使用单纯形法解线性规划问题
- 格式:doc
- 大小:74.00 KB
- 文档页数:2
单纯形法解的四种情况
单纯形法是一种常用的线性规划求解方法,它通过不断地迭代来逐步逼近最优解。
在实际应用中,单纯形法可以分为四种情况,分别是无界解、有限最优解、无解和多解。
下面将分别进行介绍。
首先是无界解。
当线性规划问题的目标函数在可行域内没有最小值时,就称其为无界解。
这种情况下,单纯形法会一直迭代下去,直到出现某个变量的系数为负无穷大,或者出现某个约束条件的系数为正无穷大。
这时,我们就可以得出结论:该线性规划问题无界。
其次是有限最优解。
当线性规划问题的目标函数在可行域内存在最小值时,就称其为有限最优解。
这种情况下,单纯形法会不断地迭代,直到找到最优解为止。
在迭代过程中,我们需要注意一些细节,比如如何选择入基变量和离基变量,如何判断是否达到最优解等等。
第三种情况是无解。
当线性规划问题的可行域为空集时,就称其为无解。
这种情况下,单纯形法会一直迭代下去,直到出现某个变量的系数为负无穷大,或者出现某个约束条件的系数为正无穷大。
这时,我们就可以得出结论:该线性规划问题无解。
最后是多解。
当线性规划问题的可行域内存在多个最优解时,就称其为多解。
这种情况下,单纯形法会找到其中的一个最优解,但并不能保证找到所有的最优解。
如果我们想要找到所有的最优解,可以使用分支定界法等其他方法。
单纯形法是一种非常实用的线性规划求解方法,可以应用于各种实际问题中。
在使用单纯形法时,我们需要注意不同情况下的处理方法,以便得到正确的结果。
一.单纯性法一.单纯性法1.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 122121212max 25156224..5,0z x x x x x s t x x x x =+£ìï+£ïí+£ïï³î 2.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12121212max 2322..2210,0z x x x x s t x x x x =+-³-ìï+£íï³î 3.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 1234123412341234max 24564282..2341,,,z x x x x x x x x s t x x x x x x x x =-+-+-+£ìï-+++£íï³î4.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 123123123123123max 2360210..20,,0z x x x x x x x x x s t x x x x x x =-+++£ìï-+£ïí+-£ïï³î 5.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12312312123max 224..26,,0z x x x x x x s t x x x x x =-++++£ìï+£íï³î6.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12121212max 105349..528,0z x x x x s t x x x x =++£ìï+£íï³î7.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 16 分)分) 12121212max 254212..3218,0z x x x x s t x x x x =+£ìï£ïí+£ïï³î二.对偶单纯性法二.对偶单纯性法1.灵活运用单纯形法和对偶单纯形法解下列问题(共灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)分)12121212max 62..33,0z x x x x s t x x x x =++³ìï+£íï³î 2.灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)分) 121212212max 3510501..4,0z x x x x x x s t x x x =++£ìï+³ïí£ïï³î 3.用对偶单纯形法求解下列线性规划问题(共用对偶单纯形法求解下列线性规划问题(共 15 分)分) 1212121212min 232330210..050z x x x x x x s t x x x x =++£ìï+³ïï-³íï³ïï³î4.灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)分) 124123412341234min 262335,,,0z x x x x x x x s t x x x x x x x x =+-+++£ìï-+-³íï³î5.运用对偶单纯形法解下列问题(共运用对偶单纯形法解下列问题(共 16 分)分) 12121212max 24..77,0z x x x x s t x x x x =++³ìï+³íï³î6.灵活运用单纯形法和对偶单纯形法解下列问题(共灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)分) 12121212max 62..33,0z x x x x s t x x x x =++³ìï+£íï³î三.0-1整数规划整数规划1.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12345123451234512345123345max 567893223220..32,,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x x or =++++-++-³ìï+--+³ïí--+++³ï=î 2.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共 10 分) 12312312323123min 4322534433..1,,01z x x x x x x x x x s t x x x x x or =++-+£ì++³ïí+³ïï=î 3.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共 10 分) 1234512345123451234512345max 20402015305437825794625..81021025,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++£ìï++++£ïí++++£ïï=î或 4.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12345123451234512345max 2534327546..2420,,,,01z x x x x x x x x x x s t x x x x x x x x x x =-+-+-+-+£ìï-+-+£íï=î或 5.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12341234123412341234min 25344024244..1,,,01z x x x x x x x x x x x x s t x x x x x x x x =+++-+++³ì-+++³ïí+-+³ïï=î或6.7.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 123451234513451245max 325232473438..116333z x x x x x x x x x x x x x x s t x x x x =+--+++++£ìï+-+£ïí-+-³ï 1231231231223max 3252244..346z x x x x x x x x x s t x x x x =-++-£ìï++£ïï+£íï+£ïï=四.K-T 条件条件1.利用库恩-塔克(K-T )条件求解以下问题(共)条件求解以下问题(共 15 分)分)22121122121212max ()104446..418,0f X x x x x x x x x s t x x x x =+-+-+£ìï+£íï³î2.利用库恩-塔克(K-T )条件求解以下非线性规划问题。
求解线性规划的方法
求解线性规划问题的常用方法有以下几种:
1. 单纯形法(Simplex Method):单纯形法是解线性规划问题的经典方法,通过逐步迭代找到目标函数的最优解。
它适用于小到中等规模的问题。
2. 内点法(Interior Point Method):内点法通过在可行域内的可行点中搜索目标函数最小化的点来解决线性规划问题。
相对于单纯形法,内点法在大规模问题上的计算效率更高。
3. 梯度法(Gradient Method):梯度法是基于目标函数的梯度信息进行搜索的一种方法。
它适用于凸优化问题,其中线性规划问题是一种特殊的凸优化问题。
4. 对偶法(Duality Method):对偶法通过构建原问题和对偶问题之间的关系来求解线性规划问题。
通过求解对偶问题,可以得到原问题的最优解。
5. 分支定界法(Branch and Bound Method):分支定界法通过将原问题划分为更小的子问题,并逐步确定可行域的界限,来搜索目标函数的最优解。
需要根据具体的问题规模、约束条件和问题特点选择合适的方法进行求解。
单纯形法原理及例题
单纯形法原理:
单纯形法是求解线性规划问题的一种数学方法,它是由美国数学家卢克·单纯形于1947年发明的。
用单纯形法求解线性规划的过程,往往利用线性规划的对偶形式,将原问题变换为无约束极大化问题,逐步把极大化问题转换为标准型问题,最后利用单纯形法的搜索方法求解满足所有约束条件的最优解。
例题:
问题:求解最小化目标函数z=2x1+x2的线性规划问题,约束条件如下:
x1+2x2≥3
3x1+x2≥6
x1,x2≥0
解:将上述线性规划问题转换为无约束极大化问题,可得:
极大化问题:
Max z=-2x1-x2
s.t. x1+2x2≤3
3x1+x2≤6
x1,x2≥0
将极大化问题转换为标准型问题,可得:
Max z=-2x1-x2
s.t. x1+2x2+s1=3
3x1+x2+s2=6
x1,x2,s1,s2≥0
运用单纯形法的搜索方法求解:
令x1=0,x2=0,则可得s1=3,s2=6,即(0,0,3,6)是单纯形的初始解;
令z=-2x1-x2=0,代入约束条件,可得x1=3,x2=3,则可得s1=0,s2=0,即(3,3,0,0)是新的单纯形解。
由于s1=s2=0,说明x1=3,x2=3是线性规划问题的最优解,且最小值为z=2*3+3=9。
使用单纯形法解线性规划问题要求:目标函数为:123min 3z x x x =--约束条件为:1231231312321142321,,0x x x x x x x x x x x -+≤⎧⎪-++≥⎪⎨-+=⎪⎪≥⎩ 用单纯形法列表求解,写出计算过程。
解:1) 将线性规划问题标准化如下:目标函数为:123max max()3f z x x x =-=-++s.t.: 123412356137123456721142321,,,,,,0x x x x x x x x x x x x x x x x x x x -++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下:表一:最初的单纯形表3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。
迭代后新的单纯形表为:表二:第一种换入换出变量取法迭代后的单纯形表由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。
表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为:表三:第二种换入换出变量取法迭代后的单纯形表4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。
之后的单纯形表为:表四:第二次迭代后的单纯形表5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。
之后的单纯形表为:表五:第三次迭代后的单纯形表可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。
结论:综上所述,本线性规划问题,使用单纯形法得不到最优解。
使用单纯形法解线性规划问题
1.将线性规划问题转化为标准形式:将不等式约束转化为等式约束,引入松弛变量等。
2.初始化:选择一个初始可行基。
可行基是指满足约束条件的基本变量的取值,使得其他非基本变量的取值为零。
3.检验最优性:计算当前基本解下的目标函数值。
如果所有非基本变量的系数都是非负的,那么当前基本解就是最优解。
4.寻找进入变量:选择一个进入变量,使得目标函数值能够增加。
进入变量是指非基本变量中的一个,通过增加其值来使得目标函数值增加。
5.寻找离开变量:选择一个离开变量,使得目标函数值能够继续增加。
离开变量是指基本变量中的一个,通过减小其值来使得目标函数值继续增加。
6.更新基本解:通过进入变量和离开变量的变化,更新基本解。
7.重复步骤3到步骤6,直到找到最优解或确定问题无界。
单纯形法求解线性规划的步骤1>初始化将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示2>最优化测试如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为03>确定输入变量从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列4>确定分离变量对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行5>建立下一张表格将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步为求简单在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式:1:指定行和列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0);2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法)程序中主要的函数以及说明~SimpleMatrix();销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数bool Is_objectLine_All_Positive();其中row2为主元所在的行,col为主元所在的列,row1为要处理的行void PrintAnswer();数不合法"<<endl;}SimpleMatrix::SimpleMatrix(int row,int col){init(row,col);for(int i=0;i<rowLen;i++)cout<<"请输入矩阵中第"<<i+1<<"行的系数"<<endl; for(int j=0;j<colLen;j++)cin>>data[i][j];}?}SimpleMatrix::SimpleMatrix(int row,int col,double **M) {rowLen=row;colLen=col;init(row,col);for (int i=0;i<row;i++)for(int j=0;j<col;j++){data[i][j]=*((double*)M+col*i+j); ;}}SimpleMatrix::~SimpleMatrix(){if(colLen*rowLen != 0 ){for(int i=rowLen-1;i>=0;i--){if (data[i]!=NULL)delete[] data[i];}if (data!=NULL)delete[] data;}?}bool SimpleMatrix::Is_objectLine_All_Positive(){for(int i=0;i<colLen-1;i++)if(data[rowLen-1][i]<0)return false;return true;}bool SimpleMatrix::Is_MainCol_All_Negative(int col) {for(int i=0;i<rowLen;i++)if(data[i][col]>0)return false;return true;}bool SimpleMatrix::Is_column_all_Positive(int col){for(int i=0;i<rowLen-1;i++){return false;}return true;}int SimpleMatrix::InColumn(){int count=0;for(int i=0;i<colLen-1;i++){int temp=GetItem(rowLen-1,i);if(temp>=0){count++;}elsebreak;}double maxItem=fabs(GetItem(rowLen-1,count));int index_col;for(i=0;i<colLen-1;i++){double temp=GetItem(rowLen-1,i);if(temp<0){if(maxItem<=fabs(temp)){maxItem=fabs(temp);index_col=i;}}}return index_col;}int SimpleMatrix::DepartRow(int col){int index_row;int count=0;for(int i=0;i<rowLen;i++){if(data[i][col]<0)count++;elsebreak;}double minItem=data[count][colLen-1]/data[count][col]; index_row=count;double temp;for(i=0;i<rowLen-1;i++)temp=data[i][col];if(temp>0){temp=data[i][colLen-1]/temp;if(temp<minItem){minItem=temp;index_row=i;}}}return index_row;}void SimpleMatrix::MainItem_To_1(int row,int col){double temp=GetItem(row,col);pp#include <iostream>#include ""using namespace std;int main(){double M[4][7]={{5,3,1,1,0,0,9},{-5,6,15,0,1,0,15},{2,-1,1,0,0,-1,5},{-10,-15,-12,0,0,0,}}; SimpleMatrix Matrix(4,7,(double **)M);if(5))//判断是否存在最优解{bool p=();//判断主元列是否全部为正,确定是否已经取得最优解while(!p){int col=();//确定主元所在的行if(col))//确定线性规划的解是否为无解的{cout<<"线性规划问题是无界的,没有最优解"<<endl;exit(EXIT_FAILURE);}else{int mainRow=(col);//确定主元所在的行(mainRow,col);//将主元所在的行做变换,使主元变成1int i=0;while(i<()){if(i!=mainRow){(i,mainRow,col);//处理矩阵中其他的行,使主元列的元素为0i++;}elsei++;}}}for(int i=0;i<();i++)//输出变换以后的矩阵,判断是否正确处理{for (int j=0;j<();j++){cout<<(i,j)<<" ";}cout<<endl;}p=();}();}elsecout<<"线性规划无解"<<endl;return0;}。
例4-7 用对偶单纯形法求解线性规划问题Min z =5x 1+3x 2X 1 - 6 x 2 A 4在表4-17中,b=-16<0,而yA 0,故该问题无可行解. 注意:对偶单纯形法仍是求解原问题 ,它是适用于当原问题无可行基 ,且所有检验数均为负的情况.若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解.在计算机求解时,只有人工变量法,没有对偶单纯形法.3.对偶问题的最优解由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系 从求解原问题的最优单纯形表中,得到对偶问题的最优解.(1)设原问题(P)为Min z= exs.t.-2 X i + 3x 2 A 6A 0 (j=1,2 )解:将问题转化为 XjMax z = -5X 1 -3 x 2 s.t. 2x i - 3xX 3 = -6-3 x i + 6 X2+ x 4A -4Xj其中,X 3 , X 4 ,3,4 )A 0 (j=1,2 为松弛变量,可以作为初始基变量,单纯形表见表4-17.,可以根据这些关系,Xj > 0 (j=1,2 , 3,4 )则标准型 (LP) 为AX b s.t.X0Max z=CXAX b s.t.X0其对偶线性规划(D )为Max z=b T Y AX b s.t.X0用对偶单纯形法求解 时,有 Pj=-e i , c j =0 (LP ),得最优基B 和最优单纯形表 T ( B )。
对于(LP )来说,当j=n+iT (B )中,对于检验数,有(b n+1,b n+2・・・b n+m) = (C n+i , c n+2…,c n+m ) -C B B -1(Pn +1,Pn+2 …,Pn+m ) =- C B B -1(-I)于是,Y*= (b n+1,b n+2…b n+m T 。
可见,在(LP )的最优单纯形表中,剩余变 量对应的检验数就是对偶问题的最优解。
同时,在最优单纯形表 T ( B )中,由于剩余变量对应的系数 所以从而,在最优单纯形表b n +2 …bB 1 = ( -y n+1 , -y n+2 …-y n+m )例 4-8 求下列线性规划问题的对偶问题的最优解。
盐城师范学院运筹学期末论文题目: 用单纯形法解决线性规划问题**: **二级学院: 数学科学学院专业: 数学与应用数学班级: 111 班学号: ********成绩评定:前言线性规划问题是数学以及日常生活中最基本的问题之一,如何快速有效的解决线性规划问题是数学家也在努力研究的科目之一。
以前中学时我们解决线性规划问题一般采用的是图解法,即画出所给条件的可行域,找出目标函数的最优解。
这种方法的优点是直观性强,计算方便,但缺点是只适用于问题中有两个变量的情况。
下面我们介绍另外一种方法—单纯形法,来解决图解法不能解决的问题。
1 单纯形法1.1 单纯形法的基本思路利用求线性规划问题基本可行解的方法求解较大规模的问题是不可行的。
有选择地取基本可行解,即从可行域的一个极点出发,沿着可行域的边界移动到另一个相邻的极点,要求新极点的目标函数值不比原目标函数值差。
在线性规划的可行域中先找出一个可行解,检验它是否为最优解,如果是最优解,计算停止;如果不是最优解,那么可以判断线性规划无有限最优解,或者根据一定步骤得出使目标函数值接近最优值的另一个基本可行解。
由于基本可行解的个数有限,所以总可以通过有限次迭代,得到线性规划的最优基本可行解或判定线性规划无有限最优解。
1.2 单纯形法的基本步骤第1步求初始基可行解,列出初始单纯形表。
对非标准型的线性规划问题首先要化成标准形式。
由于总可以设法使约束方程的系数矩阵中包含一个单位矩阵(P1,P2,…,Pm),以此作为基求出问题的一个初始基可行解。
为检验一个基可行解是否最优,需要将其目标函数值与相邻基可行解的目标函数值进行比较。
为了书写规范和便于计算,对单纯形法的计算设计了一种专门表格,称为单纯形表(见表1—1)。
迭代计算中每找出一个新的基可行解时,就重画一张单纯形表。
含初始基可行解的单纯形表称初始单纯形表,含最优解的单纯形表称最终单纯形表。
第2步:最优性检验如表中所有检验数c j−z j≤0,且基变量中不含有人工变量时,表中的基可行解即为最优解,计算结束。
实验2 单纯形法求解线性规划一、实验目的1. 理解线性规划的概念和基本形式。
2. 熟悉单纯形法的步骤和实现过程。
3. 学会使用Matlab编程求解线性规划问题。
二、实验原理线性规划是一种优化问题,其目标是在一组约束条件下,使目标函数(通常是一个线性函数)最大或最小化。
线性规划具有以下一般形式:$$\begin{aligned}&\underset{x_{1},x_{2},\cdots,x_{n}}{\max }\quadc_{1}x_{1}+c_{2}x_{2}+\cdots+c_{n}x_{n}\\&\text{s.t.}\quad a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}\leq b_{1}\\&\quad \quad \quad \,\,\,\quada_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}\leq b_{2}\\&\quad \quad \quad\quad \quad \quad \vdots \\&\quad \quad \quad \,\,\,\quada_{m1}x_{1}+a_{m2}x_{2}+\cdots+a_{mn}x_{n}\leq b_{m}\\&\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad x_{1},x_{2},\cdots,x_{n}\geq 0\end{aligned}$$其中,$x_{1},x_{2},\cdots,x_{n}$表示决策变量;$c_{1},c_{2},\cdots,c_{n}$是目标函数的系数;$a_{i1},a_{i2},\cdots,a_{in}$($i$=1,2,...,m)是限制条件的系数,$b_{1},b_{2},\cdots,b_{m}$是限制条件右侧的常数。
使用单纯形法解线性规划问题
要求:目标函数为:123min 3z x x x =--
约束条件为:
123123
1312321142321,,0
x x x x x x x x x x x -+≤⎧⎪-++≥⎪⎨
-+=⎪⎪≥⎩ 用单纯形法列表求解,写出计算过程。
解:
1) 将线性规划问题标准化如下:
目标函数为:123max max()3f z x x x =-=-++
s.t.: 123412356
1371234567211
42321,,,,,,0
x x x x x x x x x x x x x x x x x x x -++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩
2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下:
表一:最初的单纯形表
变量
基变量
x 1
x 2 x 3 x 4 x 5 x 6 x 7 b i x 4 1 -2 1 1 0 0 0 11 x 6 -4 1 2 0 -1 1 0 3 x 7 -2 0 1 0 0 0 1 1 -f
-3
1
1
3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。
迭代后新的单纯形表为:
表二:第一种换入换出变量取法迭代后的单纯形表
变量
基变量
x 1
x 2
x 3
x 4
x 5
x 6
x 7
b i
x 4
-7
5
1 -2
2
3
x2-4120-1103 x7-20100011 -f10-101-10-3
由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。
表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为:
表三:第二种换入换出变量取法迭代后的单纯形表
变量
基变量x1x2x3x4x5x6x7
b i
x43-20100-110 x60100-11-21 x3-20100011 -f-110000-1-1 4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。
之后的单纯形
表为:
表四:第二次迭代后的单纯形表
变量
基变量x1x2x3x4x5x6x7
b i
x43001-22-512 x20100-11-21 x3-20100011 -f-10001-11-2 5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。
之后的单纯形
表为:
表五:第三次迭代后的单纯形表
变量
基变量x1x2x3x4x5x6x7
b i
x4-7051-22017 x2-4120-1103 x7-20100011 -f10-101-10-3可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。
结论:
综上所述,本线性规划问题,使用单纯形法得不到最优解。