二次根式知识点
- 格式:pdf
- 大小:474.40 KB
- 文档页数:21
二次根式一、平方根与立方根1.平方根的概念:如果一个数的 等于a ,那么这个数就叫做a 的 (或二次方根).即:如果a x =2,那么x 就叫做a 的平方根. 记作:a x ±=2.平方根的性质:①一个正数有 个平方根,且这两个平方根互为相反数;② 0有 个平方根,它是0本身;③ 负数 平方根,因为任何数的平方都不可能等于负数.3.立方根:如果一个数的立方等于a ,那么这个数就叫做a 的 (或三次方根).即:如果a x =3,则x 就叫做a 的立方根,表示为:3a x =4.立方根的性质:一个正数有一个立方根,是正的;0的立方根是0;一个负数有一个立方根,是负的. 二、算术平方根1、 如果一个正数..的平方等于a ,即a x =2,那么这个正数x 叫做a 的 ,记作:a ,读作根号a . 2、非负数:0≥a 三、二次根式及性质1.二次根式的概念:当被开方数0≥a 时,式子a 叫做 .2.最简二次根式的条件:①被开方数不含分母;②被开方数中不能含有开得尽方的因数或因式。
3.同类二次根式:化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式。
4.二次根式的性质:①=2)(a )0(≥a ;②=2a =⎪⎩⎪⎨⎧-a a 0)0()0()0(<=>a a a ; ③=ab (0;0≥≥b a ) ;④=ba )0;0(>≥b a 。
四、二次根式的运算1.二次根式的乘除:ab b a =∙ (0,0≥≥b a ); ba b ab a ==÷ )0;0(>≥b a 2.二次根式加减:(1)先把各个二次根式化成最简二次根式;(2)找出同类二次根式;(3)合并同类二次根式,合并时根号部分不变照写,根号前系数相加减;(4)不是同类二次根式不能合并。
五、分母有理化1.分母有理化:把分母中的根号化去。
2.有理化因式:两个含有根号的代数式相乘,如果它们的积不含根号,我们就称这两个代数式互为有理化因式。
数学中的二次根式知识点一、定义与性质二次根式是指具有以下形式的数:√a,其中a为非负实数。
其中,√a被称为二次根式的根号形式,a被称为二次根式的被开方数。
二次根式的一些重要性质如下:1. 非负性质:对于任意非负实数a和b,如果a<b,则√a<√b。
2. 非负完全平方值:对于任意非负实数a,若存在非负实数b满足b^2=a,则称b为a的平方根,记作√a=b。
3. 非负根式相等:对于任意非负实数a和b,如果a≥0,b≥0且√a=√b,则a=b。
4. 非负根式与绝对值:对于任意实数a,有√(a^2)=|a|。
二、化简与运算1. 化简(1)合并同类项:对于形如√a±√b的二次根式,可以根据运算规则合并同类项。
(2)有理化分母:对于形如1/√a的二次根式,可以通过有理化分母的方法,将分母中的二次根式消去。
(3)去除分母内的二次根式:对于形如a/√b的二次根式,可以通过有理化分母的方法,去除分母内的二次根式。
2. 运算(1)加减运算:对于形如√a±√b的二次根式,可以根据运算规则进行加减运算。
(2)乘法运算:对于形如√a*√b的二次根式,可以根据运算规则进行乘法运算。
(3)除法运算:对于形如√a/√b的二次根式,可以根据运算规则进行除法运算。
(4)幂运算:对于形如(√a)^n的二次根式,可以根据运算规则进行幂运算。
三、应用与解题思路1. 求解二次根式的值:根据给定的被开方数,利用二次根式的定义和运算规则,可以求解二次根式的值。
2. 化简二次根式:根据给定的二次根式,利用化简的方法,将其化简为最简形式,以便于进行运算或比较大小。
3. 比较大小:根据二次根式的性质,可以通过比较被开方数的大小,来比较二次根式的大小关系。
4. 解方程与不等式:在数学中的各种问题中,经常会涉及到二次根式的方程或不等式,可以利用二次根式的性质以及运算规则,对方程或不等式进行求解。
综上所述,二次根式是数学中重要的知识点之一。
二次根式知识点二次根式在数学中是一个十分重要的概念,涉及到数学中的代数、方程、函数等多个知识领域。
本文将介绍二次根式的定义、性质、运算法则以及实际问题中的应用,并且通过实例帮助读者更好地理解和应用二次根式。
一、二次根式的定义在数学中,二次根式是指形如$\\sqrt{a}$的表达式,其中a是一个实数且$a\\geq0$。
该表达式表示的是一个非负实数,使得它的平方等于a,即$(\\sqrt{a})^2 = a$。
二、二次根式的性质1.二次根式的值一定是非负实数,即$\\sqrt{a} \\geq 0$。
2.如果$a \\geq 0$且$b \\geq 0$,则$\\sqrt{a} \\cdot \\sqrt{b} =\\sqrt{ab}$。
3.如果$a \\geq 0$且$b \\geq 0$,则$\\sqrt{a} + \\sqrt{b}$不一定等于$\\sqrt{a+b}$。
三、二次根式的运算法则1.加减法:二次根式只有在被加减数相同时才能相加或相减,即$\\sqrt{a} \\pm \\sqrt{a} = 2\\sqrt{a}$。
2.乘法:二次根式的乘法可按照分配律进行展开,即$(\\sqrt{a} \\pm\\sqrt{b})(\\sqrt{a} \\pm \\sqrt{b}) = a + 2\\sqrt{ab} + b$。
3.除法:二次根式的除法需要进行有理化处理,即将分母中的二次根式消去。
四、二次根式的应用二次根式常常在实际问题中得到应用,比如在几何中计算斜边长、梯形面积等问题中经常会出现。
下面通过一个实际问题来展示二次根式的应用:例题:一个正方形的对角线长为$\\sqrt{2}$米,求正方形的边长。
解答:设正方形的边长为x米,则根据勾股定理可得:x2+x2=2。
化简得到2x2=2,解方程得x=1。
因此,正方形的边长为1米。
结语通过本文的介绍,相信读者对二次根式有了更深入的了解。
二次根式作为数学中的一个基础知识点,在代数、几何、概率等各个领域都有着重要的应用价值。
二次根式知识点总结王亚平1. 二次根式的概念二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.2. 二次根式的性质1。
非负性:)0(≥a a 是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到.2.)0()(2≥=a a a注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:)0()(2≥=a a a3。
⎩⎨⎧<-≥==)0()0(2a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.3. 最简二次根式和同类二次根式1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;分母中不含根号.2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式4. 二次根式计算--分母有理化1.分母有理化定义:把分母中的根号化去,叫做分母有理化. 2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:①单项二次根式:利用a a a =⋅来确定,如:与,b a +与b a +,b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如b a +与b a -,b a +与b a -,y b x a +与y b x a -分别互为有理化因式。
3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;5. 二次根式计算——二次根式的乘除1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
)0,0(≥≥⋅=b a b a ab2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根.)0,0(≥≥=⋅b a ab b a3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根 。
第1关 二次根式(讲义部分)知识点1 二次根式1.二次根式的定义二次根式的定义:一般地,我们把形如(0≥a )的式子叫做二次根式. (1)“”称为二次根号;(2)a (0≥a )是一个非负数. 2.二次根式有意义的条件(1)二次根式的概念.形如(0≥a )的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数. (3)二次根式具有非负性.(0≥a )是一个非负数. 3.二次根式的双重非负性(1)0≥a 被开方数的非负性;(2)0≥a (算数平方根的非负性). 4.二次根式化简(1)把被开方数分解因式;(2)利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来; (3)化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.题型1 二次根式定义【例1】0)y 0,0)a b <<中,是二次根式的有( ) A .3个B .4个C .5个D .5个【解答】0)y 0,0)a b <<是二次根式,共4个, 故选:B .【点评】此题主要考查了二次根式定义,关键是注意被开方数为非负数.【例2】y( ) A .0x B .0x 且0y >C .x 、y 同号D .0x ,0y >或0x ,0y <【解答】解:依题意有20x y 且0y ≠,即0xy且0y ≠. 所以0x ,0y >或0x ,0y <. 故选:D .【点评】0)a 叫二次根式.二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.题型2 二次根式有意义的条件【例3】若a 、b 为实数,且4b =+,则a b +的值为( ) A .1± B .4 C .3或5 D .5【解答】解:由题意得,210a -,210a -,则21a =,解得,1a =±,4b ∴=,则3a b +=或5, 故选:C .【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.【例4】若2y =,求x y 的值. 【解答】解:22y x =,24x ∴=,解得:2x =±, 故2y =-,则2(2)4x y =-=或21(2)4x y -=-=. 【点评】此题主要考查了二次根式有意义的条件,正确得出x 的值是解题关键.题型3 二次根式化简求值【例5】已知a 、b 、c ||||a bb c ++.【解答】解:如图所示:0a <,0a b +<,0c a ->,0b c +<,||||a b b c ++a ab c a bc =-+++---a=-.【点评】此题主要考查了二次根式的性质和数轴,正确得出各部分符号是解题关键.【例6】设a ,b ,c 为ABC ∆的三边,化简:【解答】解:根据a ,b ,c 为ABC ∆的三边,得到0a b c ++>,0a b c --<,0b a c --<,0c b a --<,则原式||||||||4a b c a b c b a c c b a a b c b c a a c b a b cc=+++--+--+--=++++-++-++-=. 【点评】此题考查了二次根式的性质与化简,以及三角形的三边关系,熟练掌握运算法则是解本 题的关键.【例7】数a ,b【解答】解:如图得,21a-<<-,12b <<,0a b ∴-<,10b ->,10a +<,∴1(1)b a b a =-+----, 211b a a =--++, 2b =.【点评】本题考查了二次根式的性质与化简以及实数与数轴,掌握二次根式的化简是解题的关键.知识点2 二次根式运算1.最简二次根式(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式. 2.分母有理化(1)分母有理化是指把分母中的根号化去.分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.(2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理 化因式. 3.同类二次根式(1)定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这 几个二次根式叫做同类二次根式. (2)合并同类二次根式的方法:只合并根式外的因式,即系数相加减,被开方数和根指数不变. 4.二次根式的混合运算(1)二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式 的混合运算应注意:与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括 号的先算括号里面的.(2)二次根式的运算结果要化为最简二次根式.(3)在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解 题途径,往往能事半功倍.题型4 最简二次根式【例8】下列说法错误的是( )A . BC .是一个非负数D 的最小值是4【解答】解:A |3|a =-,说法错误,故本选项正确;BC 是一个非负数说法正确,故本选项错误;D 、4说法正确,故本选项错误. 故选:A .【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分 母;(2)被开方数不含能开得尽方的因数或因式.题型5 分母有理化【例9】阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①2525555==;②1===等运算都是分母有理化.根据上述材料, (1(2.【解答】解:(1)原式==(2)原式11.【点评】此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键. 【例10】观察下列运算①由1)1=1=;②由1=③由1=④由1==;⋯(1)通过观察,将你发现的规律用含有n 的式子表示出来. (2)利用你发现的规律,+⋯+.【解答】解:(1n =为正整数);(2)原式1)=+++⋯+,1=1=.【点评】此题考查了分母有理化,弄清阅读材料中的方法是解本题的关键.题型6 同类二次根式【例11】( )A B CD【解答】解:,∴ 故选:A .【点评】本题主要考查同类二次根式,解题的关键是掌握同类二次根式的概念.【例12】 是同类二次根式的是( )A .①和②B .②和③C .①和④D .③和④【解答】解:=2==3==,∴故选:C .【点评】本题考查了同类二次根式的定义: 化成最简二次根式后, 被开方数相同, 这样的二 次根式叫做同类二次根式 .【例13】是同类二次根式,则a = .【解答】解:38172a a ∴-=-,解得:5a =.【点评】此题主要考查最简二次根式和同类二次根式的定义.【例14】计算:(1)-.(2)-.(3)2132 3+(4)【解答】解:(1)原式==(2)原式22=-1812=-6=;(3)原式23=-+5=;(4)原式13932=⨯⨯=【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.题型7 二次根式化简求值【例15】先化简,再求值(6(4-,其中32x=,27y=.【解答】解:32x=,27y=,∴原式=-=-====【点评】本题考查了二次根式的化简求值,正确对二次根式进行化简是关键.【例16】已知x=,y=,求代数式22242x xy y-+的值.【解答】解:353x+==+-5y ==-∴原式222(2)x xy y =-+22()x y =-22(55=++2= 296=⨯ 192=.【点评】本题考查了二次根式的化简求值,先化简x ,y 的值是解题的关键.第1关 二次根式(题册部分)【课后练1】下列各式中,不属于二次根式的是( )A 0)xB C D【解答】解:当0aA ∴、属于二次根式,故本选项错误;B 、属于二次根式,故本选项错误;C 、属于二次根式,故本选项错误;D 、210x --<不属于二次根式,故本选项正确; 故选:D .【课后练2】实数a ,b 在数轴上的位置如图所示,( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++【解答】解:由数轴可知:102a b -<<<<,10a ∴+>,20b ->, ∴原式|1||2|a b =+--12a b =+-+ 3a b =-+, 故选:A .【课后练3】a 的值可能是( ) A .2- B .2C .32D .8【解答】解:0a ∴,且a故选项中2-,32,8都不合题意,a ∴的值可能是2. 故选:B .【课后练4】,那么x 的取值范围是( )A .12xB .12x <C .2xD .2x >【解答】解:由题意可得,10x -且20x ->,解得2x >. 故选:D .【课后练5】下列根式中,与是同类二次根式的是( )A .BC D【解答】与A 错误;=B 错误;C 错误;=是同类二次根式,D 正确; 故选:D .【课后练6】的结果是( )A .BC .D .3-【解答】解:原式6===. 故选:B .【课后练7】x 的取值范围是 .【解答】1200x x -⎧⎨≠⎩. 解得12x且0x ≠, 故答案为:12x 且0x ≠.【课后练8】实数a 化简后为 .【解答】解:由数轴可得,48a <<,∴310a a =-+- 7=,故答案为:7.【课后练9】先观察下列的计算,再完成:(11==;====请你直接写出下面的结果:= ;= ; (2)根据你的猜想、归纳,运用规律计算:1)+⨯.【解答】解:(12==;==(2)根据题意得:原式111==.故答案为:(12【课后练10】计算题:①②(2+-③④⑤⑥2314()22+⨯--.【解答】解:①原式==,②原式43=- 1=,③原式==1311=⨯ 143=,④原式==89=⨯ 72=,⑤原式328=-- 7=-.【课后练11】已知1a =,1b =,分别求下列各式的值.(1)22a b +; (2)b a a b+.【解答】解:当1a =,1b =时,(1)原式221)1)=+44=-+8=;(2)原式22a b ab+=22=82= 4=.【课后练12】化简求值(1)23)3)+;(2)已知x =-【解答】解:(1)原式59119=-+-16=-.(2)原式(2x =-,1212x ==+,∴原式1(2(1)xx x x -=--1(2x x =+,当2x =原式(2(2=-++9=-。
二次根式知识点复习二次根式是指形如√a的数,其中a是一个非负实数。
在数学中,√a叫做a的平方根。
一、基本知识点1.开方运算:开方就是求一个数的平方根的运算,开方运算的结果可以是正数、负数或零。
如果b^2=a,那么√a=b。
2.平方根的性质:(1)非负性质:对于非负实数a,√a≥0。
(2)唯一性质:一个非负实数的平方根是唯一的。
(3)分段性质:对于非负实数a和b,如果a≥b,则√a≥√b。
(4)乘法性质:对于非负实数a和b,√(a×b)=√a×√b。
3.平方根的化简:(1)平方根的化简法则:对于一个正整数a,如果存在正整数b,使得a=b^2,则√a=b。
(2)因式分解法则:如果一个正整数a可以分解成几个不同的素数的积,那么√a可以化为这些素数的乘积的积的平方根。
二、运算法则1.加减法运算:(1)只有当二次根式的根号里的数字部分相同才能相加或相减。
(2)将相同的根号里的数字部分加或减,系数部分保持不变。
(3)化简结果时,可根据需要将结果合并化简。
2.乘法运算:(1)二次根式相乘,根号里面的数字相乘,系数也相乘。
(2)系数和根号右下角的数字不能再进行化简,即不能再进行平方根的运算。
(3)化简结果时,可根据需要将结果合并化简。
3.除法运算:(1)二次根式相除,根号里面的数字相除,系数也相除。
(2)系数和根号右下角的数字不能再进行化简,即不能再进行平方根的运算。
(3)化简结果时,可根据需要将结果合并化简。
4.乘方运算:(1)二次根式进行乘方运算时,指数乘方,根号里面的数字也乘方,系数不变。
(2)在进行乘方运算后,如果结果可以进行根号运算,则进行根号运算并化简。
三、实际运用1.二次根式的应用:(1)二次根式经常在几何图形的计算中出现,如计算正方形、长方形的对角线、圆的周长和面积等。
(2)二次根式还可以用来表示距离、速度、力等物理量。
2.二次根式的化简:(1)二次根式的化简可以简化计算过程,提高计算效率。
二次根式数学知识点(8篇)二次根式数学知识点1知识点一:二次根式的概念形如a(a0)的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a0是a为二次根式的前提条件,如5,(x2+1),(x-1)(x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a0时a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,a没有意义。
知识点三:二次根式a(a0)的非负性a(a0)表示a的算术平方根,也就是说,a(a0)是一个非负数,即0(a0)。
注:因为二次根式a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a0)的算术平方根是非负数,即0(a0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若a+b=0,则a=0,b=0;若a+|b|=0,则a=0,b=0;若a+b2=0,则a=0,b=0。
知识点四:二次根式(a)的性质(a)2=a(a0)文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式(a)2=a(a0)是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若a0,则a=(a)2,如:2=(2)2,1/2=(1/2)2.知识点五:二次根式的性质a2=|a|文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:1、化简a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即a2=|a|=a(a若a是负数,则等于a的相反数-a,即a2=|a|=-a(a﹤0);2、a2中的a的取值范围可以是任意实数,即不论a取何值,a2一定有意义;3、化简a2时,先将它化成|a|,再根据绝对值的意义来进行化简。
二次根式
一.知识框架
二.知识概念 1、二次根式:一般地,形如a (a≥0)的代数式叫做二次根式。
当a >0时,a 表示a 的算数平方根,其中0=0
1)是非负数; (2); (3);
2、最简二次根式 若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤: (1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、同类二次根式 几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
4、二次根式的性质
())0,0(0,0>≥=≥≥=⨯b a b a b a b a ab b a
5.有理化根式: 如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式
6.二次根式的加法和减法
(1) 同类二次根式 一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
(2) 合并同类二次根式 把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
(3)二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
例如:2√5+√5=3√5。
二次根式知识点1. 二次根式的定义二次根式指的是形如√a的数,其中a为非负实数。
a被称为被开方数,√a被称为二次根式,也可以叫做平方根。
2. 二次根式的基本性质① 非负性:二次根式必须为非负实数。
② 同根式的加减法:同一指数的二次根式可以进行加减法运算,结果等于指数不变时各自运算后相加减。
③ 同根式的乘法:同一指数的二次根式可以进行乘法运算,结果等于指数不变时各自运算后相乘。
④ 同底数的指数运算:同一被开方数的不同指数的二次根式,可以进行指数运算,结果等于底数相同时指数相加或相减后的二次根式。
⑤ 合并同类项:不同被开方数的二次根式不能进行加减运算,必须化为同一被开方数才能进行操作。
3. 二次根式的化简① 化简含有平方数的二次根式例如:√36 = √(6²)= 6② 化简含有分数的二次根式例如:√(1/4)= 1/√4= 1/2③ 化简含有根号的二次根式例如:√(128)= √(2*64)= 8√2④ 去除被开方数中的平方因子例如:√(80)= √(16*5)= 4√54. 二次根式的应用由于二次根式代表着平方根,所以在一些实际问题中,经常出现二次根式的应用。
例1:计算正方形对角线的长度设正方形边长为a,则对角线长度d = √(a²+a²)=a√2例2:炮弹落地问题假设炮弹以初速度v以角度α斜抛,落地时的水平距离为x,求炮弹所需的最小速度v。
根据物理学上的知识,可以得到:x = v²sin2α/g其中g为重力加速度,有g = 9.8m/s²,化简可得:v = √(gx/ sin2α)在实际问题中,二次根式的应用还有很多,比如在建筑设计中计算楼梯踏步和踏板的长度,计算圆周率的近似值等等。
5. 二次根式的拓展除了√a这种形式的二次根式外,还可以拓展为含有多个根号的形式。
例如:√(a±√b)化简时,可以拆分成两个二次根式相加或相减的形式:当加号为正号时,可拆分为:√(a+√b)+√(a-√b)当减号为负号时,可拆分为:√(a-√b)-√(a+√b)在拓展的形式中,二次根式的化简变得更为复杂,需要运用其他方法进行化简。
初二数学二次根式知识点大全知识点1 二次根式1.二次根式的定义一般地,我们把形如 $\sqrt{a}$($a\geq0$)的式子叫做二次根式。
其中,$\sqrt{}$ 称为二次根号,$a$($a\geq0$)是一个非负数。
2.二次根式有意义的条件二次根式的概念是形如 $\sqrt{a}$($a\geq0$)的式子叫做二次根式。
二次根式中被开方数是非负数,且具有非负性,即 $a\geq0$。
3.二次根式的双重非负性二次根式的双重非负性包括被开方数的非负性和算数平方根的非负性,即 $a\geq0$ 和 $\sqrt{a}\geq0$。
4.二次根式化简化简二次根式的方法包括把被开方数分解因式,利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来,化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数 2.题型1 二次根式定义例1】在式子 $\pi$,$a^2+b^2$,$a+5$,$-3y(y\geq0)$,$m^2-1$ 和 $ab$($a<0,b<0$)中,是二次根式的有()A。
3个B。
4个C。
5个D。
5个解答】解:式子 $\pi$,$a^2+b^2$,$-3y(y\geq0)$,$ab$($a<0,b<0$)是二次根式,共 4 个,故选 B。
点评】此题主要考查了二次根式定义,关键是注意被开方数为非负数。
题型2 二次根式有意义的条件例2】若 $\frac{\sqrt{2x}}{\sqrt{y}}$ 是二次根式,则下列说法正确的是()A。
$x<y$B。
$x$ 且 $y>\frac{2x^2}{y^2}$C。
$x$、$y$ 同号D。
$x,y>0$ 或 $x,y<0$解答】解:依题意有 $\frac{\sqrt{2x}}{\sqrt{y}}$,即$\sqrt{\frac{2x}{y}}$,是二次根式。
则 $\frac{2x}{y}>0$,即$x,y$ 同号且 $y\neq0$。