中的分子数减小答案:C体验探究【问题】为什么实际气体不能严格遵守气体实验定律?导思:实际气体在压强很大时不能遵守玻意耳定律的原因,从分子运动论的观点来分析,有下述两个方面.(1)分子本身占有一定的体积;(2)分子间有相互作用力.上述两个原因中,一个是使气体的pV实验值偏大,一个是使气体的pV实验值偏小.在这两个原因中,哪一个原因占优势,就向哪一方面发生偏离.这就是实际气体在压强很大时不能严格遵守玻意耳定律的原因.同样,盖·吕萨克定律和查理定律用于实际气体也有偏差.探究:1.分子本身占有一定的体积分子半径的数量级为10-10 m,把它看成小球,每个分子的固有体积约为4×10-30 m3,在标准状态下,1 m3气体中的分子数n0约为3×1025,分子本身总的体积为nV约为1.2×10-4 m3,跟气体的体积比较,约为它的万分之一,可以忽略不计.当压强较小时,由于分子本身的体积可以忽略不计,因此实际气体的性质近似于理想气体,能遵守玻意耳定律,当压强很大时,例如p=1 000×105Pa,假定玻意耳定律仍能适用,气体的体积将缩小为原来的千分之一,分子本身的总体积约占气体体积的1/10.在这种情况下,分子本身的体积就不能忽略不计了.由于气体能压缩的体积只是分子和分子之间的空隙,分子本身的体积是不能压缩的,就是说气体的可以压缩的体积比它的实际体积小.由于这个原因,实际气体当压强很大时,实测的p-V值比由玻意耳定律计算出来的理论值偏大.2.分子间有相互作用力实际气体的分子间都有相互作用,除了分子相距很近表现为斥力外,相距稍远时则表现为引力,距离再大,超过几十纳米(纳米的符号是nm,1 nm=10-9 m)时,则相互作用力趋于零.当压强较小时,气体分子间距离较大,分子间相互作用力可以不计,因此实际气体的性质近似于理想气体.但当压强很大时,分子间的距离变小,分子间的相互吸引力增大.于是,靠近器壁的气体分子受到指向气体内部的引力,使分子对器壁的压力减小,因而气体对器壁的压强比不存在分子引力时的压强要小,因此,当压强很大时,实际气体的实测PV值比由玻意耳定律计算出来的理论值偏小.探究结论:当压强太大时不能很好地遵守实验定律.教材链接教材P64《讨论与交流》把一张硬纸片轻轻地盖在一个空杯子的杯口上(图4-2-1).被封闭在杯内的空气质量比杯外空气的质量小得多,杯内空气的压强与外界大气压强是否相等?为什么?请与同学讨论交流.图4-2-1 杯内外气压的比较答:相等.气体的压强与单位体积内的分子数和分子的平均动能有关.杯内空气和杯外空气的密度相同,温度相同,分子的平均动能相同,所以杯内外空气的压强相等.。
第2节气体实验定律的微观解释1.严格遵从3个实验定律的气体称为理想气体,其分子大小与分子间距相比可忽略,没有相互作用力,不存在分子势能。
实际气体在压强不太大、温度不太低的情况下可看成理想气体。
2.理想气体的压强与单位体积内的分子数和分子的平均动能有关,宏观上表现为体积和温度。
3.一定质量的气体,温度不变,体积减小,单位体积内分子数增加;体积不变,温度升高,分子平均动能增大;压强不变,温度升高,体积增大,分子平均动能增大,单位体积内分子数减少。
对应学生用书P37[自读教材·抓基础]1.定义:严格遵从3个实验定律的气体。
2.特点:(1)理想气体的分子大小和分子间的距离相比可以忽略不计。
(2)除碰撞外,分子间的相互作用可以忽略不计。
(3)不存在分子势能,其内能只是所有分子热运动动能的总和。
3.理想气体的压强(1)从分子动理论和统计观点看,理想气体的压强是大量气体分子不断碰撞容器壁的结果,气体的压强就是大量气体分子作用在器壁单位面积上的平均作用力。
(2)微观上,理想气体压强与单位体积的分子数和分子的平均动能有关。
(3)宏观上,一定质量的理想气体压强与体积和温度有关。
[跟随名师·解疑难]理想气体的性质(1)理想气体是一种理想化模型,是对实际气体的科学抽象。
(2)宏观上:理想气体是严格遵从气体实验定律的气体。
(3)微观上:理想气体分子本身的大小与分子间的距离相比可以忽略不计,分子可视为质点。
(4)从能量上看,理想气体的微观本质是忽略了分子力,所以其状态无论怎么变化都没有分子力做功,即没有分子势能的变化,于是理想气体的内能只有分子动能,即一定质量的理想气体的内能完全由温度决定,而与气体的体积无关。
[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手)关于理想气体,下列说法正确的是( )A.当把实际气体抽象成理想气体后,它们便不再遵守气体实验定律B.温度极低、压强太大的气体虽不能当做理想气体,但仍然遵守实验定律C.理想气体分子间的平均距离约为10-10 m,故分子力为零D.理想气体是对实际气体抽象后形成的理想模型解析:选D 理想气体遵守气体实验定律,A错;实际气体在温度极低和压强太大时,不能很好地遵守气体实验定律,B错;理想气体分子间的平均距离超过10-9m,分子间的斥力和引力都可忽略不计,而在平均距离为10-10m时,分子间的斥力和引力是不能忽略的,C 错;由题意知,D项正确。
第2节气体实验定律的微观解释对理想气体的理解1.关于理想气体,下列说法正确的是( ) A.常温下氢气、氧气、氮气等气体就是理想气体B.理想气体是不能被无限压缩的C.理想气体的分子势能为零D.在压强很大、温度很低时,实际气体仍能当作理想气体来处理答案 C解析实际气体不是理想气体,在压强不太大、温度不太低时,可以当作理想气体来处理,故A、D错;理想气体的分子没有大小,可以被无限压缩,B错;理想气体分子间除碰撞外没有其他作用力,所以分子势能为零,C正确.气体压强的微观解释2.封闭在气缸内一定质量的理想气体,如果保持体积不变,当温度升高时,以下说法正确的是( ) A.气体的密度增大B.气体的压强增大C.气体分子的平均动能减小D.每秒撞击单位面积器壁的气体分子数增多答案BD解析由理想气体状态方程pVT=C(常量)可知,当体积不变时,pT=常量,T升高时,压强增大,B正确;由于质量不变,体积不变,分子密度不变,而温度升高,分子的平均动能增加,所以单位时间内气体分子对容器壁碰撞次数增多,D正确,A、C错误.实验定律的微观解释3.对于一定质量的某种理想气体,若用N表示单位时间内与单位面积器壁碰撞的分子数,则( ) A.当体积减小时,N必定增加B.当温度升高时,N必定增加C.当压强不变而体积和温度变化时,N必定变化D.当压强不变而体积和温度变化时,N可能不变答案 C解析由于气体压强是由大量气体分子对器壁的碰撞作用而产生的,其值与分子密度及分子平均速率有关;对于一定质量的气体,压强与温度和体积有关.若压强不变而温度和体积发生变化(即分子密度发生变化时),N一定变化,故C正确、D错误;若体积减小且温度也减小,N不一定增加,A错误;当温度升高,同时体积增大时,N也不一定增加,故B错误.4.如图4-2-1所示,c、d表示一定质量的某种气体的两个状态,则关于c、d两状态的下列说法中正确的是( )图4-2-1A.压强p d>p cB.温度T d<T cC.体积V d>V cD.d状态时分子运动剧烈,分子密度大答案AB解析由题中图象可直观看出p d>p c,T d<T c,A、B对;c→d,温度降低,分子平均动能减小,分子运动剧烈程度减小,体积减小V c>V d,分子密度增大,C、D错.。
课时跟踪检测(十) 气体实验定律的微观解释
一、选择题
1.注射器中封闭着一定质量的气体,现在缓慢压下活塞,下列物理量不发生变化的是(注射器中气体可看做理想气体)( )
A.气体的压强B.分子的平均速率
C.单位体积内的分子数 D.气体的密度
2.封闭在贮气瓶中的某种理想气体,当温度升高时,下面哪个说法是正确的(容器的膨胀忽略不计)( )
A.密度不变,压强增大 B.密度不变,压强减小
C.压强不变,密度增大 D.压强不变,密度减小
3.(多选)一定质量的理想气体经历等温压缩过程时,气体压强增大,从分子运动理论观点来分析,这是因为( )
A.气体分子的平均动能增大
B.单位时间内,器壁单位面积上分子碰撞的次数增多
C.气体分子数增加
D.气体的分子数密度增大
4.甲、乙两个相同的密闭容器中分别装有等质量的同种气体,已知甲、乙容器中气体的压强分别为p甲、p乙,且p甲<p乙,则( )
①甲容器中气体的温度高于乙容器中气体的温度
②甲容器中气体的温度低于乙容器中气体的温度
③甲容器中气体分子的平均动能小于乙容器中气体分子的平均动能
④甲容器中气体分子的平均动能大于乙容器中气体分子的平均动能
A.①③ B.①④
C.②③ D.②④
5.(多选)x、y两容器中装有相同质量的氦气,已知x容器中氦气的温度高于y中氦气的温度,但压强却低于y中氦气的压强。
由此可知( )
A.x中氦气分子的平均动能一定大于y中氦气分子的平均动能
B.x中每个氦气分子的动能一定大于y中每个氦气分子的动能
C.x中动能大的氦气分子数一定大于y中动能大的氦气分子数
D.x中氦气分子的热运动一定比y中氦气分子的热运动剧烈
6.一定质量的理想气体,由状态A变化到状态B的过程如图1所示,由图中AB线段可知,气体分子的平均速率在状态变化过程中的变化情况是( )
图1
A .不断增大
B .不断减小
C .先增大、后减小
D .先减小、后增大
二、非选择题
7.喷雾器内有10 L 水,上部封有1 atm 的空气2 L 。
关闭喷雾阀门,用打气筒向喷雾器内再充入1 atm 的空气3 L(设外界环境温度一定,空气可看做理想气体)。
如图2所示。
当水面上方气体温度与外界温度相等时,求气体压强,并从微观上解释气体压强变化的原因。
8.一定质量的某种理想气体,当它的压强变为原来的3倍,体积减小为原来的一半时,其热力学温度变为原来的多少?试从压强和温度的微观意义进行解释。
答案
1.选B 缓慢压下活塞意味着密闭气体是等温压缩,故分子的平均速率及分子的平均动能不变,气体的总质量不变,体积减小,单位体积内的分子数和气体的密度都增加,由气体压强的微观意义可知,注射器中密闭气体的压强增大,故选B 。
2.选A 封闭的理想气体在温度升高时,质量不变,体积不变,所以密度不变,由p T =恒量,温度升高时压强增大,故选A 。
3.选BD 一定质量的气体等温压缩,分子的平均动能不变,气体分子的总数不变,故
A 、C 错;气体压强增大是因为气体分子的数密度增大,使单位时间内,器壁单位面积上分子碰撞的次数增多,故
B 、D 正确。
4.选C 气体的压强决定于单位体积内的分子数和分子的平均动能。
由于两容器相同,
气体的种类、质量也相同,故单位体积内的分子数相同,则气体压强决定于分子的平均动能,而p甲<p乙,且温度是分子平均动能的标志,故②③正确。
应选C。
5.选ACD 温度是分子平均动能的标志,A正确;分子平均动能大,并不是每个分子的动能都大,B错误;由分子热运动的微观特点知,C、D正确。
6.选C 因为温度是分子平均动能的标志,所以分子平均速率变化情况应与温度变化情况相同,由图线可知,AB线段中有一点对应pV值最大,即温度最高,因而气体分子平均速率经历先增大后减小的过程,故选项C正确。
7.解析:选取喷雾器内原有的药液上方的空气和即将打入的空气一起作为研究对象。
将变质量问题转化为一定质量的问题。
设气体初态压强为p1,体积为V1;末态压强为p2,体积为V2,由玻意耳定律p1V1=p2V2代入数据得p2=2.5 atm
微观解释:温度不变,分子平均动能不变,单位体积内分子数增加,所以压强增加。
答案:见解析
8.解析:从微观角度看,气体压强的大小跟两个因素有关:一个是气体分子的平均动能,一个是气体分子的密集程度。
当体积减小为原来的一半时,气体分子的密集程度变为原来的两倍,这时气体的压强相应地变为原来的两倍,但还不能满足题意(题目要求压强变为原来的3倍),这时,只能要求从另外一个因素考虑,即增加气体分子的平均动能,而气体分子的平均动能是由温度来决定的,即应升高温度。
根据计算,气体的热力学温度应变为原来的1.5倍,这时压强便在两个因素(体积减小——分子密集程度增大,温度升高——分子的平均动能增大)共同作用下变为原来的3倍。
答案:见解析。