单纯形法解线性规划问题培训资料
- 格式:doc
- 大小:758.00 KB
- 文档页数:6
一、用单纯形第Ⅰ阶段和第Ⅱ阶段解下列问题s.t.解:1)、将该线性问题转为标准线性问题一、第一阶段求解初始可行点2)、引入人工变量修改约束集合取人工变量为状态变量,问题变量和松弛变量为决策变量,得到如下单纯形表,并是所有决策变量的值为零,得到人工变量的非负值。
2 -2 -1 1 21 1 -1 -1 12 -1 -2 1 25 -2 -4 1 -1 1 50 0 0 0 03)、对上述单纯形表进行计算,是目标函数进一步减小,选为要改变的决策变量,计算改变的限值。
2 -2 -1 1 2 11 1 -1 -1 1 02 -1 -2 1 2 05 -2 -4 1 -1 1 5 10 0 0 0 00 1 0 0 04)、由于,为人工变量,当其到达零值时,将其从问题中拿掉保证其值不会再变。
同时将以改变的决策变量转换为状态变量。
增加的值使目标函数值更小。
1 -3 1 1 1 01 1 -1 11 -3 1 1 1 00 0 0 00 0 05)使所有人工变量为零的问题变量的值记为所求目标函数的初始可行点,本例为,二、第二阶段用单纯形法求解最优解-2 2 1 01 1 -1 0-2 1 2 15 1 3要使目标函数继续减小,需要减小或的值,由以上计算,已经有两个松弛变量为零,因此或不能再减小了,故该初始可行点即为最优解。
2、求解问题s.t.如果目标函数变成,确定使原解仍保持最优的c值范围,并把目标函数最大值变达成c的函数。
解:先采用单纯形法求解最优解,再对保持最优解时C值的范围进行讨论。
1)将问题华为标准线性问题s.t.2)用单纯形表表示约束条件,同时在不引入人工变量的前提下,取松弛变量得初始值为零值,求解初始解和最优解10 -1 -1 -1 10-20 1 5 1 -20-2 -1 -1 00 0 0要使目标函数继续减小,可以增大,增大的限值是10。
10 -1 -1 -1 10 0-20 1 5 1 -20 -10-2 -1 -1 0 -200 0 010 0 03)转轴。
使用单纯形法解线性规划问题要求:目标函数为:123min 3z x x x =--约束条件为:1231231312321142321,,0x x x x x x x x x x x -+≤⎧⎪-++≥⎪⎨-+=⎪⎪≥⎩ 用单纯形法列表求解,写出计算过程。
解:1) 将线性规划问题标准化如下:目标函数为:123max max()3f z x x x =-=-++s.t.: 123412356137123456721142321,,,,,,0x x x x x x x x x x x x x x x x x x x -++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下:表一:最初的单纯形表3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。
迭代后新的单纯形表为:表二:第一种换入换出变量取法迭代后的单纯形表由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。
表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为:表三:第二种换入换出变量取法迭代后的单纯形表4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。
之后的单纯形表为:表四:第二次迭代后的单纯形表5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。
之后的单纯形表为:表五:第三次迭代后的单纯形表可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。
结论:综上所述,本线性规划问题,使用单纯形法得不到最优解。
护理应急预案及程序一、重大意外伤害事故护理急救工作规定………………二、常见急性化学中毒的抢救预案及程序……………..三、急性食物中毒病人的抢救应急预案及程序四、传染病救治应急预案及流程五、突然发生猝死应急预案及程序六、药物引起过敏性休克的应急预案及程序七、患者外出或外出不归时的应急预案及程序八、停电和突然停电的应急预案及程序九、使用呼吸机过程中突遇断电的应急预案及程序十、失窃的应急预案及程序十一、消防紧急疏散患者应急预案及程序十二、住院患者出现输液、输血反应的应急预案及程序十三、患者住院期间出现摔伤的应急预案及程序十四、住院患者发生坠床的应急预案及程序十五、医护人员发生针刺伤时的应急预案及程序十六、紧急封存患者病历及反应标本的应急预案及程序十七、处理医疗投诉及纠纷的应急预案及程序十八、复合伤患者的应急预案及程序十九、住院患者发生过敏性休克时的应急预案及程序二十、急诊患者突发呼吸心跳骤停的应急预案及程序二十一、吸氧过程中中心吸氧装置出现故障的应急预案及程序二十二、吸痰过程中中心吸引装置出现故障的应急预案及程序。
线性规划单纯形法(例题)《吉林建筑工程学院城建学院人文素质课线性规划单纯形法例题》⎪⎩⎪⎨⎧≥=++=+++++=⎪⎩⎪⎨⎧≥≤+≤++=0,,,24261553).(002max ,,0,24261553).(2max 14.18432142132143214321212121x x x x x x x x x x t s x x x x z x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。
分别用图解法和单纯形)】(页【为初始基变量,选择43,x x)1000(00)0010(01)2050(12)6030(24321=⨯+⨯-==⨯+⨯-==⨯+⨯-==⨯+⨯-=σσσσ为出基变量。
为进基变量,所以选择41x x3/1)6/122/10(00)0210(03/1)3/1240(10)1200(24321-=⨯+-⨯-==⨯+⨯-==⨯+⨯-==⨯+⨯-=σσσσ为出基变量。
为进基变量,所以选择32x x24/724/528/11012/112/124/1100021110120124321-=⨯+-⨯-=-=-⨯+⨯-==⨯+⨯-==⨯+⨯-=)()()()(σσσσ4334341522max ,)43,415(),(2112=+⨯=+===x x z x x X TT 故有:所以,最优解为⎪⎪⎩⎪⎪⎨⎧≥=++=+=+++++=⎪⎪⎩⎪⎪⎨⎧≥≤+≤≤+=0,,,,18232424).(0002max ,,,0,182312212).(52max 24.185432152142315432154321212121x x x x x x x x x x x x t s x x x x x z x x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。
运筹学复习一、单纯形方法(表格、人工变量、基础知识)线性规划解的情况:唯一最优解、多重最优解、无界解、无解。
其中,可行域无界,并不意味着目标函数值无界。
无界可行域对应着解的情况有:唯一最优解、多重最优解、无界解。
有界可行域对应唯一最优解和多重最优解两种情况。
线性规划解得基本性质有:满足线性规划约束条件的可行解集(可行域)构成一个凸多边形;凸多边形的顶点(极点)与基本可行解一一对应(即一个基本可行解对应一个顶点);线性规划问题若有最优解,则最优解一定在凸多边形的某个顶点上取得。
单纯形法解决线性规划问题时,在换基迭代过程中,进基的非基变量的选择要利用比值法,这个方法是保证进基后的单纯型依然在解上可行。
换基迭代要求除了进基的非基变量外,其余非基变量全为零。
检验最优性的一个方法是在目标函数中,用非基变量表示基变量。
要求检验数全部小于等于零。
“当x1由0变到45/2时,x3首先变为0,故x3为退出基变量。
”这句话是最小比值法的一种通俗的说法,但是很有意义。
这里,x1为进基变量,x3为出基变量。
将约束方程化为每个方程只含一个基变量,目标函数表示成非基变量的函数。
单纯型原理的矩阵描述。
在单纯型原理的表格解法中,有一个有趣的现象就是,单纯型表中的某一列的组成的列向量等于它所在的单纯型矩阵的最初的基矩阵的m*m矩阵与其最初的那一列向量的乘积。
最初基变量对应的基矩阵的逆矩阵。
这个样子:'1222 1 0 -32580 1 010 0 158P B P -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦51=5所有的检验数均小于或等于零,有最优解。
但是如果出现非基变量的检验数为0,则有无穷多的最优解,这时应该继续迭代。
解的结果应该是:X *= a X 1*+(1-a)X 2* (0<=a<=1)说明:最优解有时不唯一,但最优值唯一;在实际应用中,有多种方案可供选择;当问题有两个不同的最优解时,问题有无穷多个最优解。
实验2 单纯形法求解线性规划一、实验目的1. 理解线性规划的概念和基本形式。
2. 熟悉单纯形法的步骤和实现过程。
3. 学会使用Matlab编程求解线性规划问题。
二、实验原理线性规划是一种优化问题,其目标是在一组约束条件下,使目标函数(通常是一个线性函数)最大或最小化。
线性规划具有以下一般形式:$$\begin{aligned}&\underset{x_{1},x_{2},\cdots,x_{n}}{\max }\quadc_{1}x_{1}+c_{2}x_{2}+\cdots+c_{n}x_{n}\\&\text{s.t.}\quad a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}\leq b_{1}\\&\quad \quad \quad \,\,\,\quada_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}\leq b_{2}\\&\quad \quad \quad\quad \quad \quad \vdots \\&\quad \quad \quad \,\,\,\quada_{m1}x_{1}+a_{m2}x_{2}+\cdots+a_{mn}x_{n}\leq b_{m}\\&\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad x_{1},x_{2},\cdots,x_{n}\geq 0\end{aligned}$$其中,$x_{1},x_{2},\cdots,x_{n}$表示决策变量;$c_{1},c_{2},\cdots,c_{n}$是目标函数的系数;$a_{i1},a_{i2},\cdots,a_{in}$($i$=1,2,...,m)是限制条件的系数,$b_{1},b_{2},\cdots,b_{m}$是限制条件右侧的常数。
单纯形法解线性规划
问题
一、用单纯形第Ⅰ阶段和第Ⅱ阶段解下列问题
s.t.
解:1)、将该线性问题转为标准线性问题
一、第一阶段求解初始可行点
2)、引入人工变量修改约束集合
取人工变量为状态变量,问题变量和松弛变量为决策变量,得到如下单纯形表,并是所有决策变量的值为零,得到人工变量的非负值。
2 -2 -1 1 2
1 1 -1 -1 1
2 -1 -2 1 2
5 -2 -4 1 -1 1 5
0 0 0 0 0
3)、对上述单纯形表进行计算,是目标函数进一步减小,选为要改变的决策变量,计算改变的限值。
2 -2 -1 1 2 1
1 1 -1 -1 1 0
2 -1 -2 1 2 0
5 -2 -4 1 -1 1 5 1
0 0 0 0 0
0 1 0 0 0
4)、由于,为人工变量,当其到达零值时,将其从问题中拿掉保证其值不会再变。
同时将以改变的决策变量转换为状态变量。
增加的值使目标函数值更小。
1 -3 1 1 1 0
1 1 -1 1
1 -3 1 1 1 0
0 0 0 0
0 0 0
5)使所有人工变量为零的问题变量的值记为所求目标函数的初始可行点,本例为,
二、第二阶段用单纯形法求解最优解
6)由1)中的标准线性问题方程式组得到单纯形表如下表,采用5)中的初始可行点计算。
-2 2 1 0
1 1 -1 0
-2 1 2 1
5 1 3
要使目标函数继续减小,需要减小或的值,由以上计算,已经有两个松弛变量为零,因此或不能再减小了,故该初始可行点即为最优解。
2、求解问题
s.t.
如果目标函数变成,确定使原解仍保持最优的c值范围,并把目标函数最大值变达成c的函数。
解:先采用单纯形法求解最优解,再对保持最优解时C值的范围进行讨论。
1)将问题华为标准线性问题
s.t.
2)用单纯形表表示约束条件,同时在不引入人工变量的前提下,取松弛变量得初始值为零值,求解初始解和最优解
10 -1 -1 -1 10
-20 1 5 1 -20
-2 -1 -1 0
0 0 0
要使目标函数继续减小,可以增大,增大的限值是10。
10 -1 -1 -1 10 0
-20 1 5 1 -20 -10
-2 -1 -1 0 -20
0 0 0
10 0 0
3)转轴。
将为零的松弛变量和决策变量交换进行转轴
10 -1 -1 -1 10
-10 4 0 -1 -10 0
-20 1 1 2 -20
0 0 0
0 0
由目标函数,增加时会继续减小。
4)由上图可得和都为0,问题变量不能继续减小,所以已到达最优解。
,,时,
目标函数。
5)如果目标函数为,由最后一次变形得
,,得
+(c-1)
-5/2 -5/2 决策变量都为零,要使最优解保持不变,则系数为正:
解得。