数理方程复习讲解
- 格式:ppt
- 大小:2.01 MB
- 文档页数:40
数理方程知识点总结数理方程是数学理论中的重要分支,其主要研究方向是解决各种类型的方程,包括一元多项式方程、二元一次方程以及各种变形形式的方程等。
数理方程的解决方法非常多元化,通常采用代数、几何、分析等多种方法进行解决,本文将对数理方程的相关知识点进行总结。
一、一元多项式方程1、一元n次多项式方程形如$f(x) = a_0x^n + a_1x^{n-1} + ... + a_{n-1}x + a_n = 0$,其中$a_0 \neq 0$, $n$为任意正整数,求出方程的根$x_1, x_2, ...,x_n$。
求解该方程的方法有以下几种:(1)牛顿迭代法牛顿迭代法的基本思想是:将一元n次多项式方程重新构造成$x = g(x)$的形式,并求该函数在曲线上的切线截距,不断通过切线截距逼近根的值。
具体算法如下:• 任选一个随机数$x_0$作为初值;• 计算$y = f(x)$在$x = x_0$处的导数$f'(x_0)$;• 根据切线公式$y = f(x_0) + f'(x_0)(x - x_0)$,计算出当$y = 0$时的$x$值$x_1$,即$x_1 = x_0 - f(x_0) / f'(x_0)$;• 重复上述过程,将$x_1$作为$x_0$,计算出$x_2$;• 重复以上步骤,直到$x_n$接近被求解的根。
(2)二分法二分法的基本思想是根据函数值的符号改变区间的端点,使函数在这个区间内单调递增或递减,从而迅速缩小待求解根所在的“搜索区间”,达到求解根的目的。
算法流程如下:• 选定区间$[a, b]$值满足$f(a)f(b) < 0$,即根在$[a, b]$区间内;• 取区间中点$c = (a + b) / 2$,计算$f(c)$;• 如果$f(c) = 0$,即找到根;• 如果$f(a)f(c) < 0$,即根在区间$[a, c]$内,则将$b$更新为$c$;• 如果$f(b)f(c) < 0$,即根在区间$[c, b]$内,则将$a$更新为$c$;• 重复以上过程,不断缩小区间,直到找到根或直到区间长度足够小时停止。
第一章是物理方程相关的基本概念,知识相对散碎一些。
归结起来主要有以下几个问题:
1. 判定偏微分方程的线性性质(线性,拟线性,非线性),方程的阶数,方程的解。
2. 能够写出二阶线性偏微分方程的特征矩阵,由特征值及相关知识判断偏微分方程的几何归类(椭圆型,抛物型,狭义双曲型,广义双曲型)。
3. 掌握二元二阶线性偏微分方程化标准型的方法。
(既为重点也是难点之一)
4. 定解问题的建立。
能够对物理现象的描述,建立完整的定解问题(针对常见的一维二维波动方程,热传导方程和Laplace方程)。
本章的难点之一,同时也是贯穿整个物理方程学习之中的一个知识点。
第二章其实就是用固有函数法(分离变量法)解决有限区域上的混合问题求解。
基本要求如下:
1.领会分离变量法,叠加原理,Fourier级数展开的思想。
2.熟练应用固有函数法解齐次边界条件(齐次方程和非齐次方程)的一维波动方程和热传导方程。
3.能用用分离变量法或者固有函数法解矩形域上,圆域上,扇形域上的二维Laplace方程和possion方程。
4.了解正交多项式系,广义Fourier级数(系数)的相关知识,重点掌握Legendre 正交多项式的性质,和简单应用,譬如函数关于Legendre正交多项式的逼近。
能够用分离变量法解决圆域上的Laplace方程。
数理方程总结复习及练习要点-V1数理方程是整个数学中最为基础、也最为重要的一个分支。
在学习数学时,数理方程是必修课程之一。
但由于涉及到复杂的计算和具有一定的抽象性质,因此很多学生可能会感到难以掌握。
下面我们一起来总结复习及练习中的要点。
一、基本概念数理方程,又称代数方程,是指含有一个或多个未知量的式子,其中未知量是我们需要求解的。
数理方程主要包括一元一次方程、一元二次方程、多元线性方程组等。
二、重要公式复习数理方程需要掌握一些重要的公式,如求根公式、配方法、消元法等。
这些公式在解题时经常会用到,掌握它们有助于我们快速准确地解题。
三、解题技巧在解数理方程时,我们需要注意一些技巧。
例如:1. 整式变形:将不易求解的方程转化为易求解的方程,如配方法。
2. 对称性:通过利用数学上的对称性,简化计算。
3. 系数对应逐项相消:将一个数学表达式与另一个表达式逐项对应相消,简化计算过程。
四、常见误区在学习数理方程时,我们需要注意一些常见误区。
例如:1. 不认真阅读题目,以及不分析题目中的数据和条件,导致解题错误。
2. 没有掌握好基本概念和公式,导致做题准确性不高。
3. 对题目中的关键词理解不透彻,导致无法准确解题。
五、练习要点练习数理方程需要注意以下要点:1. 反复练习基本公式和解题技巧,多进行心算和口算练习。
2. 练习时要重视细节,注意避免因粗心大意而犯错。
3. 建立练习记录,对带有难度的题目进行整理分类,加强对知识点的掌握。
总之,无论是在学习还是练习中,都要保持认真、耐心、细致的态度。
只有不断地努力和积累,才能准确解出所有的数理方程。
数理方程-总结复习及练习要点(1)数理方程-总结复习及练习要点数理方程是数学中的一个重要分支,它研究的是各种用数学符号表示的方程簇,并探究其解法及相关性质。
在数学竞赛和高考中,数理方程是一个高频考查的内容,因此我们需要认真学习和掌握。
下面是数理方程的总结复习及练习要点。
一、知识点总结1. 一元一次方程:形如ax+b=0的方程,可以用解方程法、代入法、图像法等方法解决;2. 一元二次方程:形如ax²+bx+c=0的方程,可以用公式法、配方法、因式分解法、图像法等方法解决;3. 一元n次方程:形如a₁xⁿ+a₂xⁿ⁻¹+…+aₙ=0的方程,可以用因式分解法、求根公式、数形结合法等方法解决;4. 二元一次方程组:形如{ax+by=c,dx+ey=f}的方程组,可以用代数法、图像法、消元法等方法解决;5. 二元二次方程组:形如{ax²+by²+cx+dy+e=0,fx²+gy²+hx+iy+j=0}的方程组,可以用消元法、配方法等方法解决;6. 不等式:大于、小于、大于等于、小于等于等不同种类的不等式,可以分别用解不等式、求解集合、证明等方法解决。
二、练习要点1. 要经常进行例题训练,熟练记忆每种方程的解法以及相关性质;2. 要学会用复杂的方程题目中的一些特殊性质,如配方法中平方项差为完全平方、二次项系数一样等等;3. 要结合实际问题练习,尤其是二元一次方程组和不等式中,实际问题更容易引入数学领域;4. 要多用图像法、数形结合法等思维方式,能够脑补形状易于掌握方程性质;5. 在大型比赛中,要将时间合理分配,不要轻易卡在一些细节上,要有策略性地解决问题。
三、总结数理方程是数学考试的重要考点之一,掌握好方程的基本思想和方法,能够在比赛中占据更好的优势,同时也有助于我们更好地解决实际问题。
因此,我们要时常进行练习,加强对数理方程的理解和应用,才能在数学竞赛中获得更好的成绩。
数理方程第二版课后习题答案第一章曲线论§1 向量函数1. 证明本节命题3、命题5中未加证明的结论。
略2. 求证常向量的微商等于零向量。
证:设,为常向量,因为所以。
证毕3. 证明证:证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。
证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。
所以,,根据数量函数的Lagrange中值定理,有其中,,介于与之间。
从而上式为向量函数的0阶Taylor公式,其中。
如果在区间上处处有,则在区间上处处有,从而,于是。
证毕5. 证明具有固定方向的充要条件是。
证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。
充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是因为,故,从而为常向量,于是,,即具有固定方向。
证毕6. 证明平行于固定平面的充要条件是。
证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。
充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。
如果,则与不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。
证毕§2曲线的概念1. 求圆柱螺线在点的切线与法平面的方程。
解:,点对应于参数,于是当时,,,于是切线的方程为:法平面的方程为2. 求三次曲线在点处的切线和法平面的方程。
解:,当时,,,于是切线的方程为:法平面的方程为3. 证明圆柱螺线的切线和轴成固定角。
证:令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则证毕4. 求悬链线从起计算的弧长。