铁科院 高速列车
- 格式:ppt
- 大小:11.88 MB
- 文档页数:63
高速列车运行与轨道共振问题研究高速列车的发展为快速的人员和物品运输提供了便利。
然而,随着时速不断增加,高速列车运行中的一些问题也逐渐凸显出来。
其中最为重要的问题之一就是轨道共振。
本文将探讨高速列车运行中的轨道共振问题,并介绍相关的研究成果和解决方案。
轨道共振是指高速列车通过铁路轨道时,因为车轮和轨道之间的特定频率振动相互作用而产生的现象。
当列车的运行速度达到轨道本身的固有频率时,轨道上的振动会被不断放大,导致不稳定的运行状态。
这种共振效应不仅会对列车的安全和运行稳定性造成威胁,还会给旅客带来不舒适的乘坐体验。
为了研究高速列车运行中的轨道共振问题,许多国家和地区都开展了相关研究。
其中,日本和中国在高速列车技术方面的研究具有世界领先地位。
日本的新干线列车和中国的高速铁路网络都是世界上最先进的高速列车系统之一。
在研究中,学者们发现了一些导致轨道共振的主要因素。
首先,轨道的固有频率是决定是否发生共振的关键因素之一。
轨道的固有频率取决于轨道的材料、结构和铺设方式等因素。
其次,高速列车的车轮和轮轴系统也会影响共振的发生。
车轮和轨道之间的力学相互作用会产生振动信号,进而引发共振。
为了解决轨道共振问题,学者们提出了一系列的解决方案。
其中之一是调整轨道结构和铺设方式,以减小轨道的固有频率。
例如,增加钢轨的厚度和宽度可以改善轨道的刚度,从而降低固有频率。
此外,改进车轮和轮轴系统的设计也可以减小共振的可能性。
例如,采用橡胶减振垫可以降低振动传递的程度。
此外,列车的运行速度和运行稳定性也是解决轨道共振问题的关键因素。
降低运行速度可以减小共振的发生概率,但这会影响列车的运行效率。
因此,提高列车的运行稳定性成为解决问题的关键。
学者们研究了列车的悬挂系统、牵引力控制以及车辆动力学等方面,以提高列车的运行稳定性。
另一方面,监测和检测技术也被广泛应用于轨道共振问题的解决中。
通过及时监测轨道和列车的振动情况,可以提前发现共振的迹象,并采取相应的措施。
高速列车内部噪声仿真分析与研究作者:王建功范乐天高军高绍星来源:《中国机械》2013年第02期摘要:随着高速列车速度的提高,对噪声控制提出了挑战。
为保证车内外噪声符合人体舒适度及相关标准要求,在方案设计过程中,运用声学统计能量的方法,进行噪声控制方案的计算、对比分析,经过工程优化,在内部噪声控制方面取得了较好的效果。
关键词:高速列车;减振;降噪;0引言随着高速列车速度的提高,对噪声控制提出了挑战。
本文通过对高速列车车内噪声源分析,制定噪声控制方案,基本满足旅客舒适度要求,符合GB12816列车声学性能标准要求,高速列车车上设备较多,运行速度较快,给减振降噪带来了极大的挑战。
2噪声控制计算仿真及分析传统的数值计算方法如有限元法在强度和振动计算方面取得很大成功,但在噪声预测方面存在一定的局限性。
传统的数值方法建模的精度在大约20阶模态后较低,而重要的声学频率范围常常超过100阶模态。
基于上述原因,在高速列车的高频振动、高频噪音预测方面引进了统计能量分析技术。
准确的统计能量分析方法依赖于结构的高模态密度、高模态重叠度和短波波长。
然而,高模态密度、高模态重叠度和短波波长恰好是造成传统数值方法不精确和计算量大的因素。
相比之下,统计能量分析把复杂结构动力学系统的模态参数(频率、振形、阻尼等)处理成随机变量,其预测结果不能提供系统某个局部位置的精确相应,却能从统计意义上较精确地预测出各个子系统的响应级。
3车内噪声分析与计算3.1车内噪声源分析高速列车车内声场环境非常复杂,声源众多,根据噪声传递过程,可以分成直达声、透射声和振动辐射声。
直达声是从噪声源发出,以空气为媒介,从车窗、车门的缝隙和排风口等直接传播到车内的声音。
透射声指的是透过车身结构传到车内的声音。
振动辐射声为固体传播声,包括一次固体传播噪声和二次固体传播噪声。
一次固体传播噪声主要是轮轨、车辆机械系统引起的振动,振动能量通过固体结构和悬挂系统传到车体内壁,引起车体内壁振动,进而辐射噪声。
高速列车基本概念及分类
高速列车是一种能够快速、安全、舒适地运行在高速铁路上的列车。
它通常由电力机车牵引,具有较高的速度和加速度,能够在较短的时间内达到高速。
根据列车的设计和运行速度,高速列车可以分为以下几种类型:
1. 高速动车组:这是中国特有的列车类型,设计时速一般在250公里/小时以上,最高时速可达350公里/小时左右。
2. 高速列车:这是国际上通用的列车类型,设计时速一般在200公里/小时以上,最高时速可达300公里/小时左右。
3. 城际高速列车:这是连接城市之间的列车,设计时速一般在200公里/小时以上,最高时速可达300公里/小时左右。
4. 市郊高速列车:这是连接城市和郊区的列车,设计时速一般在160公里/小时以上,最高时速可达250公里/小时左右。
总的来说,高速列车是一种现代化的交通工具,它能够为人们提供快速、安全、舒适的出行方式,促进城市和区域经济的发展。
高速铁路技术简介一、概述(一)线路地理位置和径路(二)线路在国民经济与路网中的意义和作用(三)研究工作概述二、高速铁路主要技术条件铁路等级:高速铁路;正线数目:双线;运输组织模式:本线和跨线列车混合运行的客运专线模式;设计速度:设计最高运行速度350km/h,初期最高运行速度300km/h。
跨线列车运行速度200km/h及以上;列车类型:本线列车采用最高运行速度300km/h及以上的动车组;跨线列车采用最高运行速度200km/h及以上的动车组;线间距:5.0m;最小曲线半径:7000m;最大坡度:12‰;到发线有效长度:700m;牵引种类:电力;列车运行控制方式:自动控制;调度指挥方式:综合调度集中;三、高速铁路的设计特点高速铁路设计速度350km/h,初期开通运行速度300km/h,与传统铁路相比,表面上看,只是列车运行速度提高了。
但实际上,由于速度的提高,各种运行工况下的不利因素在高速条件下被放大了:行车事故的后果在高速条件下被放大了;对列车运行控制系统的安全性要求和技术难度在高速条件下提高了;弓网受流特性在高速条件下更复杂了;线路平纵断面条件和轨道不平顺对旅客乘座舒适度的影响在高速条件下更敏感了;列车运行对周围环境的影响在高速条件下增大了……。
因此,高速铁路不是列车运行速度的简单提高,也不是单项专业技术标准的简单提高,而是当代新型牵引动力、高性能轻型车辆、高质量线路、高速运行控制指挥和经营管理等方面技术进步的集中反映,它具有不同于传统铁路的技术内涵和特定要求。
高速铁路以高速、安全、准时、方便、舒适、全天候为综合优势,需要以高性能的技术装备、高质量的基础设施、高水平的运营管理和高度科学的规划布局为支撑条件。
作为高速铁路的设计,必须充分体现高速铁路的以上技术经济优势,具备高度的系统工程观念,系统地解决由于行车速度的提高而带来的一系列技术难点,确保高速列车高速、安全、舒适地运营。
1.运输组织模式高速铁路的运输组织模式与其他铁路一样,与国情、路情和沿线经济、社会条件等密切相关,具有很强的地域特征,不可能完全照搬国外现成的模式。
CRH2浅析1、引言 (1)2、CRH2牵引系统构成 (1)3、三点式(IGBT器件)主电路 (4)4、交直交机车辅助电路系统 (10)1、引言CRH2型电动车组是由铁道部向日本川崎重工引进并由我国的专家将之国产化的高速列车。
牵引变流器由单相三电平脉冲整流器、中间直流环节和三相电平三电平逆变器组成。
牵引过程中,从变压器过来的1500V交流通过由脉冲整流器变为2600V~3000V直流,再由三电平逆变器变为电压和频率都可调的交流供牵引电机使用。
再生制动过程为牵引的反过程,将动能转化为电能返回电网。
其中单相三电平脉冲整流器控制方法为瞬态直接电流控制,采用SPWM调制,三相三电平逆变器控制方法为矢量控制采用SVPWM调制。
2、CRH2牵引系统构成动车组由南车四方机车车辆股份有限公司与日本合作伙伴川崎重工提供,原型车为日本新干线E2-1000型动车组。
动车组采用8辆编组,4动4拖,由两个动力单元组成。
每个动力单元由2个动车和 2个拖车(T-M –M-T)组成。
(1)CRH2动车组牵引系统的组成接触网25kV、50Hz单相交流经受电弓通过VCB(主断路器)接入牵引变压器,牵引变压器次边设有2个线圈,电压均为1500V 。
①动力单元组成1台牵引变压器、2台变流装置(C/I)、8台牵引电机。
1台变流装置控制4台牵引电机。
见图7-43所示。
②牵引传动主电路由图可见:由4号车(或者6号车)的受电弓受电,通过车顶上的特高压导线,经由VCB后被送到2号、6号车的主变压器。
注意:车顶装有保护接地装置(EGS),运行中需紧急让变电所区间内的所有车辆停车时,让其动作,使架线接地短路。
EGS的操作必须按照铁道部的规定执行。
(2)CRH2牵引传动系统主电路设备①高压电器设备作用:完成从接触网到牵引变压器的供电。
组成:受电弓、主断路器、避雷器、电流互感器、接地保护开关等。
DSA250型受电弓:单臂型结构,额定电压/电流为25kV/1000A,接触压力70±5N,弓头宽度约1950mm,具有自动降弓功能,适应接触网高度为5300~6500mm,列车运行速度250km/h。
磁悬浮列车的一些资料磁悬浮列车总概你一定听说过磁悬浮列车吧,最近它的上镜率可是居高不下,大家都在密切地关注着它的发展态势。
我们一直都在盼望着火车的提速,可经过几轮的努力,却总是达不到心中理想的标准,就拿作者本人来说吧,家住西安,距北京1000多公里,原先回家要17个小时,现在要14个小时,唉,只减少了区区3个小时,还要有难熬的一宿呀!可是你知道吗?普通磁悬浮列车的时速就可以达到500公里/小时,那么,回家就只需要不到3个小时,跟飞机差不多了!其实,在本世纪五、六十年代,铁路曾经被认为是一个夕阳运输产业。
因为面对航空、高速公路等运输对手的强劲挑战,它蜗牛般的爬行速度,已越来越不适应现代工业社会物流和人流的快速流动需要了。
但七十年代以来,特别是近几年,随着铁路高速化成为世界的热点和重点,铁路重新赢回了它在各国交通运输格局中举足轻重的地位。
法国、日本、俄国、美国等国家列车时速由200公里向300公里飞速发展。
据1995年举行的国际铁路会议预测,到本世纪末,德国、日本、法国等国家的高速铁路运营时速将达到360公里。
但要使列车在如此高的速度下持续行驶,传统的车轮加钢轨组成的系统,已经无能为力了。
这是因为传统的轮轨粘着式铁路,是利用车轮与钢轨之间的粘着力使列车前进的。
它的粘着系数随列车速度的增加而减小,走行阻力却随列车速度的增加而增加,当车速增至粘着系数曲线和走行阻力曲线的交点时,就达到了极限。
据科研人员推算,普通轮轨列车最大时速为350-400公里左右。
如果考虑到噪音、震动、车轮和钢轨磨损等因素,实际速度不可能达到最大时速。
所以,欧洲、日本现在正运行的高速列车,在速度上已没有多大潜力。
要进一步提高速度,必须转向新的技术,这就是超常规的列车--磁悬浮列车。
尽管我们还将磁悬浮列车的轨道称为"铁路",但这两个字已经不够贴切了。
就拿铁轨来说,实际上它已不复存在。
轨道只剩下一条,而且也不能称其为"轨道"了,因为轮子并没有从上面滚过。
沪昆高速铁路综合试验技术龚增进;冯仲伟;王峰;娄序淳;方兴;王立乾【摘要】为进一步增强铁路自主创新能力,提高我国铁路特别是高速铁路的技术装备自主化水平,2014年中国铁路总公司在沪昆高速铁路组织开展了6大类58项综合试验.本文主要介绍这次综合试验在总体设计、组织实施、计划管理等方面的技术创新.沪昆高速铁路综合试验成果为深化我国高速铁路基础理论研究提供了数据支撑,对于我国高速铁路技术实现新突破具有重大意义.%For enhancing the railway independent innovation capability and improving technology and equipment autonomous level of China railway especially the high speed railway,Shanghai-Kunming high speed railway organization of China Railway Corporation carried out 58 comprehensive tests of 6 categories in 2014. This paper mainly introduced technology innovation for the comprehensive tests including the overall design,organization and implementation,and plan management. Comprehensive test results of Shanghai-Kunming high speed railway provide a data support for further basic theory research of China high speed railway,which has a great significance for new technology breakthrough of China high speed railway.【期刊名称】《铁道建筑》【年(卷),期】2016(000)004【总页数】5页(P134-138)【关键词】高速铁路;综合试验;试验设计;计划管理;高速动车组;TD-LTE;桩板结构过渡段【作者】龚增进;冯仲伟;王峰;娄序淳;方兴;王立乾【作者单位】中国铁道科学研究院,北京 100081;中国铁道科学研究院,北京100081;中国铁路总公司,北京 100844;中国铁路总公司,北京 100844;中国铁道科学研究院,北京 100081;中国铁道科学研究院,北京 100081【正文语种】中文【中图分类】U238我国高速铁路是在一系列规划论证、科学研究和系统试验的基础上发展起来的。
高速列车定位与控制技术研究随着高速列车在我国的日益普及,高速列车定位与控制技术的研究也越来越受到人们的关注。
高速列车定位与控制技术是为了使高速列车行驶更加快捷、舒适、安全,为旅客提供更好的出行体验。
本文将就高速列车定位与控制技术的研究过程进行简要介绍。
一、高速列车定位技术高速列车定位技术是指采集车辆装置信息,并将这些信息进行处理,确定车辆的位置及速度参数的过程。
在高速列车的运行过程中,定位技术是非常关键的环节,它能够实现列车的准确停靠和安全运行。
目前高速列车定位技术主要有以下几种:1.全球卫星导航系统技术全球卫星导航系统技术是一种非常常用的高速列车定位技术,主要利用无线电信号与地面设施相结合,对列车定位及速度进行准确计算,从而实现列车的安全运营。
2.辅助地面设备技术辅助地面设备技术主要是指采用一些特殊的设备来进行定位,例如磁性轨道定位系统、激光定位系统、超声波定位系统等。
这些设备能够对列车的位置进行精确的计算和定位。
3.惯性导航系统技术惯性导航系统技术主要是通过感应列车摆动的力矩大小来计算列车的位置和速度参数,这种技术对列车自身的运动有一定的要求,适用于高速列车。
以上三种技术各有优劣,其中全球卫星导航系统技术是目前广泛采用的一种技术。
二、高速列车控制技术高速列车控制技术是指通过一系列的控制手段对列车的运行速度、制动力等进行控制,达到安全、舒适的运行效果。
随着高速列车的日益普及,在高速列车控制技术方面也进行了一系列的研究。
1.基于垂直加速度的控制技术基于垂直加速度的控制技术是目前比较常用的一种技术,在列车运行时,会在车箱内部安装传感器,不断检测车箱的垂直加速度,从而能够实时控制列车行驶的速度和减速时所需的的制动力,提高列车运行的安全性。
2.定点停车控制技术定点停车控制技术是指通过预先设定列车停车的位置,利用车辆装置信息和计算机进行控制,实现列车的准确停靠。
这种技术能够提高列车的准点到达率和运营效率。