数理方法总复习-数理方程
- 格式:pdf
- 大小:1.89 MB
- 文档页数:16
数理方程课件数理方程是数学中的重要分支,它研究方程的解和性质。
随着计算机技术的不断发展,数理方程的研究变得越来越重要,其在科学、工程和金融等领域都有着广泛的应用。
本文将介绍数理方程的基本概念、解的求解方法和一些经典方程的应用案例。
一、数理方程的基本概念数理方程是指含有未知数和已知数之间关系的等式。
它通常由代数方程、微分方程和积分方程组成。
在数理方程的研究中,我们需要关注方程的次数、阶数和特殊形式,并通过分析方程的性质来解决相关问题。
在解数理方程时,我们常用的方法包括代数方法、几何方法和数值方法。
其中,代数方法主要通过变换和化简方程,将其转化为更简单的形式进行求解;几何方法通过图形和几何关系来推导方程的解;数值方法则借助计算机的力量,利用数值逼近的方法求解方程。
二、数理方程的解的求解方法1. 代数方程的解的求解方法代数方程是最常见的数理方程形式,其解的求解方法众多。
常见的方法包括因式分解、配方法、二次公式、根号法等。
例如,对于一元二次方程$a x^{2}+b x+c=0$,我们可以使用二次公式来求解:$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$2. 微分方程的解的求解方法微分方程描述了函数与其导数之间的关系,其解的求解方法也有多种。
常见的方法有分离变量法、常数变易法、齐次线性微分方程的解法等。
例如,对于一阶线性微分方程$\frac{d y}{d x}+P(x) y=Q(x)$,我们可以使用常数变易法进行求解。
3. 积分方程的解的求解方法积分方程是利用积分关系表达的方程,其解的求解方法也有多种。
常见的方法有分离变量法、常数变易法、特殊积分方程的解法等。
例如,对于柯西问题(Cauchy problem)中的积分方程$u(x)=f(x)+\int_{a}^{x} K(x, t) u(t) d t$,我们可以使用定积分的性质进行求解。
三、常见数理方程的应用案例1. 常微分方程的应用常微分方程在物理学、化学、生物学等领域有着重要的应用。
数理方程公式大集合1. 考察两端固定的弦的自由振动问题● 可得出 X"(x) + l X(x) = 0 在不同的齐次边界条件下的本征函数系(表2-1). 容易发现如下的规律:● (1)若齐次边界条件含X (0)=0,则本征函数为正弦函数;若齐次边界条件含X ‘ (0) = 0,则本征函数为余弦函数 ● (2)若边界条件为同类齐次边界条件(均为第一类或均为第二类),则本征函数的宗量为若边界条件属不同类齐次边界条件,则本征函数的宗量为2. 有界长杆的热传导问题3. 二维拉普拉斯方程的边值问题4. 圆域上拉普拉斯方程的边值问题 (化为极坐标)⎪⎩⎪⎨⎧====><<=),()0,( ),()0,( ,0),( ,0),0(),0 ,0( 2x x u x x u t l u t u t l x u a u t xx tt ψϕ sin )cos sin (),(1∑∞=+-=nn n tlxn l at n b l at n a l a n t x u ππππ,sin)(2dx lxn x la ln ⎰=πϕ,sin)(2dx lxn x an b ln ⎰=πψπ⎪⎩⎪⎨⎧===><<= ),()0,( ,0),( ,0),0( ),0 ,0( 2x x u t l u t u t l x u a u xx t ϕ,sin ),(1)(2l x n e a t x u n t l a n n ππ∑∞=-=,sin)(20dx l x n x l a l n ⎰=πϕ⎪⎩⎪⎨⎧====<<<<=+ .0),( ,0),0( ),(),( ),()0,(),y 0 ,0( 0y a u y u x g b x u x f x u b a x u u yy xx sin) (),(1∑∞=-+=n y an n y an n x an eb ea y x u πππ,sin )(20⎰=+an n xdx an x f a b a π,sin)(2⎰=+-ab an n b an n xdx an x g aeb ea πππ11),0(0r r <<5. 圆域内的泊松公式6. 无限长弦自由振动问题的达朗贝尔解为公式其中方程(3)的通解形式为7. 无限长弦强迫振动问题的解为公式和差化积sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]积化和差sinαsinβ=-[cos(α+β)-cos(α-β)]/2(注意:此时公式前有负号) cosαcosβ= [cos(α-β)+cos(α+β)]/2 sinαcosβ= [sin(α+β)+sin(α-β)]/2 cosαsinβ= [sin(α+β)-sin(α-β)]/2).(|θf u r r ==)20(πθ≤≤.)sin cos (21),(10∑∞=++=n n n n r n b n a a r u θθθ⎰=πθθθπ20cos )(1d n f r a n n ⎰=πθθθπ20sin )(1d n f r b nn), ,2 ,1 ,0( =n ),,2 ,1( =n ),( )(cos 2)(21),(0200220220r r d n r r r r r r f r u <--+-=⎰ϕϕθϕπθπ),0 ,( 2>+∞<<-∞=t x u a u xx tt)()0,( ),()0,(x x u x x u t ψϕ==2)()(),(at x at x t x u ++-=ϕϕ.)(21⎰+-+atx atxd a ααψ).()(),(at x g at x f t x u ++-=(3)),0 ,( ),(2>+∞<<-∞+=t x t x f u a u xx tt )()0,( ),()0,(x x u x x u t ψϕ==2)()(),(at x at x t x u ++-=ϕϕ⎰+-+atx atxd aααψ)(21..),(21)()(⎰⎰-+--+t t a x t a xd d f aτξτξττ222222zy x ∂∂+∂∂+∂∂=∆是三维拉普拉斯算子。
1、什么是泛定方程?以及解的稳定性物理规律,用数学的语言“翻译”出来,不过是物理量u在空间和时间中的变化规律,换句话说,它是物理量u在各个地点和各个时刻所取的值之间的联系。
正是这种联系使我们有可能从边界条件和初始条件去推算u在任意地点(x,y,z)和任意时刻 t 的值u(x,y,z,t)。
而物理的联系总是取的值之间的关系式。
这种邻近地点、邻近时刻之间的关系式往往是偏微分方程。
物理规律用偏微分方程表达出来,叫作数学物理方程。
数学物理方程,作为同一类物理现象的共性,跟具体条件无关。
在数学上,数学物理方程本身(不连带定解条件)叫作泛定方程2、什么是定解条件?答:给定一个方程,一般只能描写某种运动的一般规律,还不能确定具体的运动状态,所以把这个方程称为泛定方程。
如果附加一些条件(如已知开始运动的情况或者在边界上受到外界的约束)后,就能完全确定具体运动状态,称这样的条件为定解条件。
表示开始情况的附加条件称为初始条件,表示在边界上受到的约束的条件称为边界条件。
3、什么是定解问题?答:给定了泛定方程(在区域D内)和相应的定解条件的数学物理问题为定解问题。
根据不同定解条件,定解问题分为三类:1)初值问题只有初始条件和没有边界条件的定解问题为初值问题或者柯西问题;2)边界问题只有边值条件而没有初值条件的定解问题称为边值问题。
3)混合问题既有边界条件也有初值条件的定解问题称为混合问题(有时也称为边值问题)4、什么是定解问题的解?答:设函数u在区域D内满足泛定方程,当点从区域D内趋于给定初值的超平面或者趋于给出边界条件的边界曲面时,定解条件中要求的u及它的倒数的极限处处存在而且满足相应定解条件,就称u为定解问题的解。
5、什么是解的稳定性?答:如果定解条件的微小变化只引起定解问题解在整个定义域中的微小变化,也就是解对定解条件存在这连续依赖关系,那么称定解问题的解是稳定的。
6、什么是定解问题的适应性?如果定解问题的解存在与唯一并且关于定解条件的稳定的,就说定解问题的提法是稳定的。
1. 基本概念偏微分方程: 含有未知多元函数及其偏导的方程,如2122121(,,,,;,,,;,)0n n u u u u F x x x u x x x x ∂∂∂∂=∂∂∂∂ 其中:12(,,,)n u u x x x =为多元函数.方程的阶:未知函数导数的最高阶数; 方程的次数:最高阶偏导的幂次;线性方程:未知函数及未知函数偏导数的幂次都是一次的称为线性方程,否则就是非线性的;自由项:不含未知函数及其导数的项;齐次方程:没有自由项的偏微分方程称为齐次方程,否则称为非其次的; 方程的解:若将某函数代入偏微分方程后,使方程化为一个恒等式,则该函数为方程的解;通解:包含任意独立函数的方程的解,且独立函数的个数等于方程的阶数; 特解:不含任意独立函数的方程的解. 例如:22()()sin cos u u x y x y∂∂+=∂∂为一阶非线性非齐次偏微分方程;u 为未知函数。
2222220u u u x y z ∂∂∂++=∂∂∂为二阶线性齐次方程; 二阶线性非其次偏微分方程22uy x x y∂=-∂∂的通解为 221(,)()()2u x y xy x y F x G y =-++其中,(),()F x G y 为两个任意独立的函数.注意:通解所含独立函数的个数=偏微分方程的阶数.2. 线性偏微分方程解的特征含有两个自变量的线性偏微分方程的一般形式为[](,)L u G x y =其中,L 为二阶线性偏微分算符,满足11221122[][].[][][].L cu cL u L c u c u c L u c L u =+=+(1).齐次线性偏微分方程解的特征a.当u 为方程的解,则()c u c R ⋅∈也为方程的解;b.12,u u 为方程的解,则1122c u c u +也为方程的解. (2). 非齐次线性偏微分方程解的特征a. I u 为非齐次方程的特解,II u 为齐次方程的通解,则I II u u +为非其次的通解;b. 若1122[](,),[](,).L u H x y L u H x y ==则1212[][](,)(,).L u L u H x y H x y +=+ (3).线性偏微分方程的叠加原理若k u 是方程[](1,2,)k L u f k ==的解(其中L 为二阶线性偏微分算符),如果级数1()kk k k cu c R ∞=⋅∈∑收敛,且二阶偏导数存在,则1k k k u c u ∞==⋅∑一定是1[]k kk L u c f ∞==⋅∑的解;特别地,若k u 是方程[]0L u =的解,则1k k k u c u ∞==⋅∑一定是[]0L u =的解.4.1数理方程的建立考虑一根均匀柔软的细弦沿x 轴绷紧,在平衡位置附近产生振幅极小的横振动,如图1.1所示.设(,)u x t 是平衡时坐标为x 的点t 时刻沿y 方向的位移,现在求弦上各点的运动规律.“采用隔离法”研究一小段(,)x x dx +与外界的相互作用以建立方程. 假设:(1)弦是完全柔软的,所以张力T 沿着弦振动波形的切线方向;(2)只讨论弦做横向振动,故忽略弦在水平方向的位移,弦的横向加速度为tt u ,单位长度的质量为ρ或线密度为ρ;(3)振动的振幅是极小的,因此张力与水平方向的夹角12,αα也是很小的,则332sin ,3!tan ,3cos 1 1.2!iiii i i i i i i αααααααααα=--≈=++≈=--≈ 而2tan [1()].T i i u uk ds dx dx x xαα∂∂==≈⇒=+=∂∂ 根据牛顿第二运动定律,在(纵向)水平方向上有21()cos ()cos 0()().T x dx T x T x dx T x T αα+-=⇒+=≡∈R在横向上有21sin sin ()()[]()().tt tt x dxxT T g ds ds u uuT g ds ds u xx ααρρρρ+--⋅=⋅∂∂⇒--⋅=⋅∂∂ 根据()()'()f x dx f x f x dx +-=,上式可以化简为2222[]()().tt tt u uT dx g ds ds u T g u x xρρρρ∂∂⋅-⋅=⋅⇒⋅-⋅=⋅∂∂即弦的横振动方程为2222.(,)tt xx xx u Tu a u g u a x ρ∂=⋅-==∂此式即为弦做微小横振动的运动方程,简称弦的振动方程,其中a 就是弦上振动传播的速度.图1.1所示讨论:①若弦的重量远远小于弦的张力,则重力加速度可以忽略不计,其运动方程为2.tt xx u a u =(*)此式称为弦的自由振动方程,也称为一维波动方程.②如果在弦的单位长度上还有横向外力(,)F x t 作用,则(*)式可以改为2(,).(**)tt xx u a u f x t =+则(**)式称为弦的受迫振动,其中(,)(,).F x t f x t ρ=③对于0t ≥,两端固定,则00,0x x l u u ====,弦在0t =时无纵向移动,0000,t t uu v t ==∂==∂。
云南省考研数学三复习资料数学分析与数理方程重点知识点梳理一、导数与微分1. 极限与连续1.1 极限的定义与性质1.2 极限存在准则及运算法则1.3 连续函数与间断点2. 导数2.1 导数的定义与几何意义2.2 导数的计算法则2.3 高阶导数与隐函数求导2.4 导数的应用:切线与法线3. 微分3.1 微分的定义与性质3.2 微分中值定理3.3 泰勒公式及其应用二、积分与微分方程1. 不定积分与定积分1.1 不定积分的定义与基本性质1.2 常用积分公式与换元积分法1.3 定积分的定义与性质1.4 牛顿-莱布尼茨公式与变限积分2. 微分方程2.1 微分方程的基本概念与分类2.2 一阶微分方程的解法2.3 二阶线性常系数齐次微分方程2.4 常微分方程的定解条件三、级数与函数项级数1. 数列极限与收敛性1.1 数列极限的定义与性质1.2 数列收敛准则1.3 无穷小量与无穷大量2. 级数2.1 级数的概念与性质2.2 收敛级数与发散级数2.3 常见级数的判敛方法2.4 幂级数及其收敛半径3. 函数项级数3.1 函数项级数的定义与性质3.2 一致收敛与逐项积分3.3 一致收敛级数的运算与求和四、多元函数与偏导数1. 多元函数的极限与连续性1.1 多元函数的极限定义与性质1.2 多元函数的连续性及判定2. 偏导数与全微分2.1 偏导数的定义与计算方法2.2 混合偏导数与几何应用2.3 全微分与全导数3. 隐函数与参数方程3.1 隐函数的存在定理与求导公式3.2 参数方程及其求导五、多元函数的微积分学应用1. 多元函数的极值与最值1.1 极值的定义与判定条件1.2 最值的存在性与求解2. 多元函数的积分2.1 二重积分的概念与性质2.2 二重积分的计算方法2.3 三重积分的定义与性质2.4 三重积分的计算方法3. 曲线与曲面积分3.1 曲线积分的定义与计算3.2 曲面积分的定义与计算3.3 Green公式及其应用3.4 Stokes公式与高斯公式以上是云南省考研数学三复习资料中数学分析与数理方程的重点知识点梳理。