2019-2020年高一上学期期末调研测试数学试题 含答案
- 格式:doc
- 大小:693.60 KB
- 文档页数:5
2019-2020学年高一上学期期末考试数学试卷一、选择题(本大题共12小题,共60.0分)1.已知集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(∁U B)=()A. B. C. D.2.已知向量=(4,2),=(x,3)向量,且,则x=()A. 1B. 5C. 6D. 93.函数y=a x+2(a>0且a≠1)图象一定过点()A. B. C. D.4.三个数a=0.32,b=log20.3,c=20.3之间的大小关系是()A. B. C. D.5.sin20°cos40°+cos20°sin40°的值等于()A. B. C. D.6.方程2x=2-x的根所在区间是()A. B. C. D.7.下列函数中,既是偶函数又在(0,+∞)单调递增的是()A. B. C. D.8.已知函数y=A sin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.B.C.D.9.若平面向量=(1,),=(-,),则|+2|=()A. B. C. 4 D. 1210.函数y=的值域是()A. B. C. D.11.的值为()A. B. 0 C. D. 112.在△ABC中,P为中线AM上的一点,若|AM|=3,|AP|=2|PM|,则•(+)的值是()A. B. C. 2 D. 4二、填空题(本大题共4小题,共20.0分)13.函数y=+lg(9-x)的定义域是______.14.已知扇形的半径为r,周长为3r,则扇形的圆心角(正角)的弧度数为______.15.若||=1,||=,且(-)⊥ ,则与的夹角是______.16.定义运算则函数f(x)=1*2x的最大值为______.三、解答题(本大题共6小题,共70.0分)17.已知0<α<π,cosα=-.(1)求tanα的值;(2)求cos2α-cos(+α)的值.18.已知向量=(1,2),=(-2,m),=+(t2+1),=-k+,m∈R,k、t为正实数.(1)若,求m的值;(2)若 ⊥,求m的值;(3)当m=1时,若 ⊥ ,求k的最小值.19.已知函数f(x)=cos(2x-),x∈R.(1)求函数f(x)的最小正周期和单调递增区间;(2)求函数f(x)在区间[-,]上的最值,并求出取得最值时的x的值.20.已知函数f(x)=sinωx,(ω>0),x∈R.(1)当ω=2时,写出由y=f(x)的图象向右平移个单位长度后得到的图象所对应的函数y=g(x)的解析式及其图象的对称轴方程;(2)若y=f(x)图象过点(,0),且在区间(0,)上是增函数,求ω的值.21.已知函数f(x)=2cos2x+sin2x+a(x∈R)有最大值2.(1)求实数a的值;(2)当f()=0时,求的值.22.已知tanα,tanβ是方程x2+3x+4=0的两根,且α,β∈(-,).(1)求α+β的值;(2)求cosαcosβ的值.答案和解析1.【答案】D【解析】解:∵U={1,2,3,4,5},B={2,5},∴C U B={1,3,4}∵A={3,1,2}∴A∩(C U B)={1,3}故选D.由题意全集U={1,2,3,4,5},B={2,5},可以求出集合C U B,然后根据交集的定义和运算法则进行计算.此题主要考查集合和交集的定义及其运算法则,是一道比较基础的题.2.【答案】C【解析】解:∵向量=(4,2),=(x,3)向量,且,∴4×3-2x=0,∴x=6,故选:C.根据所给的两个向量的坐标和两个向量平行的条件,写出两个向量平行的充要条件,得到关于x的方程,解方程即可得到要求的x的值.本题考查两个向量平行的充要条件的坐标形式,只要记住两个向量平行的坐标形式的充要条件,就不会出错,注意数字的运算,本题是一个基础题.3.【答案】B【解析】解:由于函数y=a x (a>0且a≠1)图象一定过点(0,1),故函数y=a x+2(a>0且a≠1)图象一定过点(0,3),故选:B.由于函数y=a x (a>0且a≠1)图象一定过点(0,1),可得函数y=a x+2图象一定过点(0,3),由此得到答案.本题主要考查指数函数的单调性和特殊点,属于基础题.4.【答案】C【解析】【分析】将a=0.32,c=20.3分别抽象为指数函数y=0.3x,y=2x之间所对应的函数值,利用它们的图象和性质比较,将b=log20.3,抽象为对数函数y=log2x,利用其图象可知小于零.最后三者得到结论.本题主要通过数的比较,来考查指数函数,对数函数的图象和性质.【解答】解:由对数函数的性质可知:b=log20.3<0,由指数函数的性质可知:0<a<1,c>1∴b<a<c故选C.5.【答案】B【解析】解:sin20°cos40°+cos20°sin40°=sin60°=故选:B.利用正弦的两角和公式即可得出答案本题主要考查三角函数中两角和公式.关键是能记住这些公式,并熟练运用,属基础题.6.【答案】D【解析】解:令f(x)=2x+x-2,则f(0)=1-2=-1<0,f(1)=2+1-2=1>0,∴f(0)f(1)<0,∴函数f(x)在区间(0,1)上必有零点,①又∵2x>0,ln2>0,∴f′(x)=2x ln2+1>0,∴函数f(x)在R上单调递增,至多有一个零点.②综上①②可知:函数f(x)=2x+x-2在R有且只有一个零点x0,且x0∈(0,1).即方程2x=2-x的根所在区间是(0,1).故选:D.利用函数零点的判定定理即可判断出.熟练掌握函数零点的判定定理是解题的关键.7.【答案】D【解析】解:对于A,函数是奇函数,不合题意;对于B,x>0时,y=2-x,在(0,+∞)递减,不合题意;对于C,函数在(0,+∞)递减,不合题意;对于D,x>0时,y=x+1,递增,且函数是偶函数,符合题意;故选:D.根据基本初等函数的单调性奇偶性,逐一分析答案四个函数在(0,+∞)上的单调性和奇偶性,逐一比照后可得答案.本题考查的知识点是函数的奇偶性与单调性的综合,熟练掌握各种基本初等函数的单调性和奇偶性是解答的关键.8.【答案】C【解析】解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(-)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ-∵∴φ=故选C.先根据函数的最大值和最小值求得A和B,然后利用图象中-求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式.考查了学生基础知识的运用和图象观察能力.9.【答案】B【解析】解:∵平面向量=(1,),=(-,),∴=(0,2),∴|+2|==2.故选:B.利用平面向量加法定理求出,由此能求出|+2|的值.本题考查向量的模的求法,考查平面向量坐标运算法则等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.10.【答案】A【解析】解:2x>0;∴-2x<0;∴16-2x<16,且16-2x≥0;∴0≤16-2x<16;∴;即0≤y<4;∴原函数的值域为[0,4).故选:A.根据2x>0即可得出16-2x<16,从而得出0≤16-2x<16,这样便可求得0≤y<4,即得出原函数的值域.考查函数值域的概念及求法,指数函数的值域,以及不等式的运算及性质.11.【答案】D【解析】解:==tan45°=1.故选:D.直接利用两角和与差的三角函数,回家求解即可.本题考查两角和与差的三角函数的应用,考查计算能力.12.【答案】A【解析】解:如图,∵M是BC的中点,且=2,∴P为△ABC的重心,又AM=3,∴||=2,||=1∴•(+)=•2=2||•||•cos180°=-4.故选:A.由题意可得,P为△ABC的重心,然后利用重心的性质结合数量积运算得答案.本题考查平面向量的数量积运算,考查了重心的性质,是中档题.13.【答案】[3,9)【解析】解:由,得3≤x<9.∴函数y=+lg(9-x)的定义域是[3,9).故答案为:[3,9).由根式内部的代数式大于等于0,对数式的真数大于0联立不等式组求解.本题考查函数的定义域及其求法,是基础题.14.【答案】1【解析】解:扇形的半径为r,周长为3r,则扇形的弧长为3r-2r=r,∴扇形的圆心角(正角)的弧度数为:α==1.故答案为:1.根据题意求得扇形的弧长,再计算扇形的圆心角弧度数.本题考查了扇形的圆心角计算问题,是基础题.15.【答案】【解析】解:设夹角为θ∵∴∴∴1-1×cosθ=0解得cosθ=∵0≤θ≤π∴故答案为利用向量垂直的充要条件:数量积为0,列出方程;利用向量的运算律及向量的数量积公式求出夹角余弦,求出角.本题考查向量垂直的充要条件、向量的数量积公式、向量的运算律.16.【答案】1【解析】解:定义运算,若x>0可得,2x>1,∴f(x)=1*2x=1;若x≤0可得,2x≤1,∴g(x)=1*2x=2x,∴当x≤0时,2x≤1,综上f(x)≤1,∴函数f(x)=1*2x的最大值为1,故答案为1;已知定义运算,利用新的定义求解,首先判断2x与1的大小关系,分类讨论;此题主要考查函数单调性的性质以及值域的求法,对于新定义的题,注意认真理解题意,是一道基础题;17.【答案】解:(1)∵0<α<π,cosα=-,∴sin,则tanα=;(2)cos2α-cos(+α)=1-2sin2α+sinα=1-2×=.【解析】(1)直接利用同角三角函数基本关系式求解;(2)由已知利用倍角公式及诱导公式化简求值.本题考查三角函数的化简求值,考查同角三角函数基本关系式及倍角公式的应用,是基础题.18.【答案】解:(1)由可得1×m-2×(-2)=0,解之可得m=-4;(2)由 ⊥可得1×(-2)+2×m=0,解之可得m=1;(3)当m=1时,=(-2t2-1,t2+3),=(,),由 ⊥ 可得(-2t2-1)()+(t2+3)()=0,化简可得,当且仅当t=1时取等号,故k的最小值为:2【解析】(1)(2)由平行和垂直的条件分别可得关于m的方程,解之可得;(3)把m=1代入,分别可得向量,的坐标,由垂直可得k,x的关系式,由基本不等式可得答案.本题考查平面向量垂直于平行的判定,涉及基本不等式的应用,属中档题.19.【答案】解:函数f(x)=cos(2x-),x∈R.(1)函数f(x)的最小正周期T=;令2kπ-π≤2x-≤2kπ,k∈Z得≤x≤∴单调递增区间为[,];k∈Z(2)由x∈[-,]⇒2x-∈[-π,].∴当2x-=-π,即x=时,函数f(x)取得最小值为:.∴当2x-=0,即x=时,函数f(x)取得最大值为:.【解析】(1)根据周期公式求解即可,结合余弦函数的性质可得单调递增区间;(2)根据x在[-,]上,求解内层函数的范围,结合余弦函数的性质可得最值和取得最值时的x的值.本题主要考查三角函数的图象和性质的应用,属于基础题.20.【答案】解:(1)∵函数f(x)=sinωx(ω>0).ω=2时,f(x)=sin2x.∴图象向右平移个单位长度得到:y=sin2(x-)=sin(2x-).由2x-=kπ+,k∈Z,可得图象的对称轴方程为:x=+,k∈Z,(2)∵函数f(x)=sinωx(ω>0).图象过点(,0),∴ω=kπ,即ω=,k∈z,∵函数f(x)=sinωx(ω>0).在区间(0,)上是增函数,得出:ω≤,即ω≤,∵ω>0,∴ω=.【解析】(1)根据函数图象的平移得出函数解析式,利用正弦函数的性质可求对称轴方程.(2)利用零点得出ω=kπ,即ω=,k∈z,再根据单调性得出ω≤,即ω≤,判断得出ω的值.本题综合考察了三角函数的图象和性质,转化思想,方程的利用,属于中档题.21.【答案】解:(1)函数f(x)=2cos2x+sin2x+a=cos2x+sin2x+a+1=2sin(2x+)+a+1,当2x+=2kπ+,即x=kπ+,k∈Z,f(x)取得最大值,且为3+a=2,即a=-1;(2)由f()=0,即2sin(x+)=0,可得x+=kπ,即x=kπ-,k∈Z,2x=2kπ-,k∈Z,==2+.【解析】(1)运用二倍角公式和正弦函数的图象和性质,解方程可得a;(2)由f()=0求得2x,计算可得所求值.本题考查三角函数的恒等变换,以及正弦函数的性质,考查化简整理的运算能力,属于中档题.22.【答案】解:(1)已知tanα,tanβ是方程x2+3x+4=0的两根,则,tanα•tanβ=4,所以tanα<0,tanβ<0.故:tan(α+β)===.由于α,β∈(-,),所以-π<α+β<0,则.(2)由于cos(α+β)=cosαcosβ-sinαsinβ=cos=-,①且tanα•tanβ=4,则:sinαsinβ=4cosαcosβ,②故由①②得:-3cosαcosβ=-,整理得cos.【解析】(1)直接利用一元二次方程根与系数的关系的应用求出结果.(2)利用(1)的结论,进一步利用三角函数的关系式的变换求出结果.本题考查的知识要点:三角函数关系式的恒等变换,角的变换的应用.。
2019-2020年高一第一学期期末考试数学试卷 含答案一、 选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果{}1,2,3,4,5U =,{}3,2,1=M ,{}5,3,2=N ,那么()U C M N 等于( ).A.φB.{}3,1 C.{}4 D.{}5 3.下列四个图形中,不是..以x 为自变量的函数的图象是( ) 4.过点(1,2),且倾斜角为30°的直线方程是( )A .y +2=33(x +1) B .y -2=3(x -1)C.3x -3y +6-3=0D.3x -y +2-3=05.设0.89a =,0.4527b =, 1.51()3c -=,则,,a b c 大小关系为( ) A .a b c >> B .a b c << C .a c b >> D .b c a >>6.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ). A .50πB .25πC .125πD .都不对7.已知两条直线12:210,:40l x ay l x y +-=-=,且12l l //,则满足条件a 的值为( )A . 12-B .12C .2-D . 28. 已知n m ,表示两条不同直线,α表示平面.下列说法正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,n ⊂α,则m ⊥nC .若m ⊥α,m ⊥n ,则n ∥αD .若m ∥α,m ⊥n ,则n ⊥α9. 直线3x +4y +2=0与圆x 2+y 2-2x =0的位置关系是 ( )Ay x OByxO Cy xODyxOA .相离B .相切C .相交D .无法判断 10. 正方体1111D C B A ABCB -中,二面角D AB D --1的大小是( ) A. 300B. 450C. 600D. 90011.给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .3个 B .2个 C .1个D .0个12.已知0x 是函数1()21x f x x=+-的一个零点.若1020(1,),(,)x x x x ∈∈+∞ ,则( ) A .12()0,()0f x f x << B .12()0,()0f x f x >> C .12()0,()0f x f x >< D .12()0,()0f x f x <>二、 填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.两平行直线0962043=-+=-+y x y x 与的距离是 。
秘密★启用前2019-2020年高一上学期期末考试试卷 数学 含答案一.选择题.(每小题5分,共60分)1.已知扇形的半径为,弧长为,则该扇形的圆心角为( )A .2B . 4C . 8D . 16 2.设全集,集合,,则等于( )A .B .C .D .3.( )A. B. C. D. 4.幂函数为偶函数,且在上单调递增,则实数( )A . 1B .2C . 4D . 5 5.已知,且,则( )A .2B .C .D . 6.函数满足,那么=( )A .B .C .D . 7.已知函数,则下列说法正确的是( )A .函数为奇函数B .函数有最大值C .函数在区间上单调递增D .函数在区间上单调递增8.函数()sin()(0,0,)2f x A x A πωϕωϕ=+>><的图象如图所示,为了得到的图象,则只需将的图象 ( ) A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位 9.已知函数,则不等式(2sin )3,[,]22f x x ππ>∈-的解集为( ) A . B .C .D .10.若关于的函数22222sin ()(0)tx x t x xf x t x t+++=>+的最大值为,最小值为,且,则实数的值为( )A .1 B.2 C.3 D .4 11.(原创)已知关于方程,则该方程的所有根的和为( )A.0B.2C.4D.612.(原创)已知是定义在上的奇函数,对任意满足,且当时,2()cos 1f x x x x π=-+-,则函数在区间上的零点个数是( )A .7B .9C .11D .13 二.填空题.(每小题5分,共20分)13.已知角的始边落在轴的非负半轴上,且终边过点,且,则 . 14.求值:___________. (其中为自然对数的底) 15.求值: .16.已知二次函数满足条件:①;②时,,若对任意的,都有恒成立,则实数的取值范围为 .三.解答题.(共6小题,共70分) 17.(本小题满分10分)已知, (1)求的值; (2)求2sin()cos()sin()cos()22παπαππαα-++--+的值.18.(本小题满分12分)已知函数的定义域为,关于的不等式的解集为,其中, (1)求;(2)若,求实数的取值范围.19.(本小题满分12分)在中,为锐角,角所对应的边分别为,且. (1)求的值;(2)求函数()cos 225sin sin f x x A x =+的最大值.20.(本小题满分12分)已知函数22()(sin cos )2cos 2(0)f x x x x ωωωω=++->. (1)若的最小正周期为,求在区间上的值域; (2)若函数在上单调递减.求的取值范围.21.(原创)(本小题满分12分)已知,定义在上的连续不断的函数满足,当时,且. (1)解关于不等式:; (2)若对任意的,存在,使得221122()(1)()(4)(2)4()72ag x g x g a f x f x +-+-≥-+成立,求实数的范围.22.(原创)(本小题满分12分)已知函数,, (1),若关于的方程42233log [(1)]log ()log (4)24f x a x x --=---有两个不同解,求实数的范围;(2)若关于的方程:有三个不同解,且对任意的,恒成立,求实数的范围.何 勇 关毓维xx 重庆一中高xx 级高一上期期末考试数 学 答 案xx.1一、选择题ACDBDC CDCBDB 二、填空题13. 14. 15. 16. 三、解答题 17.解:(1);(2)2sin()cos()2sin cos 2tan 12cos sin 1tan 7sin()cos()22παπααααππααααα-++--===++--+.18.解:(1)2222log 0,log 2log 4,(0,4]x x A -≥≤==; (2)由于所以,2232()0()()0x a a x a x a x a -++<⇔--<,若,,符合题意;若,,则; 若,,则,综上,.19.解:(Ⅰ)、为锐角,,2310cos 1sin 10B b ∴=-=又,,225cos 1sin 5A A =-=, 253105102cos()cos cos sin sin 5105102A B A B A B ∴+=-=⨯-⨯= ; (2)2()cos 225sin sin cos 22sin 2sin 2sin 1f x x A x x x x x =+=+=-++,所以函数的最大值为.20.解:(Ⅰ)2222()(sin cos )2cos 2sin cos sin 212cos 22f x x x x x x x x ωωωωωωω=++-=++++-sin 2cos 22sin(2)4x x x πωωω=+=+,的最小正周期为,,所以1,()2sin(2)4f x x πω==+,时,,,所以函数值域为;(2)时,令3222,242k x k k Z ππππωπ+≤+≤+∈,的单减区间为 ,由题意5(,)[,]288k k ππππππωωωω⊆++,可得8258k k πππωωπππωω⎧+≤⎪⎪⎨⎪+≥⎪⎩,解得152,480k k k Z ωω⎧+≤≤+∈⎪⎨⎪>⎩,只有当时,.21.解:(1)2255(2)()0(222)(22)022x x x x f x f x ---≤⇔++-+≤⇔51(22)0(2)(22)022x x x x -+-≤⇔--≤,解得;(2)22(2)4()7(222)4(22)5xx x x y f x f x --=-+=++-++,问题转化为对任意的,有2211()(1)()(4)12ag x g x g a +-+-≥恒成立,即2()(2)()41g x a g x a +-+-≥恒成立,下证函数在上单增:取任意的,22121111()()()()()0xx g x g x g x g x g x x -=-=-<g ,所以函数在上单增, 由于,,所以时函数可取到之间的所有值,2()2()32(()1)()1()1g x g x a g x g x g x ++≤=++++恒成立,所以,当时取等.22.解:(1)原方程可化为,且,即,即,且方程要有解,, ①若,则此时,方程为,,方程的解为,仅有符合; ②若,此时,,即,方程的解为均符合题意,综上;(2)原方程等价于,则为的两个不同根,所以,解得,并且令, 又对任意的,恒成立,即[()()]x f x g x mx m +-<-,取,有,即,综上 由维达定理121220,30x x m x x =->+=>,所以,则对任意,212()(32)()()0h x x x x m x x x x x =-+-=--<,且,所以当时,原不等式恒成立,综上.秘密★启用前2019-2020年高一上学期期末考试试卷 物理 含答案45° 甲 乙物 理 试 题 卷 xx.1第一部分 (选择题,共70分)一、选择题(1-9小题为单项选择题,每小题5分.10-14小题为多项选择题,每小题5分,选对未选全得3分,错选得0分) 1.下列物理量的单位属于导出单位的是( )A .质量B .时间C .位移D .力 2.下列关于力的说法中,正确的是( )A .自由下落的石块速度越来越大,是因为所受的的重力越来越大B .甲用力把乙推倒而自己不倒,说明甲对乙的作用力大于乙对甲的反作用力C .只有发生弹性形变的物体才产生弹力D .摩擦力的大小与正压力成正比3.学校秋季运动会上,飞辉同学以背越式成功跳过了1.90m ,如图所所示,则下列说法正确的是( ) A .飞辉起跳时地面对她的支持力等于她的重力 B .起跳以后在上升过程中处于超重状态 C .起跳以后在下降过程中处于失重状态 D .起跳以后在下降过程中重力消失了4.如图所示,甲、乙两人分别站在赤道和纬度为45°的地面上,则 ( )A .甲的线速度大B .乙的线速度大C .甲的角速度大D .乙的角速度大5.质量为0.5kg 的物体做变速直线运动,以水平向右为正方向,它的速度一时间图象如图所示,则该物体( )A .在前2s 内和2s ~6s 内的加速度相同B .在前2s 内向右运动,2s ~6s 内向左运动C .在4s ~6s 内和6s ~8s 内的速度变化量相同D .在8s 末离出发点的距离最远6.如图所示,质量相等的三个物块A 、B 、C ,A 与天花板之间、与B 之间用轻绳相连,与之间用轻弹簧相连,当系统静止时,C 恰好与水平地面接触,此时弹簧伸长量为。
四川省攀枝花市2019-2020 学年高一数学上学期期末调研检测试题(含分析)新人教 A版第一部分(选择题共50分)一、选择题:本大题共 10 小题,每题 5 分,共 50 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1、已知会合,若,则实数等于()(A)(B)或(C)或(D)2、以下四组函数中,表示同一函数的是()( A)(B)(C)(D)3、函数的定义域是()(A)(B)(C)(D)4、()(A)(B)(C)(D)5、已知角的终边过点,且,那么等于()(A)(B)(C)(D)6、方程的解所在的区间是()(A)(B)(C)(D)【分析】7、已知函数,则()( A)其最小正周期为(B)其图象对于直线对称( C)其图象对于点对称(D)该函数在区间上单一递加8、已知,则的值为()(A)(B)(C)(D)考点:指数的运算法例及计算技巧。
9、设( A),,( B),则有()( C)( D)10、定义域为的偶函数知足对随意,若函数,有在,且当上起码有三个零点,则实数时,的取值范围是()(A)(B)(C)(D)第二部分(非选择题共 100 分)二、填空题:本大题共 5 小题,每题 5 分,共 25 分.11、已知幂函数的图象过点,则__________ .12、已知,,则.13、若函数,则__________ .14、已知函数知足对随意,都有建立,则实数的取值范围是.15、以下几个命题:①直线与函数的图象有 3 个不一样的交点;②函数在定义域内是单一递加函数;③函数与的图象对于轴对称;④若函数意都有此中正确的命题为的值域为,则实数的取值范围为;⑤若定义在,则函数为周期函数.(请将你以为正确的全部命题的序号都填上).上的奇函数对任三、解答题:本大题共 6 小题,共16、(本小题满分12 分)已知全集75 分.解答应写出文字说明、证明过程或演算步骤.,会合,.(Ⅰ)若,求;(Ⅱ)若,务实数的取值范围.17、 ( 本小题满分12 分)求值:(Ⅰ);(Ⅱ).18、(本小题满分12 分)已知定义在上的奇函数是增函数,且.(Ⅰ)求函数的分析式;(Ⅱ)解不等式.【分析】19、(本小题满分12 分)函数(,,)的一段图象如下图.(Ⅰ)求函数的分析式;(Ⅱ)要获得函数的图象,可由正弦曲线经过如何的变换获得?(Ⅲ)若不等式在上恒建立,务实数的取值范围.【分析】20、 ( 本小题满分13 分 ) 一般状况下,桥上的车流速度(单位:千米 / 小时)是车流密度(单位:辆 /千米)的函数.当桥上的车流密度达到200 辆/ 千米时,会造成拥塞,此时车流速度为0;当车流密度小于40 辆 / 千米时,车流速度为40 千米 / 小时.研究表示:当时,车流速度是车流密度的一次函数.(Ⅰ)当,求函数的表达式;(Ⅱ)当车流密度为多大时,车流量(单位时间内经过桥上某观察点的车辆数,单位:辆/ 小时)能够达到最大,并求出最大值.【分析】21、(本小题满分14 分)已知函数()是偶函数.(Ⅰ)务实数的值;(Ⅱ)证明:对随意的实数,函数的图象与直线最多只有一个公共点;(Ⅲ)设,若与的图象有且只有一个公共点,务实数的取值范围.【分析】。
2019-2020学年高一上学期期末考试数学试题(附解析版)一、选择题(本大题共12小题,共60.0分)1.若集合,,则A. B. C. D.【答案】D【解析】解:集合,,.故选:D.先分别求出集合A,B,由此能求出.本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.函数的定义域为A. B.C. D. ,【答案】C【解析】解:要使函数有意义则解得且函数的定义域为故选:C.根据分式的分母不为0,对数的真数大于0,建立关系式,解之即可.本题考查函数定义域的求解,属基础题,做这类题目的关键是找对自变量的限制条件.3.运行如图所示的程序,若输出y的值为2,则可输入实数x值的个数为A. 0B. 1C. 2D. 3【答案】B【解析】解:模拟程序运行,可得程序的功能是求的值,故时,,解得:舍去;时,,解得:舍,或,综上,可得可输入x的个数为1.故选:B.模拟程序运行,可得程序的功能是求的值,分类讨论即可得可输入x的个数.本题的考点是函数零点几何意义和用导函数来画出函数的图象,考查了数学结合思想和计算能力,属于基础题.4.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为A. B. C. D.【答案】B【解析】解:设20个数分别为,,,,求出的平均数为,实际平均数,求出的平均数与实际平均数的差:.故选:B.求出的平均数与实际平均数的差:,由此能求出结果.本题考查求出的平均数与实际平均数的差的求法,考查平均数的性质等基础知识,考查运算求解能力,是基础题.5.已知函数,那么的值为A. 9B.C.D.【答案】B【解析】解:,,而,..故选:B.首先判断自变量是属于哪个区间,再代入相应的解析式,进而求出答案.正确理解分段函数在定义域的不同区间的解析式不同是解题的关键.6.某单位有职工160人,其中业务员104人,管理人员32人,其余为后勤服务人员,现用分层抽样方法从中抽取一容量为20的样本,则抽取后勤服务人员A. 3人B. 4人C. 7人D. 12人【答案】A【解析】解:根据分层抽样原理知,应抽取后勤服务人员的人数为:.故选:A.根据分层抽样原理求出应抽取的后勤服务人数.本题考查了分层抽样原理应用问题,是基础题.7.已知函数,若对任意实数,且都有成立,则实数a的取值范围是A. B. C. D.【答案】A【解析】解:根据题意,满足对任意实数,且都有成立,则函数为减函数,又由,则有,解可得,即a的取值范围为;故选:A.根据题意,分析可得函数为减函数,结合函数的解析式可得,解可得a的取值范围,即可得答案.本题考查函数的单调性的判定以及应用,涉及分段函数的应用,关键是掌握函数单调性的定义.8.函数的部分图象大致是如图所示的四个图象中的一个,根据你的判断,a可能的取值是A. B. C. 2 D. 4【答案】D【解析】解:函数为偶函数,图象关于原点对称,排除,又指数型函数的函数值都为正值,排除,故函数的图象只能是,当时,函数为减函数,则,得,故只有4满足故选:D.根据函数奇偶性和单调性的性质先确定对应的图象,然后结合指数函数的图象特点确定底数的大小即可.本题主要考查函数图象的识别和判断,根据函数奇偶性和函数值的符号确定对应的图象是解决本题的关键.9.一直以来,由于长江污染加剧以及滥捕滥捞,长江刀鱼产量逐年下降为了了解刀鱼数量,进行有效保护,某科研机构从长江中捕捉a条刀鱼,标记后放回,过了一段时间,再从同地点捕捉b条,发现其中有c条带有标记,据此估计长江中刀鱼的数量为A. B. C. D.【答案】D【解析】解:设长江中刀鱼的数量为x条,根据随机抽样的等可能性,得:,解得.故选:D.设长江中刀鱼的数量为x条,根据随机抽样的等可能性,列出方程能求出结果.本题考查长江中刀鱼的数量的估计,考查随机抽样的性质等基础知识,考查运算求解能力,是基础题.10.已知偶函数在区间上是单调递增函数,若,则实数m的取值范围是A. B.C. D.【答案】C【解析】解:偶函数在区间上是单调递增函数,则在上为减函数,若,则,即,求得,故选:C.由题意利用函数的奇偶性和单调性可得,由此求得实数m的取值范围.本题主要考查函数的奇偶性和单调性,属于基础题.11.如图程序框图是为了求出满足的最小偶数n,那么在和两个空白框中,可以分别填入A. 和B. 和C. 和D. 和【答案】D【解析】解:因为要求时输出,且框图中在“否”时输出,所以“”内不能输入“”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.通过要求时输出且框图中在“否”时输出确定“”内不能输入“”,进而通过偶数的特征确定.本题考查程序框图,属于基础题,意在让大部分考生得分.12.已知函数,,若方程有且只有三个不同的实数根,则实数a的取值范围为A. B. C. D.【答案】C【解析】解:当时,方程可化为,解得:或,又,所以当时,此时方程有一个实数根,当时,方程可化为,由题意有此方程必有两不等实数根,设,由二次方程区间根问题有:,解得:或,综合可得:实数a的取值范围为:,故选:C.含参、含绝对值的二次函数的解的个数问题先通过讨论:当时,当时去绝对值符号,再结合区间根问题求解二次方程的根的个数即可.本题考查了含参、含绝对值的二次函数的解的个数问题及区间根问题,属中档题.二、填空题(本大题共4小题,共20.0分)13.已知函数,那么______.【答案】3【解析】解:由得,,即,故答案为:3由,求出,直接代入即可.本题主要考查函数值的计算,根据函数解析式直接转化是解决本题的关键.14.《少年中国说》是清朝末年梁启超所作的散文,写于戊戌变法失败后的1900年,文中极力歌颂少年的朝气蓬勃,其中“少年智则国智,少年富则国富;少年强则国强,少年独立则国独立”等优秀文句激励一代又一代国人强身健体、积极竞技年,甲、乙、丙、丁四人参加运动会射击项目选拔赛,四人的平均成绩和方差如表:则参加运动会的最佳人选应为______.【答案】丙【解析】解:从表格中可以看出乙和丙的平均成绩优于甲和丁的平均成绩,但是两的成绩发挥的最稳定,故最佳人选应该是丙.故答案为:丙.从表格中可以看出乙和丙的平均成绩优于甲和丁的平均成绩,但是两的成绩发挥的最稳定.本题考查最佳人选的判断,考查平均数、方差的性质等基础知识,考查运算求解能力,是基础题.15.某汽车4S店销售甲品牌A型汽车,在2019年元旦期间,进行了降价促销活动,根据以往数据统计,该型汽车的价格与月销售量之间有如下关系:已知A型汽车的销售量y与价格x符合线性回归方程:,若A型汽车价格降到19万元,预测它的销售量大约是______辆【答案】42【解析】解:由图表可得,,.代入线性回归方程,得.,当时,.预测它的销售量大约是42辆.故答案为:42.由已知求得,代入线性回归方程求得b,得到线性回归方程,取求得y值得答案.本题考查线性回归方程的求法,考查计算能力,是基础题.16.已知函数有唯一零点,则______.【答案】【解析】解:与的图象均关于直线对称,的图象关于直线对称,的唯一零点必为,,,.故答案为:.判断函数与的图象的对称性,结合函数的对称性进行判断即可.本题主要考查函数零点个数的判断,根据条件判断函数的对称性是解决本题的关键.三、解答题(本大题共6小题,共70.0分)17.已知集合,.Ⅰ当时,求;Ⅱ若,求实数k的取值范围.【答案】解:Ⅰ当时,,则,分Ⅱ,则分当时,,解得;分当时,由得,即,解得分综上,分【解析】Ⅰ直接根据并集的定义即可求出由,得,由此能求出实数k的取值范围.本题考查集合的求法,考查实数的取值范围的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.计算下列各式的值:;.【答案】解:原式;原式.【解析】进行分数指数幂的运算即可;进行对数的运算即可.考查分数指数幂和对数的运算,以及对数的运算性质.19.已知是奇函数.求a的值并判断的单调性,无需证明;若对任意,不等式恒成立,求实数k 的取值范围.【答案】解:是奇函数,定义域为R,,解得,验证:,,即为奇函数,,在R上为增函数,对任意,不等式恒成立,,在R上为增函数,,,即对任意,恒成立,令,,,,对于,当时取最大值,最大值为3,,,故实数k的取值范围为.【解析】由奇函数的性质可得,在判断函数的单调性;利用的奇偶性和单调性,将不等式转化为:在上恒成立,然后转化为最值,最后构造函数求出最大值即可.本题考查了奇偶函数定义、函数的单调性、恒成立问题转化为最值、二次函数求最值属中档题.20.张先生和妻子李女士二人准备将家庭财产100万元全部投资兴办甲、乙两家微型企业,计划给每家微型企业投资50万元,张先生和妻子李女士分别担任甲、乙微型企业的法人根据该地区以往的大数据统计,在10000家微型企业中,若干年后,盈利的有5000家,盈利的有2x家,持平的有2x家,亏损的有x家.求x的值,并用样本估计总体的原理计算:若干年后甲微型企业至少盈利的可能性用百分数示;张先生加强了对企业的管理,预计若干年后甲企业一定会盈利,李女士由于操持家务,预计若干年后盈利情况与该地区以往的大数据统计吻合求若干年后李女士拥有的家庭财产数量的期望值婚姻期间财产各占一半.【答案】解:,,用样本估计总体计算得:若干年后甲微型企业至少盈利的可能性为:.由题意得若干年后,两人家庭财产的总数量为:万元.由于婚姻期间家庭财产为共同财产,若干年后李女士拥有的家庭财产数量的期望值婚姻期间财产各占一半为:万元.【解析】由,求出,用样本估计总体,能求出若干年后甲微型企业至少盈利的可能性.由题意求出若干年后,两人家庭财产的总数量,由此能求出若干年后李女士拥有的家庭财产数量的期望值.本题考查实数值、至少盈利的可能性、期望值的求法,考查用样本特征估计总体特征等基础知识,考查运算求解能力,是基础题.21.当今的学校教育非常关注学生身体健康成长,某地安顺小学的教育行政主管部门为了了解小学生的体能情况,抽取该校二年级的部分学生进行两分钟跳绳次数测试,测试成绩分成,,,四个部分,并画出频率分布直方图如图所示,图中从左到右前三个小组的频率分别为,,,且第一小组从左向右数的人数为5人.求第四小组的频率;求参加两分钟跳绳测试的学生人数;若两分钟跳绳次数不低于100次的学生体能为达标,试估计该校二年级学生体能的达标率用百分数表示【答案】解:第四小组的频率为:.设参加两分钟跳绳测试的学生有x人,则,解得,参加两分钟跳绳测试的学生人数为50人.由题意及频率分布直方图知:样本数据参加两分钟跳绳次数测试体体能达标率为:,估计该校二年级学生体能的达标率为.【解析】由频率分布直方图能求出第四小组的频率.设参加两分钟跳绳测试的学生有x人,则,由此能求出参加两分钟跳绳测试的学生人数.由题意及频率分布直方图知样本数据参加两分钟跳绳次数测试体体能达标率为,由此能估计该校二年级学生体能的达标率.本题考查频率、频数、达标率的求法,考查频率分布直图的性质等基础知识,考查运算求解能力,是基础题.22.已知函数,其最小值为.求的表达式;当时,是否存在,使关于t的不等式有且仅有一个正整数解,若存在,求实数k的取值范围;若不存在,请说明理由.【答案】解:函数的对称轴为,当时,区间为增区间,可得;当,可得;当时,区间为减区间,可得.则;当时,即,可得,令,,可得在递减,在递增,在的图象如右图:,,由图可得,即,关于t的不等式有且仅有一个正整数解2,所以k的范围是【解析】求得的对称轴,讨论对称轴和区间的关系,结合单调性可得最小值;由题意可得,令,求得单调性,画出图象,可得整数解2,即可得到所求范围.本题考查二次函数的最值求法,注意运用对称轴和区间的关系,考查不等式有解的条件,注意运用参数分离和对勾函数的单调性,考查运算能力和推理能力,属于中档题.。
江苏省扬州市2019-2020 学年高一上学期期末调研测试(数学)2014. 1(满分 160 分,考试时间120 分钟)注意事项:1.答卷前,请考生务势必自己的学校、姓名、考试号等信息填写在答卷规定的地方.2.试题答案均写在答题卷相应地点,答在其余地方无效.一、填空题(本大题共14 小题,每题 5 分,共 70 分,请将答案填写在答题卷相应的地点上)1.已知全集U1,2,3,4,5,6 , A 3,4,5 ,则C U A▲.2.函数y tan(2 x)的最小正周期为▲ .313.幂函数f x x 4的定义域为▲.4.平面直角坐标系xOy 中,60 角的终边上有一点P( m,3) ,则实数 m 的值为▲.5.已知a2, b log 23, c sin1600,把 a,b, c 按从小到大的次序用“”连结起来:2....▲.6.半径为3cm,圆心角为120的扇形面积为▲cm2.7.函数 f (x) log a (x 1) (a0且 a 1)的图象必经过定点P,则点 P 的坐标为▲.r r r r r r8.已知| a | 2 , |b | 1 ,若 a, b的夹角为60,则 | a2b |▲ .9.已知函数 f x x2a2 1 x a 2 的一个零点大于1,另一个零点小于1,则实数a的取值范围为▲.10.如右图,平行四边形ABCD中,E是边BC上一点,GD 为 ACuuur uuur uuur r uuur r CG与 DE 的交点,且AG3GC ,若 AB a ,AD b ,E则用r ruuurAa, b 表示BG▲.B11.若 x(, 1] ,不等式 ( m m 2 ) 2x 1 0 恒建立,则实数 m 的取值范围为▲ .12.将函数 y 2sin x 的图象先向右平移个单位, 再将获得的图象上各点的横坐标变成本来的1倍(纵62坐标不变),获得函数 yf ( x) 的图象,若 x [0, ] ,则函数 yf ( x) 的值域为2▲.13.已知uuur1cos2uuursin 2uuurABC 中, BC 边上的中线 AO 长为 2,若动点 P 知足 BP BC BAuuur uuur uuur2(R) ,则 (PB PC ) PA 的最小值是▲ .14.已知定义在 (0,) 上的函数 f ( x) 为单一函数,且 f ( x) f ( f (x)2 ) 2 ,则 f (1)x▲.二、解答题: (本大题共 6 道题,计 90 分 . 解答应写出必需的文字说明、证明过程或演算步骤)15.(此题满分 14 分)已知 sin5 是第一象限角.,且5( 1)求 cos的值;sin(3)( 2)求 tan()2的值.cos()16.(此题满分 14 分)r 1,1 r2,3 ,当 k 为什么值时,已知 a , br r r r( 1) ka 2b 与 2a 4b 垂直?r r r r( 2) ka 2b 与 2a 4b 平行?平行时它们是同向仍是反向?17. (此题满分 15 分)已知函数 f (x)A sin( x ) (此中 A 0,0,| |)的部分图象如下图.2( 1)求函数 y f ( x) 的分析式; y( 2)求函数 yf ( x) 的单一增区间;π 7 π ( 3)求方程f (x) 0 的解集.312 O- 1x18. (此题满分 15 分)已知函数 f ( x)log a1x(a 0且 a1) 的图象经过点 P(4,2) .1 x5( 1)求函数 yf (x) 的分析式;( 2)设 g( x) 1x,用函数单一性的定义证明:函数yg ( x) 在区间 ( 1,1)上单一递减;1 x( 3)解不等式: f (t 2 2t 2) 0 .19.(此题满分 16 分)我国加入 WTO 后,依据完成的协议,若干年内某产品关税与市场供给量P 的关系同意近似的知足:yP(x) 2(1 kt )( x b)2(此中 t 为关税的税率, 且 t[0, 1) , x 为市场价钱, b 、k 为正常数),当 t128时的市场供给量曲线如图:( 1)依据图象求 b 、 k 的值;11 x .当 P Q 时的市场价钱称为市场均衡价钱.为使( 2)若市场需求量为 Q ,它近似知足 Q( x) 2 2市场均衡价钱控制在不低于9 元,求税率 t 的最小值.20.(本分16 分)已知函数 f ( x) x | 2a x | 2x ,a R .( 1)若a0 ,判断函数y f (x) 的奇偶性,并加以明;( 2)若函数f ( x)在R上是增函数,求数 a 的取范;( 3)若存在数a2,2 , 使得对于x的方程 f (x)tf (2 a)0 有三个不相等的数根,求数t 的取范.州市 2013— 2014 学年度第一学期期末研高一数学参照答案2014. 11.1,2,62.23. [0,)4.15. a c b 6 .31r3r7.( 2,0 )8. 2 39. ( 2,1)10.11. 1 m2ab4412.[ 1,2]13.214. 1514.分析: f (1)m ,令x 1 ,由意得: f (1) f ( f (1)2) 2 ,即 mf ( m2) 2 2f (m 2) ;再令 x m2f ( 22) 2 ,m m m2221,解得:m m 2m 2 ,由意得: f (m 2) f ( f (m 2)2) 2,即m 2f (22) m f (1) ,∵函数 f ( x) (0,) 上的函数m m2m 1 5 ,即 f (1)1515.解:( 1)∵α是第一象限角∴cos0 ∵sin 5∴ cos α= 1- sin2α=25⋯⋯⋯⋯ 5分55( 2)∵ tansin1⋯⋯⋯⋯⋯⋯ 7 分cos2sin(3)cos3∴ tan()2= tan α+tan 1cos(cos ⋯⋯⋯⋯⋯⋯ 14 分)2r rk(1,1)2(2,3)( k r r( 6,10) ⋯4分16.解:ka2b4, k 6) , 2a4b 2(1,1) 4(2,3) r r r r( 1)由(ka2b)(2a4b) ,得:r rrr21(ka2b)g(2 a 4b)6( k4)10( k 6)16k 84 0 ,解得: k4.⋯⋯⋯⋯⋯ 8 分rrrr26( k6) 10( k 4) 4k4 0 ,解得: k 1,⋯12 分( 2)由 (kab) P(2 a 4b) ,得 rr (3,5) 1 ( 6, 10) r r此 ka2b1(2 a 4b) ,因此它 方向相反.⋯⋯⋯⋯ 14 分2217 .解:(1)由 知, A 1 ,⋯⋯⋯⋯⋯⋯ 1 分 Q 周期T47,22 ⋯⋯⋯⋯⋯⋯3 分123f (x)sin(2 x)又 Q f71 ,sin71 ,72k31266(k Z )22k3 , k Z Q|| 2 ,3f (x) sin(2x) . ⋯⋯⋯⋯⋯⋯ 6 分3( 2)22 x2 , kZ⋯⋯⋯⋯⋯⋯ 8 分k32k25 kxk , kZ1212∴函数 yf ( x) 的 增区 :[5 k ,k ], k Z ⋯⋯⋯⋯⋯⋯ 11 分12 123f (x) 0∴ 2xk , k Z ,⋯⋯⋯⋯⋯⋯ 13 分( )∵3∴ x1 ( k Z ) ,∴方程 f (x)0 的解集 { x | x1 , k Z}.⋯⋯⋯⋯ 15 分6k6k22或 察 象并 合三角函数的周期性写出解集 :{ x | x3k 或5k , kZ} ,也得分. 果不6以会合形式表达扣1 分.41 ( 4 )18.( 1) f () log a52 ,解得: 29∵ a 0且 a1∴ a3;⋯⋯⋯ 3 分54a1 ()5( 2) x 1 、 x 2 (1,1)上的随意两个 ,且 x 1 x 2 , x 1 1 0, x 2 1 0, x 2x 1Q g( x 1)g( x 2 ) 1 x 11 x 22( x 2 x 1 )⋯⋯⋯⋯⋯ 6 分1 x 11x 2 (1x 1 )(1x 2 )g(x 1 )g( x 2 ) 0 ,g ( x 1 )g( x 2 ) g( x)1 x在区 (1,1) 上 减.⋯⋯8分1 x( 3)方法(一) :由1x0 ,解得: 1 x 1 ,即函数 yf (x) 的定 域 ( 1,1);⋯⋯10分1 xlog 31x在 ( 1,1)上的 性.先研究函数 f ( x)1 x可运用函数 性的定 明函数f (x)log 3 1x在区 ( 1,1) 上 减, 明 程略.1 x或 x 1 、 x 2 ( 1,1)上的随意两个 ,且x 1 x 2 ,由(2)得:g ( x 1 ) g (x 2 )log 3 g(x 1)log 3 g( x 2 ) ,即 f ( x 1 )f ( x 2 )f ( x) 在区 (1,1) 上 减.⋯⋯⋯⋯⋯ 12分再利用函数 f (x)log 31x的 性解不等式:1 xQ f (0) 0 且 yf ( x) 在 ( 1,1)t 2 2t 2 0上 减函数.t 22t 2 11, ⋯⋯⋯13分21 t3即t2t 2 1,解得:t22t2 0t1或 t1331 t 13或13t3 .⋯⋯⋯⋯⋯⋯ 15 分方法(二): Q log 31(t 2 2t 2) 00 1 (t 2 2t2) 1⋯⋯⋯⋯⋯⋯ 10 分1 (t2 2t 2)1 (t2 2t 2)由 1 (t1 (t2 22t 2) 1 得 : t 22t2 0 或 t22t 21;由1(t 2t 2)1 (t2 22t 2)2t 2)0 得 :1 t 22t2 1 ,0 t 22t 2 1⋯⋯⋯⋯⋯⋯ 13 分1 t13或13t3 .⋯⋯⋯⋯⋯⋯ 15 分(1k )(5 b )2119.解:( 1)由 象知函数 象 :(5,1) , (7, 2) ,28k)(7 b) 2,⋯⋯⋯ 2 分(1228(1k)(5 b)2k6得8,; ⋯⋯⋯⋯⋯⋯ 6 分⋯⋯⋯ 4 分 解得:(1k)(7b)21 b58(2)当 PQ , 2(1 6t )( x 5) 211 x6t)( x2x ,⋯⋯⋯⋯⋯⋯ 8 分2 2,即 (15) 11211x 1 22 x 1171化 得: 16t2⋯⋯⋯⋯⋯⋯ 10分( x 5)22 ( x 5)2[]2 ( x 5)2x 5令 m1 ( x 9) , m(0, 1] ,x 54f (m)17 m 2m, m(0, 1 ] , 称 m 11 13 4 1341 131 13 f ( x) max f ( ) m, 1 6t4 16 ,因此,当 4 取到最大 :,即 16t,解得:19 19 .2 16216t ,即税率的最小⋯⋯⋯⋯⋯⋯ 15 分192 192答:税率 t 的最小19.⋯⋯⋯⋯⋯⋯ 16 分19220.解:( 1)函数 yf ( x) 奇函数.当 a 0 , f ( x) x | x |2 x , xR ,∴ f ( x)x | x | 2xx | x | 2xf ( x)∴函数 yf ( x) 奇函数;⋯⋯⋯⋯⋯⋯ 3 分( 2) f ( x)x 2 (2 2a) x ( x2a),当 x 2a , yf ( x) 的 称 : xa 1 ;x 2 (2 2a) x ( x 2a)当 x 2a , yf ( x) 的 称 :x a 1;∴当 a12a a 1 , yf ( x) 在 R 上是增函数,即 1a 1 ,函数 y f (x) 在 R 上是增函数;⋯⋯⋯⋯⋯⋯ 7 分( 3)方程 f (x) tf (2 a) 0 的解即 方程 f ( x) tf (2a) 的解.①当 1 a 1 ,函数 y f ( x) 在 R 上是增函数,∴对于x 的方程 f ( x) tf (2 a) 不行能有三个不相等的 数根;⋯⋯⋯⋯⋯⋯ 9 分②当 a1 ,即2a a 1 a 1 ,∴ yf ( x) 在 ( , a 1) 上 增,在 (a 1,2a) 上 减,在(2 a,) 上 增,∴当 f (2 a) tf (2 a)f (a 1) ,对于 x 的方程 f (x)tf (2 a) 有三个不相等的数根;即4a t 4a(a 1)2,∵ a1 ∴ 1 t1(a 12) .4 ah(a)1(a 1 2) ,∵存在 a 2,2 , 使得对于 x 的方程 f (x) tf (2a) 有三个不相等的 数根, ∴4 a 1 11 th(a) max ,又可 h(a)2) 在 (1,2] 上 增 ( a a 9 9 4∴ h( a) max 1 t 12 分∴ ;⋯⋯⋯⋯⋯⋯8 8③当 a 1 ,即 2a a 1 a 1 ,∴ yf ( x) 在 ( , 2a) 上 增,在 (2a, a 1) 上 减,在(a 1,) 上 增,∴当 f ( a 1) tf (2 a) f (2 a) ,对于 x 的方程 f (x) tf (2 a) 有三个不相等的 数根;即(a 1)2t 4a 4a ,∵a 1∴ 1 t 1(a12) , g (a)1(a12) 4a4a∵存在 a2,2 , 使得对于x的方程 f ( x)tf (2 a)有三个不相等的数根,∴ 1t g(a) max,又可 g( a)1(a12) 在[ 2,1) 上减∴ g (a) max9 4a8∴ 1t 9;⋯⋯⋯⋯⋯⋯ 15 分89上: 1t⋯⋯⋯⋯⋯⋯ 16 分.8。
2019—2020学年度第一学期期末质量检测高一数学答案一、选择题二、填空题13.21614.115.3216.25三、解答题17.(满分10分)(1)由2log 1log 22=<x 得:{}20|<<=x x A 3分由011e e x =≥-得:{}1|≥=x x B 4分(){}10|<<=∴x x B C A R 5分(2)由A C A = 得,CA ⊆6分⎪⎩⎪⎨⎧≥+≤+<∴230232a a a a 解得:01≤≤-a .10分18.(满分12分)(1)直线1-=x 的倾斜角为090则直线l 的倾斜角为045,即斜率为1由点斜式可得直线l 的方程为1+=x y .(2)当A 、B 两点在直线l 的同侧时有AB l //则1==AB l k k ,由点斜式可得直线l 的方程为01=+-y x ;当A 、B 两点在直线l 的两侧时则l 过线段AB 的中点()0,2,由两点式可得直线l 的方程为042=-+y x .直线l 的方程为01=+-y x 或042=-+y x .12分19.(满分12分)(1)设)0()(2≠++=a c bx ax x f 则()()cx b x a x f ++++=+11)1(2由42)()1(2+=++x x f x f 可得:42)2()(2222+=+++++x c b a x b a ax ⎪⎩⎪⎨⎧=++=+=∴420)(222c b a b a a 解得1=a ,1-=b ,2=c 2)(2+-=∴x x x f (2)2)(2+-=x x x f 的对称轴为21=x 题号123456789101112答案CBCACBBDAACB6分1分4分11分8分5分2分7分9分当21>m 时,)(x f 在区间⎥⎦⎤⎢⎣⎡21,0上单调递减,在区间⎥⎦⎤⎢⎣⎡m ,21上单调递增故)(x f 的最小值为4721(=f 当210≤<m 时,)(x f 在区间[]m ,0上单调递减故)(x f 的最小值为2)(2+-=m m m f 所以当210≤<m 时,2)(2min +-=m m x f20.(满分12分)(1)证明:由题可得222AB BC AC =+即BCAC ⊥由直三棱柱111C B A ABC -可得⊥1CC 面ABCACCC ⊥∴1又C CC BC =1 11C CBB AC 面⊥∴故1BC AC ⊥(2)证明:设11BC CB 和的交点为O ,连接ODO 为矩形11C CBB 两条对角线1CB 和1BC 的交点,则O 为1BC 中点又D 为AB 中点则OD 为1ABC ∆的中位线,即OD AC //1则1AC /⊆面1CDB ,OD ≠⊂面1CDB 1AC ∴//面1CDB 21.(满分12分)(1)由题知直线l 的方程为2+=kx y 联立方程()⎩⎨⎧=+-+=11222y x kx y 得()(*)04)24(122 =+-++x k x k 由于直线l 与圆C 交于B A 、两点()()4142422>⨯+⨯--=∆∴k k 解得43-<k .(2)设交点()11,y x A ,()22,y x B 由韦达定理可得124221+--=+k k x x 14221+=k x x ()()2121212121122121122211)(2222x x x x x kx x x kx x kx x x x y x y x x yx y k k OB OA ++=+++=+=+=+将两根之和和两根之积代入可得:1=+OB OA k k 2分3分6分9分5分12分10分6分1分4分9分8分12分22.(满分12分)(1)矩形的周长为8cm,则()cm x AD -=4,()cmy x EC AE -==在ADE ∆中,有222AE DE AD =+即()()2224y x y x -=+-由于AD AB >得x x ->4即2>x 又0>AD 则4<x 故()42,84<<-=x x y .(2)()⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛--=⋅=x x x x DE AD S 82128442121(3)由于24242282≥+⎪⎪⎭⎫⎝⎛-=+x x x x 当且仅当xx 22=即()4,222∈=x 时取""=号.所以当长为cm 22,宽为()cm 224-时,S 最大.12分8分6分10分。
2019-2020学年高一上学期期末考试数学试卷一、选择题(本大题共12小题,共48.0分)1.点(1,-1)到直线y=x+1的距离是()A. B. C. D.2.已知圆的方程为x2+y2-2x+6y+8=0,那么通过圆心的一条直线方程是()A. B. C. D.3.已知两条平行直线l1:3x+4y+5=0,l2:6x+by+c=0间的距离为3,则b+c=()A. B. 48 C. 36 D. 或484.下列命题中正确的个数是()①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.A. 1B. 2C. 3D. 45.如果AB>0,BC>0,那么直线Ax-By-C=0不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.一正方体的各顶点都在同一球面上,用过球心的平面去截这个组合体,截面图不能是()A. B. C. D.7.直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.B.C.D.8.一个正方体截去两个角后所得几何体的正视图(又称主视图)、侧视图(又称左视图)如右图所示,则其俯视图为()A. B. C.D.9.已知a,b满足a+2b=1,则直线ax+3y+b=0必过定点()A. B. C. D.10.过点(1,2)且与原点距离最大的直线方程是()A. B. C. D.11.如果一个正四面体的体积为9dm3,则其表面积S的值为()A. B. C. D.12.如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为和.过A、B分别作两平面交线的垂线,垂足为A′、B′,则AB:A′B′=()A. 2:1B. 3:1C. 3:2D. 4:3二、填空题(本大题共4小题,共16.0分)13.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.14.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的体对角线的长分别是9和15,则这个棱柱的侧面积是______.15.已知正四棱锥的底面边长为2,侧棱长为,则侧面与底面所成的二面角为______.16.已知两点A(-3,2),B(2,1),点P(x,y)为线段AB上的动点,假设m=,则m的取值范围为______.三、解答题(本大题共5小题,共56.0分)17.求斜率为,且与坐标轴所围成的三角形的面积是6的直线方程.18.△ABC中,已知C(2,5),角A的平分线所在的直线方程是y=x,BC边上高线所在的直线方程是y=2x-1,试求顶点B的坐标.19.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到平面PBC的距离.20.当0<a<2时,直线l1:ax-2y=2a-4与l2:2x+a2y=2a2+4和两坐标轴围成一个四边形,问a取何值时,这个四边形面积最小,并求这个最小值.21.如图所示,正四棱锥P-ABCD中,O为底面正方形的中心,侧棱PA与底面ABCD所成的角的正切值为.(1)求侧面PAD与底面ABCD所成的二面角的大小;(2)若E是PB的中点,求异面直线PD与AE所成角的正切值;(3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.答案和解析1.【答案】D【解析】解:点(1,-1)到直线y=x+1的距离:d==.故选:D.利用点到直线的距离公式直接求解.本题考查点到直线方程的距离的求法,是基础题,解题时要认真审题,注意点到直线的距离公式的合理运用.2.【答案】C【解析】解:因为圆的方程为x2+y2-2x+6y+8=0,所以圆心坐标(1,-3),代入选项可知C正确.故选:C.求出圆的圆心坐标,验证选项即可.本题考查圆的一般方程,点的坐标适合直线方程;也可认为直线系问题,是基础题.3.【答案】D【解析】解:将l1:3x+4y+5=0改写为6x+8y+10=0,因为两条直线平行,所以b=8.由=3,解得c=-20或c=40.所以b+c=-12或48故选D.将l1:3x+4y+5=0改写为6x+8y+10=0,利用两条直线平行及距离为3,即可求得结论.本题考查两条平行线间距离的计算,考查学生的计算能力,属于基础题.4.【答案】B【解析】解:①若直线a不在α内,则a可能和α相交,所以①错误.②a和α相交时,直线l上有无数个点不在平面α内,但此时l∥α不成立,所以②错误.③若直线l与平面α平行,则l与α内的任意一条直线都没有公共点,所以直线可能平行或异面,所以③错误.④根据线面平行的定义可知,若l与平面α平行,则l与α内任何一条直线都没有公共点,以④正确.⑤根据线面平行的性质可知平行于同一个平面的两两条直线可能相交,可能平行,也可能是异面直线,所以⑤正确.故正确的是:④⑤.故选B.①根据直线和平面的位置关系判断.②利用直线和平面的位置关系判.③利用线面平行的定义判断.④利用线面平行的性质判断.⑤根据线面平行的性质判断.本题主要考查空间直线和平面平行判定和性质,要求熟练掌握线面平行的定义和性质.5.【答案】B【解析】解:由题意可知B≠0,故直线的方程可化为,由AB>0,BC>0可得>0,<0,由斜率和截距的几何意义可知直线不经过第二象限,故选:B.化直线的方程为斜截式,由已知条件可得斜率和截距的正负,可得答案.本题考查直线的斜率和截距的几何意义,属基础题.6.【答案】A【解析】解:B是经过正方体对角面的截面;C是经过球心且平行于正方体侧面的截面;D是经过一对平行的侧面的中心,但不是对角面的截面.故选:A.对选项进行分析,即可得出结论.本题考查用过球心的平面去截这个组合体的截面图,考查学生分析解决问题的能力,比较基础.解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选:C.延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.本小题主要考查直三棱柱ABC-A1B1C1的性质、异面直线所成的角、异面直线所成的角的求法,考查转化思想,属于基础题.8.【答案】C【解析】解:根据主视图和左视图可知正方体截取的两个角是在同一个面上的两个相对的角,∴它的俯视图是一个正方形,正方形的右下角是以实线画出的三角形,左上角是一个实线画出的三角形,依题意可知该几何体的直观图如图,其俯视图应选C.故选C.正方体截取的两个角是在同一个面上的两个相对的角,它的正视图外围是一个正方形,正方形的左上角是以虚线画出的三角形,右上角是一个实线画出的三角形,看出结果.本题考查简单空间图形的三视图,本题解题的关键是通过两个视图,想象出正方体的形状和位置,注意虚线和实线的区别.解:因为a,b满足a+2b=1,则直线ax+3y+b=0化为(1-2b)x+3y+b=0,即x+3y+b(-2x+1)=0恒成立,,解得,所以直线经过定点().故选:B.利用已知条件,消去a,得到直线系方程,然后求出直线系经过的定点坐标.本题考查直线系方程的应用,考查直线系过定点的求法,考查计算能力.10.【答案】A【解析】解:设A(1,2),则OA的斜率等于2,故所求直线的斜率等于-,由点斜式求得所求直线的方程为y-2=-(x-1),化简可得x+2y-5=0,故选A.先根据垂直关系求出所求直线的斜率,由点斜式求直线方程,并化为一般式.本题考查用点斜式求直线方程的方法,求出所求直线的斜率,是解题的关键.11.【答案】B【解析】解:设正四面体P-ABC,棱长为a,高为PO,O为底面正三角形外心(重心),∴底面正三角形高为AD=,S△ABC=,∵AO=,∴PO=,∴V===9,解得a=3(dm),∴表面积S=4×=18(dm2).故选:B.先由正四面体的体积为9dm3,计算正四面体的棱长,即可计算表面积S的值.本题考查正四面体的体积、表面积,考查学生的计算能力,属于中档题.12.【答案】A【解析】解:连接AB'和A'B,设AB=a,可得AB与平面α所成的角为,在Rt△BAB'中有AB'=,同理可得AB与平面β所成的角为,所以,因此在Rt△AA'B'中A'B'=,所以AB:A'B'=,故选:A.设AB的长度为a用a表示出A'B'的长度,即可得到两线段的比值.本题主要考查直线与平面所成的角以及线面的垂直关系,要用到勾股定理及直角三角形中的边角关系.有一定的难度13.【答案】6【解析】解:如下图示,在三棱柱ABC-A1B1C1中,过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线有:DE、DG、DF、EG、EF、FG共有6条.故答案为:6本题考查的知识点为空间中直线与平面之间的位置关系,要判断过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线,我们可以利用数型结合的思想,画出满足条件的三棱柱ABC-A1B1C1,结合图象分析即可得到答案.要判断空间中直线与平面的位置关系,有良好的空间想像能力,熟练掌握空间中直线与直线、直线与平面、平面与平面平行或垂直的判定定理及性质定理,并能利用教室、三棱锥、长方体等实例举出满足条件的例子或反例是解决问题的重要条件.14.【答案】160【解析】解:设直四棱柱ABCD-A1B1C1D1中,对角线A1C=9,BD1=15,∵A1A⊥平面ABCD,AC⊂平面ABCD,∴A1A⊥AC,Rt△A1AC中,A1A=5,可得AC==,同理可得BD===10,∵四边形ABCD为菱形,可得AC、BD互相垂直平分,∴AB===8,即菱形ABCD的边长等于8.因此,这个棱柱的侧面积S侧=(AB+BC+CD+DA)×A1A=4×8×5=160.故答案为:160根据线面垂直的定义,利用勾股定理结合题中数据算出底面菱形的对角线长分别为和10,再由菱形的性质算出底面的边长为8,根据直棱柱的侧面积公式加以计算,可得该棱柱的侧面积.本题给出直棱柱满足的条件,求它的侧面积.着重考查了线面垂直的定义、菱形的性质和直棱柱的侧面积公式等知识,属于中档题.15.【答案】60°【解析】解:过S作SO⊥平面ABCD,垂足为O,则O为ABCD的中心,取CD中点E,连接OE,则OE⊥CD,由三垂线定理知CD⊥SE,所以∠SEO为侧面与底面所成二面角的平面角,在Rt△SOE中,SE===2,OE=1,所以cos∠SEO=,则∠SEO=60°,故答案为:60°.过S作SO⊥平面ABCD,垂足为O,则O为ABCD的中心,取CD中点E,连接OE,则OE⊥CD,易证∠SEO为侧面与底面所成二面角的平面角,通过解直角三角形可得答案.本题考查二面角的平面角及其求法,考查学生推理论证能力,属中档题.16.【答案】(-∞,-1]∪[1,+∞),【解析】解:设C(0,-1),则m==k PC,表示PC的斜率观察图形,直线PA的倾斜角总是钝角,由此可得当P与A重合时,k PC==-1达到最大值;当P与B重合时,k PC==1达到最小值∴k PC∈(-∞,-1]∪[1,+∞),即m∈(-∞,-1]∪[1,+∞),故答案为:(-∞,-1]∪[1,+∞),根据直线的倾斜公式,设C(0,-1)得m=,表示PC的斜率.由此作出图形并观察PC倾斜角的变化,即可得到m=,的取值范围.本题给出线段AB,求直线斜率的范围并求距离和的最小值.着重考查了直线的基本量与基本形式、点关于直线对称和两点的距离公式等知识,属于基础题.17.【答案】解:设直线方程为:y=x+b.可得此直线与坐标轴的交点(0,b),(-b,0).由=6,化为:b2=9,解得b=±3.∴要求的直线方程为:y=x±3.【解析】设直线方程为:y=x+b.可得此直线与坐标轴的交点(0,b),(-b,0).由=6,解得b即可得出.本题考查了直线方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.18.【答案】解:依条件,由解得A(1,1).因为角A的平分线所在的直线方程是y=x,所以点C(2,5)关于y=x的对称点C'(5,2)在AB边所在的直线上.AB边所在的直线方程为y-1=(x-1),整理得x-4y+3=0.又BC边上高线所在的直线方程是y=2x-1,所以BC边所在的直线的斜率为-.BC边所在的直线的方程是y=-(x-2)+5,整理得x+2y-12=0.联立x-4y+3=0与x+2y-12=0,解得B(7,).【解析】首先求出A点的坐标,进而求出AB边所在的直线方程,然后根据两直线垂直求出BC边所在的直线的斜率和方程,最后联立方程即可求出B得的坐标.考查了直线的一般方程和直线的截距方程、直线的位置关系等知识,属于基础题.19.【答案】解:(1)证明:因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC.由∠BCD=90°,得CD⊥BC,又PD∩DC=D,PD、DC⊂平面PCD,所以BC⊥平面PCD.因为PC⊂平面PCD,故PC⊥BC.(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等.又点A到平面PBC的距离等于E到平面PBC的距离的2倍.由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F.易知DF=,故点A到平面PBC的距离等于.(方法二)等体积法:连接AC.设点A到平面PBC的距离为h.因为AB∥DC,∠BCD=90°,所以∠ABC=90°.从而AB=2,BC=1,得△ABC的面积S△ABC=1.由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积△ .因为PD⊥平面ABCD,DC⊂平面ABCD,所以PD⊥DC.又PD=DC=1,所以.由PC⊥BC,BC=1,得△PBC的面积△ .由V A-PBC=V P-ABC,△ ,得,故点A到平面PBC的距离等于.【解析】(1),要证明PC⊥BC,可以转化为证明BC垂直于PC所在的平面,由PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,容易证明BC⊥平面PCD,从而得证;(2),有两种方法可以求点A到平面PBC的距离:方法一,注意到第一问证明的结论,取AB的中点E,容易证明DE∥平面PBC,点D、E到平面PBC的距离相等,而A到平面PBC的距离等于E到平面PBC 的距离的2倍,由第一问证明的结论知平面PBC⊥平面PCD,交线是PC,所以只求D到PC的距离即可,在等腰直角三角形PDC中易求;方法二,等体积法:连接AC,则三棱锥P-ACB与三棱锥A-PBC体积相等,而三棱锥P-ACB体积易求,三棱锥A-PBC的地面PBC的面积易求,其高即为点A到平面PBC的距离,设为h,则利用体积相等即求.本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.20.【答案】解:如图,由已知l1:a(x-2)-2(y-2)=0,l2:2(x-2)+a2(y-2)=0.∴l1、l2都过定点(2,2),且l1的纵截距为2-a,l2的横截距为a2+2.∴四边形面积S=×2×(2-a)+×2×(2+a2)=a2-a+4=(a-)2+,又0<a<2,故当a=时,S min=.【解析】=S△BCE-S△OAB即可得出S=(a-)2+,结合二次函数最值根据S四边形OCEA的求法解答.本题考查了相交直线、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.21.【答案】解:(1)取AD中点M,连接MO,PM,依条件可知AD⊥MO,AD⊥PO,则∠PMO为所求二面角P-AD-O的平面角.∵PO⊥面ABCD,∴∠PAO为侧棱PA与底面ABCD所成的角.∴tan∠PAO=,设AB=a,AO=a,∴PO=AO•tan∠POA=a,tan∠PMO==.∴∠PMO=60°.(2)连接AE,OE,∵OE∥PD,∴∠OEA为异面直线PD与AE所成的角.∵AO⊥BD,AO⊥PO,∴AO⊥平面PBD.又OE⊂平面PBD,∴AO⊥OE.∵OE=PD==a,∴tan∠AEO==;(3)延长MO交BC于N,取PN中点G,连BG,EG,MG.∵BC⊥MN,BC⊥PN,∴BC⊥平面PMN∴平面PMN⊥平面PBC.又PM=PN,∠PMN=60°,∴△PMN为正三角形.∴MG⊥PN.又平面PMN∩平面PBC=PN,∴MG⊥平面PBC.∴F是AD的4等分点,靠近A点的位置.【解析】(1)取AD中点M,连接MO,PM,由正四棱锥的性质知∠PMO为所求二面角P-AD-O的平面角,∠PAO为侧棱PA与底面ABCD所成的角,则tan∠PAO=,设AB=a,则AO=a,PO=AO•tan∠POA=a,MO=a,tan∠PMO=,∠PMO=60°;(2)依题意连结AE,OE,则OE∥PD,故∠OEA为异面直线PD与AE所成的角,由正四棱锥的性质易证OA⊥平面POB,故△AOE为直角三角形,OE=PD==a,所以tan∠AEO==;(3)延长MO交BC于N,取PN中点G,连BG,EG,MG,易得BC⊥平面PMN,故平面PMN⊥平面PBC,而△PMN为正三角形,易证MG⊥平面PBC,取MA 的中点F,连EF,则四边形MFEG为平行四边形,从而MG∥FE,EF⊥平面PBC,F是AD的4等分点,靠近A点的位置.本题考查二面角及平面角的求法,异面直线所成角的正切值的求法,难度较大,解题时要认真审题,注意空间思维能力的培养.。
2019-2020学年高一上学期期末质量检测数学试题一、选择题(本大题共10小题,共30.0分)1.已知集合,,则A. B. C.D.【答案】A【解析】解:集合,,,故A正确,D错误;,故B和C都错误.故选:A.先分别求出集合A和B,再求出和,由此能求出结果.本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.下列四组函数,表示同一函数的是A. ,B. ,C. ,D. ,【答案】D【解析】解:,,所以两个函数的对应法则不一致,所以A 不是同一函数.B.的定义域为R,而的定义域为,所以定义域不同,所以B 不是同一函数.C.由,解得或,由,解得,两个函数的定义域不一致,所以C不是同一函数.D.的定义域为R,而的定义域为R,且,所以定义域和对应法则相同,所以D是同一函数.故选:D.分别判断两个函数的定义域和对应法则是否一致,否则不是同一函数.本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.3.下列函数中,既是奇函数又在区间上单调递増的函数为A. B. C. D.【答案】C【解析】解:由于在区间上单调递减,故排除A;由于不是奇函数,故排除B;由于既是奇函数又在区间上单调递増,故它满足条件;由于是偶函数,不是奇函数,故排除D,故选:C.由题意利用函数的奇偶性和单调性,得出结论.本题主要考查函数的奇偶性和单调性,属于基础题.4.如图所示,观察四个几何体,其中判断正确的是A. 如图是棱台B. 如图是圆台C. 如图是棱锥D. 如图不是棱柱【答案】C【解析】解:对于学习A,不是由棱锥截来的,所以A不是棱台,故A错误;对于学习B,上、下两个面不平行,所以不是圆台;对于学习C,是棱锥.对于学习D,前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以D是棱柱.故选:C.利用几何体的结构特征进行分析判断.本题考查几何体的结构特征,解题时要认真审题,注意熟练掌握几何体的基本概念和性质.5.函数的图象过定点A. B. C. D.【答案】D【解析】解:由函数图象的平移公式,我们可得:将函数的图象向左平移2个单位,再向上平移1个单位,即可得到函数的图象.又函数的图象恒过点,由平移向量公式,易得函数的图象恒过点,故选:D.由对数函数恒过定点,再根据函数平移变换的公式,结合平移向量公式即可得到到正确结论.本题考查对数函数的单调性与特殊点,记住结论:函数的图象恒过点6.经过点,且与直线垂直的直线方程是A. B. C. D.【答案】A【解析】解:直线的斜率为,与之垂直的直线斜率为2,所求直线方程为,化为一般式可得故选:A.由垂直关系可得直线的斜率,进而可得点斜式方程,化为一般式即可.本题考查直线的一般式方程和垂直关系,属基础题.7.在四面体的四个面中,是直角三角形的面至多有个.A. 0个B. 1个C. 3个D. 4个【答案】D【解析】解:如图,底面ABC,是为直角的直角三角形,则四面体的四个面中,是直角三角形的面最多,有4个.故选:D.由题意画出图形得答案.本题考查棱锥的结构特征,正确画出图形是关键,是中档题.8.直线的倾斜角为A. B. C. D. 【答案】B【解析】解:直线的斜率为,设倾斜角为,可得,由,且,可得,故选:B.求出直线的斜率,由直线的倾斜角与斜率的关系,计算即可得到所求值.本题考查直线的斜率和倾斜角的关系,考查运算能力,属于基础题.9.函数的图象大致是A. B.C. D.【答案】A【解析】解:,又在单调递增,,函数的图象应在x轴的上方,又,图象过原点,综上只有A符合.故选:A.,又在单调递增,,函数的图象应在x轴的上方,在令x取特殊值,选出答案.对于函数的选择题,从特殊值、函数的性质入手,往往事半功倍,本题属于低档题.10.已知函数是R上的奇函数,且满足,当时,,则方程解的个数是A. 8B. 7C. 6D. 5【答案】B【解析】解:函数是R上的奇函数,,由,可得,的周期.作出在同一坐标系中画和图象,从图象不难看出,其交点个数7个,故选:B.根据函数是R上的奇函数,,且满足,求解的周期,当时,,作出图象,解的个数,即为图象的交点个数数形结合可得答案.本题考查了指数和对数的图象画法和交点个数问题属于基础题.二、填空题(本大题共5小题,共20.0分)11.已知幂函数的图象过点,则这个函数解析式为______.【答案】【解析】解:设,幂函数的图象过点,.这个函数解析式为.故答案为:.根据幂函数的概念设,将点的坐标代入即可求得值,从而求得函数解析式.本题主要考查了待定系数法求幂函数解析式、指数方程的解法等知识,属于基础题.12.已知正方体中,直线与所成的角是______,【答案】【解析】解:,是直线与所成的角,,,,直线与所成的角是.故答案为:.由,得是直线与所成的角,由此能求出直线与所成的角.本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.13.已知的三个顶点,,,则的面积为______.【答案】5【解析】解:由,,设AB的直线方程为,则,解得:,.AB的直线方程为.到直线AB的距离.AB的距离.则的面积.故答案为:5.根据,,求出AB的直线方程,和AB的距离,利用点到直线的距离就是AB为底的高,即可得的面积.本题此解法用了点与直线的性质,两点之间的距离公式属于基础题.14.已知一个正方形的所有项点在一个球面上,若这个正方体的表面积为24,则这个球的表面积为______,【答案】【解析】解:设正方体的棱长为a,球的半径为R,则正方体的表面积为,得,所以,,则,因此,这个球的表面积为.故答案为:.先由正方体的表面积计算出正方体的棱长a,然后利用求出球体的半径R,最后利用球体的表面积公式可得出答案.本题考查球体的表面积的计算,解本题的关键在于弄清楚正方体的外接球的半径为棱长之间的关系,考查了计算能力,属于中等题.15.已知函数,若,则该函数的最大值为______.【答案】2【解析】解:画出函数的图象,如图示:,函数在递减,函数最大值,故答案为:2.先求出函数的图象,得到函数的单调性,从而求出函数的最大值.本题考查了函数的单调性问题,考查了函数的最值问题,是一道基础题.三、解答题(本大题共6小题,共50.0分)16.计算下列各式的值.【答案】解:原式.原式.【解析】利用指数运算法则即可得出;利用对数的运算法则即可得出.本题考查了指数与对数运算法则,属于基础题.17.已知直线:,:,它们相交于点A.判断直线和是否垂直?请给出理由;求过点A且与直线:平行的直线方程.【答案】解:直线的斜率,直线的斜率,由方程组解得点A坐标为,直线的斜率为,所求直线方程为:化为一般式得:.【解析】先求出两直线的斜率,发现斜率之积等于,故可得两直线垂直.先求出交点A的坐标,再根据斜率等于直线的斜率,点斜式写出直线的方程,并化为一般式.本题考查判断两直线垂直的方法,当两直线平行时,它们的斜率间的关系;用点斜式求直线方程.18.已知函数.作出函数的大致图象,并根据图象写出函数的单调区间;求函数在上的最大值与最小值.【答案】解:.图象如图:由图象知函数的单调减区间是,.单调增区间是,;结合图象可知最小值为,最大值为.【解析】写出分段函数解析式,结合二次函数的图象作图,由图象得函数的单调区间;直接由图象得到函数在上的最大值与最小值.本题考查了分段函数的图象,考查了由图象判断函数的单调性,并由函数单调性求函数的最值,是基础题.19.直线l过点,圆C的圆心为.Ⅰ若圆C的半径为2,直线l截圆C所得的弦长也为2,求直线l的方程;Ⅱ若直线l的斜率为1,且直线l与圆C相切;若圆C的方程.【答案】解:Ⅰ设直线l的方程为,则圆C的半径为2,直线l截圆C所得的弦长为2,圆心到直线l的距离为,即,解得,即直线l的方程为;Ⅱ直线l的斜率为1,直线l的方程为,直线l与圆C相切,,圆C的方程为.【解析】Ⅰ设直线l的方程为,根据圆C的半径为2,直线l截圆C所得的弦长为2,利用点到直线的距离公式,建立方程,即可求直线l的方程;Ⅱ根据直线l与圆C相切,利用点到直线的距离公式,可得圆C的半径r,从而可得圆C的方程.本题考查直线与圆的位置关系,考查点到直线的距离公式,考查圆的性质,属于中档题.20.四棱锥中,底面ABCD是正方形,面ABCD垂足为点A,,点M是PD的中点求证:平面ACM求证:平面PAC:求四面体的体积.【答案】证明:连接AC,BD,记AC与BD的交点为O,连接MO.点O,M分别是BD,PD的中点,.又面ACM,面ACM,面分面ABCD,,底面ABCD是正方形,,又,面分,且,分【解析】连接AC,BD,记AC与BD的交点为O,连接证明,然后证明面ACM.证明,,然后证明面PAC.通过,然后求解即可.本题考查直线与平面垂直以及直线与平面平行的判定定理的应用,几何体的他就的求法,考查计算能力.21.已知是定义在上的奇函数,且,若a,,时,有成立.判断在上的单调性解不等式若对所有的恒成立,求实数m的取值范围.【答案】解:在上单调递增分任取,,且,则.为奇函数,由已知得,又,,即,在上单调递增分不等式,由可得:,解得,不等式的解集为:分,且在上单调递增,在上,.问题转化为,即,对成立分设,若,则,对恒成立若,则为关于a的一次函数,若对恒成立,必须有,且,即,结合相应各函数图象,得或分综上所述,实数m的取值范围是分【解析】利用函数的单调性的定义以及函数的奇偶性,判断证明即可.利用函数的单调性以及函数的定义域,列出不等式组,求解即可.通过,且在上单调递增,问题转化为,即,对成立,设,通过若,若,若对恒成立,列出不等式组求解即可.本题考查函数恒成立体积的应用,考查分类讨论思想以及转化思想的应用,考查计算能力.。
2019-2020学年高一上学期期末考试数学试题一、选择题(本大题共12小题,共60.0分)1.已知全集2,3,4,,集合3,,集合,则为A. 4,B. 3,C. 2,D. 3,4,【答案】A【解析】解:全集2,3,4,,集合3,,,,4,.故选:A.根据全集U及A求出A的补集,找出A补集与B的并集即可.此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.A. B. C. D.【答案】A【解析】解:;故选:A.利用诱导公式直接化简函数的表达式,通过特殊角的三角函数值求解即可.本题是基础题,考查三角函数的求值,注意正确应用诱导公式是解题的关键.3.已知角的终边经过点,则的值等于A. B. C. D.【答案】D【解析】解:利用任意角三角函数的定义,,故选:D.利用任意角三角函数的定义,分别计算和,再代入所求即可本题主要考查了任意角三角函数的定义及其用法,属基础题4.函数的定义域为A. B. C. D.【答案】C【解析】解:要使原函数有意义,则,解得:,或所以原函数的定义域为.故选:C.根据“让解析式有意义”的原则,对数的真数大于0,分母不等于0,建立不等式,解之即可.本题主要考查了函数的定义域及其求法,求定义域常用的方法就是根据“让解析式有意义”的原则,属于基础题.5.已知函数,在下列区间中包含零点的区间是A. B. C. D.【答案】B【解析】解:函数,是连续函数,,,根据零点存在定理,,函数在存在零点,故选:B.要判断函数,的零点的位置,根据零点存在定理,则该区间两端点对应的函数值,应异号,将四个答案中各区间的端点依次代入函数的解析式,易判断零点的位置.要判断函数的零点位于哪个区间,可以根据零点存在定理,即如果函数在区间上存在一个零点,则,如果方程在某区间上有且只有一个根,可根据函数的零点存在定理进行解答,但要注意该定理只适用于开区间的情况,如果已知条件是闭区间或是半开半闭区间,要分类讨论.6.为了得到函数的图象,只需把函数的图象上所有的点A. 向左平行移动个单位长度B. 向右平行移动个单位长度C. 向左平行移动个单位长度D. 向右平行移动个单位长度【答案】D【解析】解:把函数的图象向右平移个单位长度,可得函数的图象,故选:D.由条件根据函数的图象变换规律,可得结论.本题主要考查函数的图象变换规律,属于基础题.7.已知向量,,满足,,,,则与的夹角等于A. B. C. D.【答案】A【解析】解:,,与的夹角等于故选:A.要求夹角,就要用到数量积,所以从入手,将,代入,求得向量,的数量积,再用夹角公式求解.本题主要考查向量的数量积和向理的夹角公式,数量积是向量中的重要运算之一,是向量法解决其他问题的源泉.8.设,,,则a,b,c的大小关系是A. B. C. D.【答案】D【解析】解:,即故选:D.要比较三个数字的大小,可将a,b,c与中间值0,1进行比较,从而确定大小关系.本题主要考查了对数值、指数值大小的比较,常常与中间值进行比较,属于基础题.9.若扇形的圆心角是,半径为R,则扇形的内切圆面积与扇形的面积之比为A. 1:2B. 1:3C. 2:3D. 3:4【答案】C【解析】解:扇形的圆心角是,半径为R,扇形扇形的内切圆的圆心在圆心角的角平分线上,几何知识,,所以内切圆的半径为,,圆形扇形的内切圆面积与扇形的面积之比为:故选:C.确定扇形的内切圆的半径,分别计算扇形的内切圆面积与扇形的面积,即可得到结论.本题考查扇形的面积公式,考查学生的计算能力,确定扇形的内切圆的半径是关键.10.如果偶函数在上是增函数且最小值是2,那么在上是A. 减函数且最小值是2B. 减函数且最大值是2C. 增函数且最小值是2D. 增函数且最大值是2【答案】A【解析】解:偶函数在上是增函数且最小值是2,由偶函数在对称区间上具有相反的单调性可知,在上是减函数且最小值是2.故选:A.直接由函数奇偶性与单调性的关系得答案.本题考查函数的奇偶性与单调性的关系,关键是明确偶函数在对称区间上具有相反的单调性,是基础题.11.已知的最大值为A,若存在实数,使得对任意实数x总有成立,则的最小值为A. B. C. D.【答案】B【解析】解:或的最大值为;由题意得,的最小值为,的最小值为.故选:B.根据题意,利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值,即可求出的最小值.本题考查了三角函数的恒等变换以及正弦、余弦函数的周期性和最值问题,是基础题目.12.定义一种运算,若,当有5个零点时,则实数m的取值范围是A. B. C. D.【答案】A【解析】解:由题意,,其图象如下:结合图象可知,有5个零点时,实数m的取值范围是,故选:A.画出,图象,结合图象可知,求解有5个零点时m的取值,本题考查了学生对新定义的接受与应用能力及数形结合的思想应用,属于中档题.二、填空题(本大题共4小题,共20.0分)13.函数是幂函数,且其图象过原点,则______.【答案】【解析】解:函数是幂函数,且其图象过原点,,且,.故填.由已知知函数是幂函数,则其系数必定是1,即,结合图象过原点,从而解出m的值.本题考查幂函数的图象与性质、数形结合,解题时应充分利用幂函数的图象,掌握图象的性质:当指数大于0时,图象必过原点需结合函数的图象加以验证.14.已知函数是定义在上的奇函数,且,则______.【答案】【解析】解:Ⅰ函数是定义在上的奇函数,,即,,,,,解得,,.故答案为:.由题意可得,,代入可求b,然后由且可求a,进而可求函数解析式;本题主要考查了奇函数定义的应用及待定系数求解函数的解析式,考查了函数的单调性在不等式的求解中的应用.15.的外接圆的圆心为O,半径为1,若,且,则______.【答案】1【解析】解:的外接圆的圆心为O,且,为BC的中点,故为直角三角形,,为等边三角形,,则.故答案为:1.由的外接圆的圆心为O满足,可知O为BC的中点,且为直角三角形,然后结合向量数量积的定义可求.本题主要考查了向量基本定理,向量的数量积的定义的应用,解题的关键是找到为直角三角形的条件.16.若,则______【答案】【解析】解:,,.故答案为:.利用诱导公式和二倍角公式,计算即可.本题考查了三角函数求值运算问题,是基础题.三、解答题(本大题共6小题,共70.0分)17.已知向量,,点.求线段BD的中点M的坐标;若点满足,求y与的值.【答案】解:设,,,解得即.同理可得.线段BD的中点M的坐标为,,,由得,解得,.【解析】利用向量中点坐标公式和向量共线定理即可得出.熟练掌握向量中点坐标公式和向量共线定理是解题的关键.18.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:;;;;.试从上述五个式子中选择一个,求出这个常数;根据的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.【答案】本小题满分12分解:方法一:选择式,计算如下:分三角恒等式为.证明如下:分方法二:同方法一.三角恒等式为.证明如下:分【解析】方法一:选择式,由倍角公式及特殊角的三角函数值即可得解发现推广三角恒等式为,由三角函数中的恒等变换应用展开即可证明.方法二:同方法一发现推广三角恒等式为由降幂公式,三角函数中的恒等变换应用展开即可证明.本题主要考查了三角函数中的恒等变换应用,归纳推理,属于基本知识的考查.19.销售甲、乙两种商品所得利润分别是、万元,它们与投入资金x万元的关系分别为,,其中m,a,b都为常数,函数,对应的曲线、如图所示.求函数、的解析式;若该商场一共投资4万元经销甲、乙两种商品,求该商场所获利润的最大值.【答案】解:由题意,解得,分又由题意得,分不写定义域扣一分设销售甲商品投入资金x万元,则乙投入万元由得,分令,则有,,当即时,y取最大值1.答:该商场所获利润的最大值为1万元分不答扣一分【解析】根据所给的图象知,两曲线的交点坐标为,由此列出关于m,a的方程组,解出m,a的值,即可得到函数、的解析式;对甲种商品投资万元,对乙种商品投资万元,根据公式可得甲、乙两种商品的总利润万元关于x的函数表达式;再利用配方法确定函数的对称轴,结合函数的定义域,即可求得总利润y的最大值.本题考查了函数模型的构建以及换元法、配方法求函数的最值,体现用数学知识解决实际问题,属于基础题.20.已知函数其中,,,的部分图象如图所示.求A,,的值;已知在函数图象上的三点M,N,P的横坐标分别为,1,3,求的值.【答案】解:由图知,分的最小正周期,所以由,得分又且,所以,,解得分因为,,,所以,,,设,分在等腰三角形MNP中,设,则分所以分【解析】根据的图象特征,由函数的最值求出A,由周期求出,由五点法作图求出的值.求出三点M,N,P的坐标,在等腰三角形MNP中,设,求出、的值,再利用二倍角公式求得的值.本题主要考查利用的图象特征,由函数的部分图象求解析式,由函数的最值求出A,由周期求出,由五点法作图求出的值,属于中档题.21.已知,函数.求的最小正周期,并求其图象对称中心的坐标;当时,求函数的值域.【答案】解:分的最小正周期为,令,得,,.故所求对称中心的坐标为,分,分,即的值域为分【解析】由向量的坐标运算可求得,从而可求的最小正周期,并求其图象对称中心的坐标;由可得,从而可求得函数的值域.本题考查平面向量数量积的运算,考查两角和与差的正弦函数,考查正弦函数的定义域和值域及其周期,属于三角中的综合,考查分析问题、解决问题的能力.22.已知函数,.Ⅰ若在上存在零点,求实数a的取值范围;Ⅱ当时,若对任意的,总存在,使成立,求实数m的取值范围.【答案】解:Ⅰ:因为函数的对称轴是,所以在区间上是减函数,因为函数在区间上存在零点,则必有:即,解得,故所求实数a的取值范围为.Ⅱ若对任意的,总存在,使成立,只需函数的值域为函数的值域的子集.,的值域为,下求的值域.当时,为常数,不符合题意舍去;当时,的值域为,要使,需,解得;当时,的值域为,要使,需,解得;综上,m的取值范围为.【解析】在上单调递减函数,要存在零点只需,即可存在性问题,只需函数的值域为函数的值域的子集即可.本题主要考查了函数的零点,值域与恒成立问题.。
2019-2020年高一上学期期末调研测试数学试题 含答
案
命题人:张松柏 审核 曹其员 郑传林
一、选择题:本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只
有一项是符合题目要求的。
1.集合}9,7,5,3,1{=U ,}9,1{=A ,则=A C U ( ) A .{2,4,8,10}
B .{3,5,7}
C .{1,3}
D .{1,7,9}
2.设函数111)(+-++=x x x f ,则)(x f ( ) A .奇函数 B .非奇非偶函数 C .偶函数 D .既是奇函数又是偶函数
3.函数y = ) A .),1[+∞
B .)2,1[
C .]1,0(
D .)1,0(
4.要得到)2cos()(-=x x f 的图像只需要把)1cos()(+=x x f 的图像( ) A .向右移动1个单位 B .向左移动1个单位 C .向右移动3个单位 D .向左移动3个单位
5.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A,点A 的纵坐标为
5
4
,cosα=( ). A .53- B .53 C .52- D .5
2
6.已知y x ,为正实数,则下列选项中正确的是( ) A .y x y x lg lg lg lg 222+=+ B .y x y x lg lg )lg(222∙=+ C .y x y x lg lg lg lg 222+=∙ D .y x xy lg lg )lg(222∙=
7.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别
位于区间( ) A .(),a b 和(),b c 内
B .(),a -∞和(),a b 内
C .(),b c 和(),c +∞内
D .(),a -∞和(),c +∞内
8.函数()2sin(),(0,)2
2
f x x π
π
ωϕωϕ=+>-
<<
的部
分图象如图所示,则,ωϕ的值分别是( ) A .2,3
π
- B .2,6
π
-
C .4,6
π-
D .4,
3
π
二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.
9.已知集合A ={}2,1,2-,B =}
1,a +,且B A ⊆,则实数a 的值是 。
10.3
5sin
π
的值为 。
11.已知1e 、2e 是平面上两个不共线的单位向量,
向量12a e e =-,122b me e =+.若a b ⊥,则实数m = 。
A M
E
P
D
C
B N F 12.若点(,1)a -在函数13
log y x =的图象上,则4tan
a
π
的值为_______ _。
13.在四边形ABCD 中,(1,2)AC =,(4,2)BD =-,则四边形ABCD 的面积为 。
14.已知向量(1
)a k =,,(9 6)b k =-,.若//a b ,则实数 k = __________ 。
三、解答题:本大题共5小题,满分70分。
解答须写出文字说明,证明过程和演算步骤。
15.(本题12分)已知函数))(4
2sin(2)(R x x x f ∈-=π
(1)求此函数的最小正周期与最值 (2)当]4
3,4[π
π∈x 时,求)(x f 的取值范围。
16.(本题12分)已知)1
,1(),),1((log 2x
n x x m -=+=,设n m x f ⋅=)( (1)求函数)(x f 的定义域。
(2)当),2[+∞∈x 时,求)(x f 的取值范围。
17.(本题12分)已知函数x
x x f 1)(-
= (1)研究此函数的奇偶性
(2)证明)(x f 在),0(+∞上为增函数 (3)画出此函数的图像草图。
18.(本题10分)如图,已知边长为8米的正方形钢板有一个角锈蚀,其中4AE =米,6CD =米. 为了合理利用这块钢板,将在五边形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上.求矩形BNPM 面积的最大值.
19.(本题12分)已知下表为函数d cx ax x f ++=3
)(部分自变量取值及其对应函数值,为
(1)判断)(x f 的奇偶性,并证明;
(2)判断)(x f 在[]6.0,55.0上是否存在零点,并说明理由;
20.(本题12分)已知ααπαπαπαtan )23(sin )(sin )
2(cos 1)(222
++-+--=n f (1)求)4
(π
f 的值
(2)求)(αf 的最小值。
2013-2014上学年第一学期宝安区期末调研测试卷
参考答案 高一数学
一、一、选择题:本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,
只有一项是符合题目要求的。
二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.1;
10.
11.2;
12
13.5;
14.34
-
. 三、解答题
15.解:(1)最小正周期22
T π
π==; ∵x R ∈∴1sin(2)14x π
--≤≤∴()f x 的最大值为2,()f x 最小值为2-.(8分) (2)当3[
,
]44x ππ
∈时,
524
44
x ππ
π
-
≤≤
由正弦函数的单调性知,当3[,
]
48
x ππ∈时,()f x 递增;当33[,]84x π
π
∈时,()f x 递减 ∴38
x π=时,()f x 取最大值2;当4x π=时,()f x =2
222=;当34
x π=时,()f x =2
2()2
-=()f x 的最小值;故()f x 的取值范围为[2].(12分) 16.解:(1)2()log (1)1f x x =+-由10x +>及1
x
-有意义得,1x >-且0x ≠
∴()f x 的定义域为{|1,0}x x x >-≠(6分)
(2)∵对数函数2l o g y x =在定义域内单调递增,∴当[2,)x ∈+∞时,2()l o g (1)1
f x x
=+-递增,∴2()(2)log 31f x f =-≥; ∴()f x 的取值范围为2[log 31,)
-+∞(12分)
17.(1)()f x 的定义域为(,0)(0,)-∞⋃+∞且对定义域内任意x
11
()()()()f x x x f x x x
-=--
=--=--∴()f x 为奇函数.(6分) (2)任取12,(0,)x x ∈+∞且12x x <,则120x x -<,120x x >∴12
1
10x x +
> 12121211()()()()f x f x x x x x -=-
--122111()()x x x x =-+-1212
1()(1)0x x x x =-⋅+< ∴12()()f x f x <由增函数定义可知,()f x 在(0,)+∞上为增函数.(10分)
(3)由(1
)知,()f x 的图象关于原点对称,先画出()f x 在(0,)+∞的图象,再将所得图象关于原点对称得到()f x 在(,0)-∞内的图象;由(2)知()f x 在(0,)+∞上递增,
画出草图如下:
(14分)
18.设AM x =,由题可知,
BM =设矩形面积为S ,则(42)(8)S x x =+-
∴2
2
212322(3)50S x x x =-++=--+(7分) 当(,3]x ∈-∞时S 递增,而[0,2](,3]⊆-∞,
∴当2x =时,S 取最大值,max 48S =,此时点P 在D 处;
答:当点P 在D 处时,矩形BNPM 的面积最大,最大值为48平方米。
(14分) 19.(1)由表可知(0)0f =,∴0d =(3分)故3
()f x ax cx =+,是奇函数,理由如下 ∵3
()()()f x a x c x -=-+-3
()()ax cx f x =-+=- ∴由奇函数定义知,()f x 是奇函数.(8分)
(2)∵()f x 是奇函数,∴(0.56)(0.56)0.030f f =--=>
(0.59)(0.59)0.020f f =--=-<由零点存在定理知()f x 在[0.56,0.59]内存在零点,∴()f x 在[0.55,0.6]内存在零点.(14分) 20.解:
22
21()sin cos tan cos f ααααα=--+211tan cos αα
=-+221cos tan cos ααα-=
+ 22sin tan cos ααα=+2tan tan αα=+211(tan )24α=+- (7分)
(1)2
()tan tan
112
4
4
4
f ππ
π
=+=+=(10分)
(2)∵tan R α∈∴当1tan 2α=-时,min 1()4f α=- (14分)
!投稿可联系QQ :1084591801。